Path-Sensitive Sparse Analysis without
Path Conditions

Qingkai Shi
The Hong Kong University of Science and Technology
China
gshiaa@cse.ust.hk

Rongxin Wu
Xiamen University
China
wurongxin@xmu.edu.cn

Abstract

Sparse program analysis is fast as it propagates data flow
facts via data dependence, skipping unnecessary control
flows. However, when path-sensitively checking millions of
lines of code, it is still prohibitively expensive because a huge
number of path conditions have to be computed and solved
via an SMT solver. This paper presents Fusion, a fused ap-
proach to inter-procedurally path-sensitive sparse analysis.
In Fusion, the SMT solver does not work as a standalone
tool on path conditions but directly on the program together
with the sparse analysis. Such a fused design allows us to
determine the path feasibility without explicitly computing
path conditions, not only saving the cost of computing path
conditions but also providing an opportunity to enhance the
SMT solving algorithm. To the best of our knowledge, Fusion,
for the first time, enables whole program bug detection on
millions of lines of code in a common personal computer,
with the precision of inter-procedural path-sensitivity. Com-
pared to two state-of-the-art tools, Fusion is 10X faster but
consumes only 10% of memory on average. Fusion has de-
tected over a hundred bugs in mature open-source software,
some of which have even been assigned CVE identifiers due
to their security impact.

CCS Concepts: « Software and its engineering — Soft-
ware verification and validation.

Keywords: Sparse analysis, path sensitivity, program depen-
dence graph, SMT solving.
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1 Introduction

Sparse program analysis is often believed to be more scalable
than the conventional data flow analysis, because it propa-
gates data flow facts via data dependence, skipping unneces-
sary control flows [11, 39, 45-49]. However, we observe that
this claimed scalability is not apparent and is even negligible
when high precision, i.e., inter-procedural path-sensitivity,
is required. For instance, Pinpoint, a recent sparse analyzer,
achieves inter-procedural path-sensitivity but is still prohibi-
tively expensive. As reported, it may take 5 hours and 150GB
of memory to complete a single analysis [46]. Such high cost
creates non-negligible obstacles to deployment in practice,
especially for small enterprises and individual users.

The core of this scalability limitation, as we observe, is
that, although the sparsity allows for skipping unnecessary
control flows, a path-sensitive sparse analysis still needs to
compute many exponential-sized path conditions due to the
incessant function cloning induced by context-sensitivity.
For example, in Figure 1(a), the analysis can propagate the
null pointer at Line 8 to Line 14 via data dependence, skipping
the control flows in between. However, such sparse propaga-
tion cannot prevent us from computing and solving the path
condition in Figure 1(b), where the return-value condition,
z = y Ay = 2x, of the function bar is repetitively instan-
tiated at every call site. As the analysis progresses and the
null pointer propagates to the caller and upper-level caller
functions, this path condition, together with the instantiated
return-value condition, will be further instantiated, leading
to an explosive growth of the condition size. Even worse,
to avoid repetitively analyzing a function, we often cache
these path conditions as function summaries, which severely
overload the memory and limit the analysis scalability. In
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int bar(int x) { path condition of (p=nullptr ~ return p) =

|

2 inty=x*2; y1 =%, *2 Az, =y, [/l function bar
3 intz=yj; a=x, Ac=z/ A /I call at Line 10
4 return z; Y2=%, *2 Az, =y, [l function bar
5} b=x,Ad=2z,A I/l call at Line 11
6 eANe=c<d /I Line 13

7 int *foo(inta, int b) {

8 int *p = nullptr; (b)

9

10 intc = bar(a); 100%

Il intd = bar(b); 75%

2 .. 50%

13 if (boole =¢,<d) { 25%

:Ast } returnp; 0%
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Figure 1. (a) Code example. (b) Path condition on which the
null pointer returns. (c) The memory usage of four projects
with millions of lines of code.

our experience, as shown in Figure 1(c), path conditions may
consume over 72% of the runtime memory. Given that SMT
solving is inherently expensive, the explosive size of path
conditions further exacerbates the perceived performance of
SMT solving and, in turn, the static analysis as a whole.

To reduce the overhead caused by path conditions without
compromising the precision, existing approaches heavily de-
pend on quantifier elimination (QE), formula simplification
(FS), or abstract refinement (AR), to reduce the condition
size 2, 8, 9, 12, 23, 55]. However, they often introduce extra
computational overhead and deteriorate the analysis per-
formance. For instance, given the explosive condition size
and the high complexity of QE problems [19, 26], QE-based
approaches could give the analysis performance a devastat-
ing blow. Similarly, FS-based and AR-based approaches may
involve extra SMT solving procedures to simplify the condi-
tion [22] or refine the abstraction [2, 3, 31]. Due to the high
cost of SMT solving, they often exhibit weak scalability in
practice. Our evaluation shows that an analysis with QE, FS,
or AR may fail to analyze a program within 12 hours and
100GB of memory.

This paper presents Fusion, a fused design of sparse anal-
ysis with the precision of inter-procedural path-sensitivity.
As shown in Figure 2, different from the conventional design
that computes, solves, and caches many path conditions, in
our design, the SMT solver no longer works separately to
check the satisfiability of path conditions, but works together
with the sparse analysis on its linear-sized program inter-
mediate representation (IR), which is known as the program
dependence graph.! Our key insight is that program depen-
dence graph and path condition are allotropes, which means

1Program dependence graph [25] has many variants, such as the SSA
graph [15], the symbolic expression graph [46], and so on. We use the
general term, program dependence graph, with no loss of generality.
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Figure 2. (a) Conventional design: the sparse analysis works
on the program dependence graph, computing, solving, and
caching path conditions. A path-sensitive summary can be
regarded as a path associated with its path condition. (b) Our
design: both the sparse analysis and the SMT solver work
on the program dependence graph and it is not necessary to
compute and summarize the explosive-sized path conditions.

that, although they are in different forms, they encode the
same program information, i.e., the control dependence and
the data dependence. This fact implies that we can deter-
mine path feasibility directly using the IR without explicitly
computing and caching a number of explosive-sized path con-
ditions, thus dramatically saving both time and memory. In
addition, since our SMT solver works on the program depen-
dence graph, it can also benefit from program information
for further acceleration. Such acceleration is not available
in a standalone and general-purpose SMT solver, where the
program information is lost. We provide more details in § 2.

We have implemented Fusion on top of the LLVM com-
piler infrastructure [33] and the Z3 SMT solver [20] to detect
null exceptions and taint issues in C/C++ programs. The
evaluation results demonstrate that Fusion can finish the
checking of millions of lines of code within half an hour and
12GB of memory, 2x-48x faster and only 3%-20% of mem-
ory compared to existing approaches. The results also imply
that, for the first time to the best of our knowledge, Fusion is
capable of analyzing millions of lines of code in a common
personal computer and simultaneously achieving the preci-
sion of inter-procedural path-sensitivity. Fusion has detected
over a hundred previously-unknown bugs in mature open-
source software, with some even assigned CVE identifiers.
In summary, this paper makes three contributions:

o A fused design that enables a scalable inter-procedurally
path-sensitive sparse analysis.

e An optimized SMT solving method that works directly
on the program dependence graph.

e An extensive experiment that evaluates the scalability
and the precision of our approach.



Path-Sensitive Sparse Analysis without Path Conditions

y y=x*2 -

(1 _ a quick path for
p = nullptr z=y i conditionsolving
e=c<d )u

return p .—----' return z -

the sub-graph representing the path condition

Figure 3. The solid and dashed arrows stand for the data
dependence and the control dependence, respectively. Inter-
procedural data dependence is labeled by (; or ); to represent
a call and return pair at Line i.

2 Fusion in a Nutshell

Sparse analysis accepts a program and its program depen-
dence graph as the inputs, and propagates data flow facts
via data dependence edges on the graph. Figure 3 shows
the program dependence graph of the code in Figure 1. A
program dependence graph encodes both the data depen-
dence and the control dependence in a program. We say a
statement x is data-dependent on a statement or a variable y
if x refers to the value defined by y. We say a statement x is
control-dependent on a branch condition y if the truth value
of y determines whether the statement x can be executed
at runtime. To distinguish different call sites of the same
function, the data dependence edges representing call and
return are labeled by a unique pair of parentheses.

The Conventional Approach. As discussed before, for
the code in Figure 1(a), a conventional approach computes,
solves, and caches the path condition in Figure 1(b).

(1) Computing the path condition. Given the size m of the
function foo and the size n of the function bar, we can com-
pute the size of the path condition as O(kn+ m), where k = 2
because the return-value condition of the function bar is
instantiated (or cloned) twice. Thus, computing this path
condition needs at least O(kn + m) time and space.

(2) Solving the path condition. An SMT solver can solve
the path condition via a linear scan with O(kn + m) time
and space.” That is, since the variables, a and b, are uncon-
strained,? the other variables, e.g., ¢ and d, are also uncon-
strained due to the equality relations in the formula. Thus,
¢ < d is satisfiable because both ¢ and d are unconstrained.

(3) Caching the path condition. For inter-procedural anal-
ysis, we often cache this satisfiable path condition and its
corresponding path as a function summary for future instan-
tiation in the caller and up-level caller functions. Thus, we
need O(kn+ m) space to cache the path condition in memory.

2While it is simple in the example, SMT solving is more complex in general,
which we will detail later.

3Intuitively, the variables, a and b, are unconstrained because they are used
only once in the path condition.
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Table 1. The cost of computing, solving, and caching path
conditions for the function foo.

‘computing‘ solving ‘ caching

conventional ‘ O(kn + m) ‘ O(kn + m) ‘ O(kn + m)

‘ O(n+m) ‘ O(n+m) ‘ -

n: size of bar. m: size of foo. foo calls bar k times.

fusion

The Fused Approach. As illustrated in Figure 2, Fusion
checks the path feasibility using the program dependence
graph, which allows for a more efficient static analysis. As
summarized in Table 1, Fusion performs better than the
conventional approach in all aspects of computing, solving,
and caching the path condition.

(1) Using the slice as the path condition. Since the program
dependence graph encodes all of the program dependence
relations, it can be directly used, instead of the conventional
first-order logic formula, to represent the path condition. As
shown in Figure 3, the condition of the path from p=nullptr
to return p is represented as the sub-graph connecting to
the path via a control dependence edge. The size of the sub-
graph, as well as the time and space for computing the sub-
graph, is linear, i.e., O(n + m), much smaller than that of
the conventional design. The key here is that the modular
structure of the dependence graph allows us to distinguish
different call sites without cloning the function bar.

(2) Accelerating SMT solving via modularity. The key in-
sight here is that SMT solving shares many techniques with
program analysis, e.g., value propagation, which are more
efficient using the program dependence graph as it preserves
the program structure. In the example, we propagate the data
flow fact that “a is unconstrained” via the data dependence
edges from the vertex a to the branch condition e=c<d. Dur-
ing the propagation, we can establish a quick path from the
vertex y=2x to the vertex return z. The quick path allows the
same propagation from the variable b to the branch condition
without going through the function bar, thus accelerating
the propagation. Since the branch condition depends on two
unconstrained values, it is satisfiable. Due to the quick path,
this solving procedure has a linear complexity O(n + m).

(3) No caching. As shown above, we can check the path
feasibility using the program dependence graph. Since the
program dependence graph has already been in memory, we
do not need to additionally cache any path conditions, thus
significantly reducing the time and memory usage compared
to the conventional approach.

Summary. The key of our approach is that, instead of
being standalone and general-purpose, SMT solvers should
work directly on the program dependence graphs to avoid the
unnecessary condition cloning and condition caching, thereby
notably improving the scalability of sparse analysis. We for-
mally present our idea in the next section.
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3 Fusion: the Fused Design

In this section, we first introduce the background of sparse
analysis (§ 3.1), with our solution in detail (§ 3.2), followed
by a summary of its benefits (§ 3.3).

3.1 Background and Problem Statement

Language. For clarity, we use the simple call-by-value
language shown in Figure 4 to model target programs. A
program may contain multiple functions, with or without
a function body. The semantics of most statements in this
language are standard and omitted, except that an identity
statement, representing a tautology, is used for simplifying
our explanation. Each function parameter must be initialized
using the identity statement, e.g., f(v) = {v = (v);- - -}. The
ite-assignment means that if v, is true, vs is assigned to v;.
Otherwise, vy is assigned to v;. The return statement and
the if-statement assign v, to a new variable vy, which is
then used as the return value or the branch condition. In the
language, we use = and = to distinguish the assignment op-
erator and the equality operator, and assume that a function
only has one return statement as its single exit.

With no loss of generality, we assume the code is in the
SSA form [17], where each variable has only one definition
and we can merge multiple definitions via a ¢-assignment,
eg, vy = -5 if(c =) {va = -5} vs = P(v1,02).
In our language, we use v3 = ite (c,v,v;) to replace the
¢-assignment so that the assignment condition is explicit.
Previous work has shown that such replacement is of almost
linear complexity [50]. The language abstracts away the
pointer operations, because the pointer analysis is not our
technical contribution and, in the implementation, we follow
the existing work to resolve pointer relations [46]. Following
the theory of bounded model checking [4] and many path-
sensitive analyzers [2, 7, 46, 48, 49, 53], we assume the code
in the language is loop-free as we often unroll loops for a
fixed number of times in practice.

Definition 3.1. The program dependence graph of a pro-
gram in the small language is a triple G = (V, E4, E.), where

o V is the vertex set. Each vertex is a statement or, equiv-
alently, the variable defined by the statement.

e E; C V XV isa set of data dependence edges. Each
edge is from a statement to the other that refers to the
variable defined in the source statement.

e E. € V xV is a set of control dependence edges.
Each edge is from a statement to an if-statement —
the source statement is reachable at runtime if and
only if the if-statement is reachable and the branch
condition defined in the if-statement is true.

Given a program in our small language, we can build the
control dependence edges E. in almost linear time [17]. For
the data dependence edges E;, we use the rules in Figure 5
to process each statement. Specially, for a call statement, if
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Program P := F+
FunctionF = f(v1,02,---) ={S; }
| f(v1,02,--) =@

Statement S = v ={(v1) zidentity
|v1 =0y :assignment
|v1 =v2 ® 03 ::binary
| v1 = ite (v2, v3,v4) ::if-then-else
|v1 = f(vg,v3,--+) ::call
| return vy = vy sreturn
|if (v1 = v2) {S1;} ::branching
| S1;S2 :sequencing

@AV, +, - > <5, %, }

Figure 4. Language of target programs.

U1 =02 U] =v2 @ U3

(v2,01), (v3,01) € Eq

(’02, Ul) € Ed

vy = ite (vg,v3,v4)

(v2,v1), (v3,01), (v4,v1) € Eg

vy = f(vz,-++) flur,-) ={ur =(u1);- - ;return wy = wy; }

(v2,u1), (w2, w1), (w1,v1) € Egq

oL =f(es ) flu, ) =0

(’Uz, ’Ul) € Ed

if (v =vp) {--}
(’02,1}1) € Ed

Figure 5. Rules of building data dependence.

it calls a non-empty function, we connect the actual and the
formal as well as the return value and its receiver via the data
dependence edges, which we refer to as the call edges and the
return edges. To distinguish call sites that call the same func-
tion, we follow the conventional CFL-reachability method
to label each pair of call and return edges with a unique pair
of parentheses [42], just as the example in Figure 3. For an
empty function, e.g., a third-party library function, we just
establish a data dependence relation between the actual and
the return value receiver.

Note that the program dependence graph in Fusion is built
on the SSA-form code of a given program. Horwitz et al. [32]
showed that program dependence graph of non-SSA-form
code does not track the order of multiple definitions of the
same variable and, thus, is not adequate to represent the
program semantics, e.g., path conditions in our context.

Path-Sensitive Sparse Analysis. Algorithm 1 demon-
strates how a path-sensitive sparse analysis processes a con-
trol flow path, i.e., a list of statements, sg, sq, - - - , s,. In the
algorithm, 7 stands for a data dependence path on the pro-
gram dependence graph; ing and out; stand for the sets of
data flow facts before and after a statement; and tr; is the
transfer function of a statement. The sparse analysis prop-
agates the data flow facts via data dependence (Lines 5-6,
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Algorithm 1: Sparse analysis of a control-flow path.

1 Procedure sparse(sg,s1, - ,Sn)

2 oI={}

3 fori=0...ndo

4 outs, = trg, (ing;);

5 if outs; # 0 and (s;, sj) € E; then
6 insj = insj U outs;;

7 if Ar = (---,s;) € II then
8 = (s sg);

9 P = P A ¢(s,~,sj);

10 else

11 L I =TTV {(si,5))};

12 smt_solve (A ;e P );

Algorithm 2: Inter-procedural sparse analysis.

1 Procedure interprocedural_sparse(sg,s1, - ,Sn)

2 Sy = {(7[1’trﬂp‘f)m)a(”2,tr7rgs¢ﬂ2),‘"}S

3 Sy = {¢ret1, ¢ret2, RN

4 I={k

5 fori=0...ndo

6 if A(m = (s, -+ ,8)), tror, §z) € Sq then

7 outs; = try(ing;);

8 if outs; # 0 and (s, s) € E; then

9 ing, =ing, U outs;;

10 if A7’ = (---,s;) € I1 then

1 A= (e sty 8] SK);

12 G = Qg A instantiate(Pr) A D(sjsi)

13 else

14 L =TTV {(si," - ,8j,5K)};

15 else

16 /* intra-procedural part, which is the same as
| Line 4-Line 11 in Algorithm 1. */

v smt_solve (A ger Pr);

Algorithm 1), and collects a set IT = {ry, 7, - - -} of data de-
pendence paths as well as their path conditions ¢, (Lines 7-
11, Algorithm 1). At the end, the procedure solves the path
condition to achieve path-sensitivity (Line 12, Algorithm 1).

Example 3.2. Consider the simple program presented as a
control flow path in Figure 6(a). Suppose that we perform a
taint analysis where low means an insensitive value and high
means the opposite. A conventional analysis propagates all
data flow facts along the control flows and find a taint issue
at the final statement where a password may be sent to a
sensitive site.

Sparse analysis has two unique features known as the
spatial sparsity and the temporal sparsity [39]. As shown
in Figure 6(b), spatial sparsity means that it only stores the
data flow facts used at each statement, and temporal sparsity
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a= b= _
get_pass() user_ip() c=a d=b send(c, d)

a: high a : high a : high a : high a: high
b : high b : high b : high b : high
c: high c : high c: high
d: high d: high

(@)
a: high b : high a : high b : high c: high
c : high d: high d: high

(b)

Figure 6. (a) Conventional data flow analysis that propagates
all data flow facts along control flows. (b) Sparse analysis
propagates data flow facts along data dependence and only
stores the data flow facts used in the analysis of a statement.

means that it propagates the data flow facts along the data
dependence edges, thus skipping unnecessary control flows.

To path-sensitively check if the sensitive information con-
tained in the variables, a and b, will be propagated to the
final statement, send(c, d), we actually need to check if the
two data dependence paths, 71 = (a, ¢, send(c,d)) and 7, =
(b,d,send(c,d)), on the program dependence graph are si-
multaneously feasible, i.e., if the conjunction of their path
conditions ¢, A ¢, is satisfiable.

Problem Statement. Algorithm 2 demonstrates the inter-
procedural sparse analysis, which has two scalability prob-
lems. The first one is referred to as condition caching. In the
algorithm, to avoid repetitively analyzing a function, we of-
ten cache function summaries in the memory for the future
use. Each function summary is either a triple (7, tr, ¢, ) or
a condition ¢, (Lines 2-3, Algorithm 2). The former sum-
marizes a data dependence path 7 = (s, 51, ..., Sn), Where
try = trs, 0- - -Otrs oOtrg, is the summarized transfer function
and ¢, is the path condition. The latter summarizes the con-
dition of a return value, just like the return-value condition
z = y Ay = 2x of the function bar in Figure 1. As previ-
ously discussed, computing and caching these conditions in
memory causes a significant time and memory overhead.

The second problem is referred to as condition cloning. On
one hand, when the propagation of data flow facts reaches
a statement at the function entry, the function summary
(7, try, ¢ ) will be instantiated (Lines 6-14, Algorithm 2),
leading to a path condition where ¢, is cloned (Line 12,
Algorithm 2). On the other hand, as demonstrated in Figure 1,
a path condition ¢, itself may also include many clones of
the return-value condition ¢, if the path control-depends
on the return values from the callees. Such condition cloning
leads to an exponential growth of the condition size as the
call depth increases, severely limiting the analysis scalability.
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Based on the discussion above, we aim to address the
following problem to make the path-sensitive sparse analysis
shown in Algorithm 2 scalable:

Given a set IT of data dependence paths explored by the
sparse analysis, solve the path condition ¢y = A ;e @1
without caching and exhaustively cloning conditions.

3.2 Fusing Sparse Analysis and SMT Solving

This section details Fusion in three parts: a linear transfor-
mation from the program dependence graph to the path con-
dition, which sets the foundation for our approach (§ 3.2.1);
an un-optimized SMT solution that addresses the condition
caching problem (§ 3.2.2); and an optimized SMT solution
that further addresses the condition cloning problem (§ 3.2.3).

3.2.1 Linear Allotropic Transformation. Our key in-
sight is that, although the program dependence graph and
the path conditions are in different forms, they encode the
same information, i.e., the data and the control dependence.
This section shows that, given a set IT of data dependence
paths, we can transform the program dependence graph to
the path condition ¢y = A ;e ¢ in linear time and space.

Intra-procedural Transformation. Figure 8 lists the
transformation rules for an intra-procedural program de-
pendence graph. These rules can be understood in two steps:
slicing (Rules (1)-(3)) and translating (Rules (4)-(6)). The
first step produces a slice G[II] = (V[II], E4[I1], E.[IT]) of
the program dependence graph G with respect to the set II
of data dependence paths. The second step translates the
slice G[II] to the path condition ¢y.

For slicing, Rule (1) processes the ite-statements and iden-
tifies the if-branch we propagate the data flow facts. For
instance, when we propagate a data flow fact from a state-
ment v; = v, to the statement v; = ite(c, vy, vy), it is easy
to determine that the condition ¢ must be true. In this case,
we record the edge to prune, e.g., (v4, v3), in a set Xj.

Rules (2) and (3) compute the program slice, which con-
tains the vertices that the paths in I transitively data- or
control-depend on [52]. Rule (2) is to transitively add the
control dependence edges, which contain the branch condi-
tions on which the path is feasible. Rule (3) is to add the data
dependence edges, which imply how each branch condition
is computed. Clearly, the complexity of applying the rules is
linear to the slice size.

Example 3.3. Consider the program dependence graph in
Figure 7 and IT = {(p=(p), q=p, r=q)}. Rule (2) adds the ver-
tices if (c=b) and if (f=e) into V[II]. Rule (3) adds all other
vertices the two if-statements transitively data-depend on
into V[II]. Thus, the slice G[II] contains all vertices and
edges except those in II.

Rules (4)-(6) translate the slice to the path condition, i.e.,
a first-order logic formula in the following language:

e := true| false| v | e; ® e, | ite (eq, €2, €3).
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| foo(a, p) ={

2 a = <a>;p = <p>; a = <a>

3 b =a>20;

4 if (c=0b){

5 q9=Pp;

6 d=a*2;

7 e=d>90 d=a%2
8 if (f=e){

9 r=aq;

10 } e=d>90

if (F= e)

Figure 7. Code example and its program dependence graph.

Rule (4) initializes the path condition. Since a data depen-
dence path is feasible if and only if all the branch conditions
it control-depends on are satisfied at runtime, Rule (5) trans-
lates each if-statement that the path control-depends on to
true (denoted as [-] ). Rule (6) translates all data dependence
relations in the slice to its first-order logic counterpart (de-
noted as [[-]4). Apparently, applying the two rules requires a
depth-first search on the slice, which is of linear complexity
with respect to the slice size or, equivalently, to the size of
the resulting path condition.

Example 3.4. Consider Figure 7. Rule (5) interprets the two
if-statements that the path depends on into f = trueand ¢ =
true. Rule (6) traverses all vertices in the slice and interprets
each statementasb =a > 20,c = b,d = ax2,e =d > 90,and
f = e. Thus, the path condition is f = true A ¢ = true A b =
a>20Ac=bAd=ax2he=d>90ANf=e.

Inter-procedural Transformation. The key problem of
the inter-procedural analysis is to achieve context-sensitivity.
First, we employ Rules (1)—(3) to compute an inter-procedural
slice, such as the one in Figure 3. Next, we clone the callee
function at each call site to achieve context-sensitivity. Such
function cloning allows us to remove the parentheses on the
call and return edges. Thus, we can then apply Rules (4)-
(6) to compute the path condition except that, we need to
consider the following additional translations related to call

and return:
(Ul,vz) € Ed[H] (’01,7.12) € Ed[H] f * 0

[oa=f(-)]a=v1 =02

[v2 = (v2)]g = v1 = v2

Apparently, the inter-procedural process is still of linear
complexity with respect to the size of the resulting condition.

3.2.2 Unoptimized IR-Based SMT Solution. The linear
allotropic transformation implies that the program depen-
dence graph is equivalent to the path conditions in terms
of the SMT solving. To illustrate, we give a simple sketch
of both the conventional SMT solving method and a triv-
ial dependence-graph-based solution in Algorithm 3 and
Algorithm 4, respectively.
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7 ell (vi,v1 = ite (v2,v3,v4)) T v; € {v3,04}

M)

(u,v1) € Xg where u € {vs,v4} \ {v;}

rell vern

(U, Ul)’ (Ul,vz), Tt (Un—ls Un) € E;

v E V[H] (u,v) € Ed \Xd

v1,02, v € V[II], (L, 01), (v1,02), - -+, (Un-1,vn) € Ec[IT]

®3)
u € V[II], (u,v) € E4[II]

(u,v) € E.[IT]

¢ = true

©)

o = o A [v]c where [if (v1 = v2){S1;}]c = (v1 = true)

v € V[II]

[or = v2]a
[[Ul =02 D U3ﬂd

o = o1 A [v] g where [o1 = ite (v, v3,04)]a

[return v; = v2]4
[if (v1 = v2){S1:}]a
[others] 4

V1 =0
V1 = vy D3

vy =trueAvi =vs  (v3,01) € Eg[II] A (v4,v1) € Eg[II]
{ (v3,v1) € Eg[IT] A (vg,v1) € Eg[II]

otherwise

vg = false AN v1 = vy
v = ite (v, U3, Vy)
V1 =02
V1 =02
true

(©)

Figure 8. Transforming an intra-procedural program dependence graph to the path condition of a set IT of data dependence
paths. Note that a vertex on the dependence graph stands for both a statement and the variable defined by the statement.

As shown in Algorithm 3, an SMT solver first applies a se-
ries of equisatisfiable formula transformations* that simplify
the input formula and rewrite the formula in a standard form.
Clearly, each preprocessing step needs at least linear time
and space to scan the input formula. These preprocessing
steps play a key role in improving the performance of an
SMT solver [20], because the satisfiability of many cases (21%
cases in our evaluation) can be decided during this phase, just
as shown by the example in Section 2. After preprocessing,
the transformed formula is sent to a specific solver accord-
ing to the theories we employ. For instance, if we employ
the bit-vector theory like the previous work [2, 46, 53], i.e.,
model each variable as a bit vector, the specific solver will
bit-blast the condition to a pure Boolean formula and use an
SAT solver to determine its satisfiability.

The dependence-graph-based solution accepts the set IT
of data dependence paths as its input, applies Rules (1)—(8)
to compute the inter-procedural path condition, and calls
the conventional SMT solver to determine its satisfiability.
Since Rules (1)—(8) are of the linear complexity, Algorithm 4
has the same complexity as the conventional solver.

Impacts on the Scalability. Since Algorithm 3 and Al-
gorithm 4 have the same complexity, it is equivalent to use
either the program dependence graph or the path conditions
for SMT solving. Such equivalence allows the static ana-
lyzer not to compute and cache any path conditions because
the program dependence graph is already in memory. To
illustrate this advantage, we rewrite the algorithm of the

4 For instance, given the condition x > y, we can transform it to an equi-
satisfiable condition true, because both variables, x and y, in the condition
are unconstrained.

Algorithm 3: Conventional SMT solution.

1 Procedure smt_solve(¢r)

2 ¢m = preprocess(¢fr); /* Q(sizeof (fr1)) */
3 if ¢r1 is true then

4 L return sat;

5 if ¢r7 is false then

6 L return unsat;

7 | return specific_solve (¢r);

Algorithm 4: Un-optimized IR-based SMT solution.

1 Procedure ir_based_smt_solve(II)

2 use Rules (1)-(3) to compute a slice;

3 clone the callee functions at all call sites in the slice;

4 use Rules (4)—(8) to compute ¢r1; /* O(sizeof (fr)) */
5 smt_solve (¢11);

sparse analysis, i.e., Algorithm 2, in Algorithm 5, where we
highlight the differences. In comparison, since Algorithm 5
calls the new SMT solution at the end, it no longer needs to
compute any condition during the analysis and, thus, does
not need to cache any condition in function summaries — S;
removes ¢, from each function summary and S; is totally
removed. Thus, the overhead caused by condition caching is
entirely removed.

3.2.3 Optimized IR-Based SMT Solution. In addition
to discarding the need of caching conditions, fusing static
analysis and SMT solving — SMT solving on the program
dependence graph — provides many other opportunities for
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Algorithm 5: Optimized inter-procedural analysis.

Algorithm 6: Optimized IR-based SMT solution.

1 Procedure interprocedural_sparse(sg,si, -+ »Sn)

2 St = {(ﬂ'lstrnyé?ﬁ)’(ﬂ'btrnzs%)s"'};

3 = 1° 27 5

1 o={}

5 fori=0...ndo

6 if A(r = (si, -+ ,8j), trr, @) € Sy then

7 outs; = trz(ing;);

8 if outs; # 0 and (s, s) € E; then

9 ing, = ing, U outs;;

10 if A7’ = (---,s;) € Il then

11 = (s L8 SE);

12 | j S5si0

13 else

14 L H=HU{(Sj,~~-,Sj,sk)};

15 else

16 /* intra-procedural part, which is the same as

Line 4-Line 11 in Algorithm 1, except that, in this

| algorithm, we do not compute any ¢. */

17 ir_based_smt_solve (IT);

further acceleration. Our key insight is that the program
dependence graph can provide rich program information to
guide the SMT solving. We note that this insight has been
studied from different angles in some previous work. For
instance, prior work shows that both the data and the control
dependence can be utilized to speed up SMT solving [10, 54].

In this paper, we focus on the condition cloning problem in
the path-sensitive sparse analysis and propose a solution that
utilizes the program structure to optimize the preprocessing
steps in the SMT solver. Recall that, we need to instantiate
(or clone) the conditions from the callee functions to achieve
context-sensitivity. Such cloning leads to the exponential
growth of the condition size and, thus, significantly limits
the performance of both static analysis and SMT solving. Al-
gorithm 6 illustrates our optimized method, which, compared
to Algorithm 4, delays the condition cloning after a series of
intra-procedural and inter-procedural preprocessing proce-
dures. We can understand the benefits of Algorithm 6 from
the following two aspects.

Reducing the Number of Functions to Clone. In the
intra-procedural phase (Lines 3-5, Algorithm 6), we first ap-
ply Rules (4)-(6) on the intra-procedural dependence graph,
which yields an intra-procedural path condition. Such local
path conditions can be preprocessed by a series of standard
methods like the Gaussian elimination to reduce the condi-
tion size. Thus, the size of the conditions to clone is reduced.

More importantly, the inter-procedural phase aims to elim-
inate the unnecessary function calls, thereby reducing the
function clones (Line 6, Algorithm 6). For instance, we dis-
cussed that, after the unconstrained-value propagation, we
can already solve the path condition in Figure 3 without

1 Procedure ir_based_smt_solve(II)

2 use Rules (1)—(3) to compute a slice G[I1];

3 foreach function f on G[II] do

4 use Rules (4)—(6) to compute the local condition ¢y f;
L ¢, 5 = intraprocedural_preprocess(¢ry, f);

6 interprocedural_preprocess(G[II]);

7 clone ¢ry ¢ at call sites with Rules (7)-(8);

8 return smi_solve(/\f ¢ f);

(i
a=... 0—1-x= <x> a=... .—T_X: <x>
b=5 r—/‘ b=5 e

y=2%x y=2%x
d = qux(b) )i l d=10
-—e
 returnz =y <o« greturnz=y
¢ = qux(a) )i ¢ = qux(a)

@ (b)

Figure 9. (a) Program dependence graph where parentheses
are used to distinguish two call sites, c=qux(a) and d=qux(b).
(b) After constant propagation, the edge labels are deleted.

the need of cloning the callee function bar. Figure 9 shows
the other example, where the call and the return edges, la-
beled by (; and );, are deleted after inter-procedural constant
propagation, a classic preprocessing method [5, 43]. Since
the callee function qux is called only once after preprocess-
ing, we do not need to clone the intra-procedural condition
@I, quxs 1.€., Y = 2% x A z = y, to distinguish the call sites.

Speeding up Preprocessing. In addition to reducing the
condition size, the modular structure of the program depen-
dence graph also significantly accelerates the preprocessing
steps. First, the inter-procedural propagation-style prepro-
cessing can be made more efficient via the modular structure.
The example in Figure 3 illustrates that we can avoid repeti-
tively visiting a function by creating a quick path between
the entry and the exit of a function.

Second, expensive preprocessing methods, such as the
Gaussian elimination, are decomposed into multiple func-
tions. Assume that a preprocessing step in an original solver
has the complexity O(7(sizeof(AreF P, r))) where F is the
set of all functions and their clones, and 7 is a high-complexity
function. In our framework, we perform this expensive step
intra-procedurally to avoid repetitive processes on different
clones of the same local condition, thus having the com-
plexity O(Zrcs n(sizeof(¢r, ) + O(sizeof(Arem\7 ¢, r))
where ¥ is the set of functions without clones. The first
component of the complexity is the total cost of prepro-
cessing each function. The second component is the cost
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of cloning the preprocessed condition at each call site. The
complexity is significantly reduced in practice, because

O(h(sizeof( \fes Pr1.f)))
> O(h(sizeof( \eg ¢m,1))) + O(h(sizeofl A\ per\7 $11,£)))
> O(h(sizeof( \feg ¢, 1)) + O(sizeof( A e\ 7 ¢1,5))
2 O(Xreg h(sizeof(Pr, r))) + O(sizeofl A peq\ 5 P11, f))-

3.3 Discussion on the Benefits of Fusion

First, the scalability of the path-sensitive sparse analysis is
improved due to the following reasons:

(1) No caching. The linear transformation from the pro-
gram dependence graph to the path conditions demon-
strates the equivalence of the two data structures in
terms of SMT solving. Such equivalence allows us not
to compute and cache any path conditions (§ 3.2.2).

(2) Little cloning. The modularity of the program depen-
dence graph allows further optimization, which not
only reduces the function clones but also speeds up the
preprocessing procedures in our SMT solver (§ 3.2.3).

The other consequence is that our fused design also eases
the efforts of engineering a path-sensitive sparse analyzer:

(3) On the analysis side, with the dependence-graph-based
solver, developers no longer need to care about the
details of computing path conditions and can focus on
the design of the data flow analysis, i.e., the abstract do-
mains and the transfer functions. This is illustrated in
Algorithm 5 where we do not compute any condition
during the analysis (§ 3.2.2).

(4) On the SMT solver side, we can easily implement many
SMT optimizations, including ours and those proposed
in previous work [10, 54]. This is because the input
data structure of our solver is a program IR, which
encodes rich program information, such as the data
dependence, the control dependence, the modular pro-
gram structure, and many others (§ 3.2.3).

4 Implementation

We have implemented Fusion on top of the LLVM compiler
infrastructure (Version 3.6) [33] and the Z3 SMT solver (Ver-
sion 4.5) [20] to detect null exceptions and taint issues in
C/C++ code. This section briefly discusses the implementa-
tion of the sparse analysis and the SMT solver in Fusion.
Sparse Analysis in Fusion. Fusion accepts the LLVM
bitcode and the program dependence graph as its inputs.
The program dependence graph is built offline using Pin-
point, one previous work on sparse analysis [46]. Since our
implementation aims to detect bugs rather than to rigorously
verify the correctness of a program, we made a few reason-
ably unsound (a.k.a., soundy [35]) assumptions following
previous bug detectors [2, 46, 49, 53]. For example, for field
sensitivity, we regarded each field of a class or struct as an
independent object. All members of an array or union were
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assumed to be the alias of one another. We did not handle
global variables, exceptions (long jumps), inline assembly,
and C style function pointers but used a class hierarchy anal-
ysis to resolve virtual calls. Recursive calls are handled as
loops by unrolling each cycle twice on the call graph.

In addition to null exceptions, we also implemented two
taint analyses for checking relative path traversal (CWE-
23°) and transmission of private resources (CWE-402°). The
former allows attackers to access files outside of a restricted
folder and is modeled as a data dependence path from an
external input to file operations, e.g., from input=gets(...) to
fopen(...). The latter may leak private data to attackers and is
modeled as a data dependence path from sensitive data to I/O
operations, e.g., from password=getpass(...) to sendmsg(...).

SMT Solver in Fusion. In our dependence-graph-based
solver, we implemented the intra-procedural preprocessing
procedures, including forward and backward constant prop-
agation, equality propagation, unconstrained-variable elim-
ination, Gaussian elimination, and strength reduction. We
have also implemented inter-procedural preprocessing pro-
cedures, such as constant propagation, equality propagation,
and the “unconstrained” property propagation. All these pre-
processes are standard [20] and their details are omitted. If
the preprocesses cannot decide the satisfiability, we model
each variable in the path condition as a bit vector. The length
of each bit vector is the bit width, e.g., 32, of the variable type,
e.g., an integer type. The specific solver (Line 7, Algorithm 3)
then calls Z3’s bit-blaster to convert a bit-vector condition
to a pure Boolean condition. Z3’s SAT solver will determine
the satisfiability of the Boolean condition.

5 Evaluation

Fusion is continuously scanning open-source software and,
to date, has detected over a hundred previously-unknown
bugs. Some of the bugs were even assigned CVE identifiers
due to their security impact. All these bugs and CVE identi-
fiers have been made available online.” This section focuses
on the evaluation of our main contribution — how the fused
design scales up path-sensitive sparse analysis — by compar-
ing Fusion to existing industrial-strength techniques.
Baseline Approaches. First, we compared Fusion to Pin-
point [46], the most recent sparse analyzer with the same pre-
cision as Fusion but following a non-fused design. Thus, com-
paring it to Pinpoint will clearly show the value of our fused
design. We also implemented several variants of Pinpoint by
arming it with quantifier elimination, formula simplification,
and abstract refinement, which are expected to reduce the
size of path conditions. In addition, we also evaluated the key
component, i.e., the dependence-graph-based SMT solver, by
comparing it to a state-of-the-art solver, Z3 [20]. This aims

Shttps://cwe.mitre.org/data/definitions/23.html
®https://cwe.mitre.org/data/definitions/402.html
"https://fusion-scan.github.io
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Table 2. Subjects for evaluation.

ID Program (KLS;?; # Functions # Vertices # Edges
1 mcf 2 26 22.8K 28.9K
2 bzip2 3 74 93.8K 120.4K
3 gzip 6 89 165.3K 221.5K
4 parser 8 324 824.2K 1,114.1K
5 vpr 11 272 376.3K 478.0K
6  crafty 13 108 381.1K 498.9K
7 twolf 18 191 762.9K 995.5K
8 eon 22 3.4K 1.2M 1.3M
9 gap 36 843 3.4M 4.4M
10 vortex 49 923 3.3M 4.2M
11 perlbmk 73 1.1K 9.3M 12.2M
12 gcc 135 2.2K 14.2M 18.4M
13 ffmpeg 1,001 74.2K 57.1IM 76.4M
14 v8 1,201 260.4K 63.0M 73.5M
15  mysql 2,030 79.2K 68.8M 85.0M
16  wine 4,108 133.0K 90.2M 112.3M

to show that SMT solving in Fusion can benefit from the
modular program structure and, thus, is faster. Finally, we
compared Fusion to Infer [24], a non-sparse but prominent
and mature static analyzer from industry.

Benchmarks. Table 2 lists the subjects used in the evalua-
tion, including the standard benchmark SPEC CINT2000 [30]
(1 - 12) as well as four industrial-sized open-source projects
with millions of lines of code (13 - 16). For reference, Ta-
ble 2 also reports the number of functions and the size of the
program dependence graphs.

Environment. All experiments were run on a server with
eighty “Intel Xeon CPU E5-2698 v4 @ 2.20GHz” processors
and 256GB of memory running Ubuntu-16.04. In the experi-
ments, we use fifteen threads to run each static analyzer. Fol-
lowing previous works [46, 53], each call of the SMT solver
is run with a limit of 10 seconds. An analysis of a program
is run with the limit of 12 hours and 100GB of memory.

5.1 Comparing Fusion to Pinpoint

For a fair comparison, Fusion and Pinpoint are configured
to find bugs on the same program dependence graph. Since
they work with the same precision and the only difference is
whether they employ the fused design, the bugs they report
are the same. For instance, both of them reported 92, 293,
168, and 139 null exceptions for fimpeg, v8, mysql, and wine,
respectively. In what follows, we focus on discussing the
experimental results of our key contribution to scalability.
To understand techniques such as qualifier elimination
(QE) and formula simplification (FS), which have the poten-
tial to reduce the condition size and improve the scalability,
we implemented three variants of Pinpoint: Pinpoint+QE,
Pinpoint+LFS, and Pinpoint+HFS. We implemented QE us-
ing the “qe” tactic of Z3. LFS means lightweight formula
simplification, which just performs local formula rewriting.
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Table 3. Performance compared to Pinpoint.

D Memory (GB) Time (Seconds)
Fusion Pinpoint Speedup | Fusion Pinpoint Speedup

1 0.1 1.1 11X 4 19 5%
2 0.1 2.3 23X 4 172 43X
3 0.1 1.3 13% 3 30 10x
4 0.1 3.3 33X 49 233 5%
5 0.1 1.9 19% 3 145 48%
6 0.1 1.3 13X 2 23 12X
7 0.2 1.8 9% 41 95 2%
8 0.1 1.8 18X 2 21 11X
9 2.2 39.1 18% 53 2,033 38%
10 0.6 8.9 15X 164 1,769 11X
11 1.0 19.4 19% 227 2,524 11X
12 1.5 27.7 18X 339 2,615 8X
13 11.8 55.7 5% 689 5,899 9%
14 8.6 82.1 10X 748 7,672 10X
15 7.9 98.8 13% 1,250 9,057 7X
16 11.2 98.3 9% 772 8,893 12X

We implemented it using the “simplify” tactic of Z3. HFS
means heavyweight formula simplification, which simplifies
aformula depending on the context where the formula exists.
It is expensive because it needs to invoke the SMT solver
several times during the simplification. We implemented it
using the “ctx-solver-simplify” tactic of Z3.

In addition, we also tried to arm Pinpoint with the abstract
refinement (AR) method [2]. This AR method does not im-
mediately compute a full path condition to determine the
path feasibility. Instead, it firstly computes and solves an
intra-procedural condition and gradually extends the condi-
tion by adding conditions from callers and callees until the
condition satisfiability can be decided.

In what follows, we detail the experimental results on
checking null exceptions and briefly summarize the compar-
ison results of the taint analysis.

Time and Memory. The results of comparing Fusion
to Pinpoint are listed in Table 3. Compared to Fusion, Pin-
point consumes 5X to 33X memory and takes 2X to 48X time.
The computational resources consumed by Fusion is even
available in a common personal computer.® The better per-
formance of Fusion confirms the value of our fused design,
which allows us to avoid condition caching and excessive
condition cloning in a sparse analysis.

To study whether QE, FS, and AR can reduce the condition
size and improve the analysis scalability, we also ran Pin-
point+QE, Pinpoint+LFS, Pinpoint+HFS, and Pinpoint+AR
on the benchmark programs. We observe that Pinpoint+QE
only succeeded in analyzing mcf, the smallest project, but
consumed 140X memory (14GB vs. 0.1GB) and took 77X time
(308s vs. 4s) compared to Fusion. Pinpoint+QE failed to ana-
lyze all other projects because the memory was exhausted.

8We succeeded in reproducing the results of Fusion in a Macbook Pro 16”
with 16GB RAM and 2.3GHz 8-core Intel Core i9 processor.
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Figure 10. Fusion vs. Pinpoint and its variants.

Similarly, Pinpoint+AR failed to analyze all projects with
more than 50KLoC due to timeout and only worked for other
small projects with 14X time cost on average. We looked into
the problems and found that this is because QE is of high
complexity and may take a lot of time but notably enlarge the
condition size; and AR frequently invokes the SMT solver,
which significantly degrades the performance.

Pinpoint+LFS and Pinpoint+HFS also do not work well.
The results are shown in Figure 10. In comparison to Pinpoint,
they only help several benchmark projects, such as perlbmk
(ID=11) and mysql (ID=15), to reduce the memory overhead
a bit. Overall, LFS and HFS do not reduce memory overhead
but make Pinpoint significantly slower due to the extra cost
brought on by the formula simplification procedures.

SMT Solver in Fusion. The key component of Fusion
is the dependence-graph-based SMT solver, which benefits
from the structure of program dependence graph to avoid ex-
cessive condition cloning, thus being faster than a standalone
and general-purpose SMT solver.

To demonstrate the efficiency of our SMT solution, we
record the time cost of solving conditions for checking null
exceptions. Meanwhile, we also use the default solver of Z3
to solve these conditions. In the experiment, we got 310,462
SMT instances, in which 60% are satisfiable, 40% are not, and
21% can be solved in the preprocessing phase of the solver.
We believe such a large number of instances are sufficient
to evaluate the performance of SMT solving. Figure 11 il-
lustrates the solving time of the baseline approach and our
solution on all the SMT instances. We can observe that most
of the dots in the figure are under the diagonal, meaning
that our SMT solution is more efficient. To summarize, for
satisfiable instances, our solver is 3.0 faster than the default
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Figure 11. Time of SMT solving on all benchmarks.

Table 4. Taint analysis on the industrial-sized projects.

Fusion Pinpoint
Issue ID . .
Memory  Time Memory Time
13 10.1GB 519s | 59.2GB (6x)  4,892s (9x)
CcWE23 | 1 73GB  812s | 90.1GB (12x)  6,999s (9x)
15 82GB 1,192s | 92.1GB (11x)  8,391s (7X)
16 11.9GB 709s Memory Out (>100GB)
13 8.2GB 608s | 69.0GB (8x)  6,009s (10x)
14 89GB  721s | 80.8GB (9%)  7,108s (10x)
CWE-402
15 79GB  1,423s | 88.2GB (11x)  9,924s (7X)
16 | 10.7GB  806s | 93.2GB (9%)  9,276s (12x)

Z3 solver and, for unsatisfiable instances, our solver is 1.8x
faster on average. Overall, our SMT solution is about 2.5%
faster than the default Z3 solver.

Study of the Taint Analysis. We also ran the taint anal-
yses discussed in § 4 over the benchmark projects. Owing
to the page limits, we cannot present all the detailed results.
Instead, we only present the time and memory cost of check-
ing the industrial-sized projects in Table 4. The results are
quite similar to that of checking null exceptions. Compared
to Pinpoint, Fusion demonstrates 10X speedup but consumes
only 11% of the memory on average.

5.2 Comparing Fusion to Infer

To understand the performance compared to other static
analyzers, we also ran Fusion against Infer — an abduction
based system from Facebook — to check null exceptions in
the four industrial-sized projects. The results are demon-
strated in Table 5, including the time and memory cost, as
well as the number of reported bugs (#Report) and true/-
false positives (#TP/#FP). On average, Fusion only consumes
16% of the memory and 31% of the time, but reports more
real bugs with fewer false positives. For instance, Infer even
fails to analyze the subject, wine, with 100GB of memory,
while Fusion only takes 772 seconds and 11.2GB of memory.
One reason for Infer’s higher memory overhead is that it
generates and caches many function summaries, which are
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Table 5. Comparing Fusion to Infer.

ID | Program Fusion Infer
& Memory  Time Memory Time
13 fimpeg 11.8GB 689s | 10.9GB (1x)  1,322s(2X)
14 v8 8.6GB  748s | 92.1GB (11x) 3,829s (5X)
15 mysql 7.9GB  1,250s | 43.2GB (5x)  3,402s (3X)
16 wine 11.2GB 772s Memory Out (>100GB)
Fusion Infer

ID | Program | .pooort #TP  #FP | #Report #TP  #FP

13 ffmpeg 92 52 40 132 45 87

14 v8 293 216 77 329 167 162

15 mysql 168 124 44 441 94 347

16 wine 139 98 41 | Memory Out (>100GB)
FP Rate | 29.2% | 66.1%

definitely one thing we aim to avoid in Fusion. The relatively
low recall and precision of Infer is due to its compromises of
path-sensitivity, its limited capability of detecting cross-file
bugs, and the innate approximation of abduction [8].

6 Related Work

Sparse Program Analysis. Sparse program analysis was
greatly facilitated after the birth of the SSA form [16, 17],
which explicitly encodes the def-use relations and allows the
propagation of data flow facts along def-use chains. Reif and
Lewis [41] proposed a sparse algorithm for constant prop-
agation, which was then extended to conditional constant
propagation using a sparse representation known as SSA-
graph [51]. Hardekopf and Lin [27] proposed a semi-sparse
algorithm for flow-sensitive pointer analysis and then ex-
tended it to a full sparse algorithm [28]. Madsen and Meller
[37] proposed a special sparse analysis for JavaScript pro-
grams. Cherem et al. [11] employed sparse analysis to detect
software bugs like memory leak, followed by a few works re-
fining its recall and precision [45, 46, 48, 49]. All these sparse
analyses are not inter-procedurally path-sensitive except
Pinpoint [46], which follows a non-fused design.

Unlike the aforementioned works proposed for certain
particular application scenarios, Oh et al. [39] generalized
the idea of sparse analysis in the framework of abstract
interpretation. Our work is also described in a general setting
but aims to address a different problem, i.e., the scalability
issue caused by inter-procedural path-sensitivity.

Sparse evaluation [13, 40] is a coarse-grained approach to
sparse analysis, which aims to construct a compact control
flow graph by removing statements with identity transfer
functions. For an analysis that considers the semantics of all
statements, these techniques cannot remove any statement
and will be degenerated into a non-sparse analysis. Also,
literature on sparse evaluation does not show how to achieve
path-sensitivity and, thus, is different from our work.

Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang

Path-Sensitivity. Path-sensitivity is critical for the pre-
cision of static analysis [2, 34, 46, 53]. However, it has only
a few studies on path-sensitive sparse analysis, which, as
discussed before, do not follow a fused design [45-47].

For conventional data flow analysis, many methods have
been proposed to mitigate the high overhead of comput-
ing path conditions. Yorsh et al [55] generate concise sum-
maries with succinct path conditions for a special abstract
domain. Their approach heavily depends on formula sim-
plifications [1, 22, 36], which have been demonstrated to be
expensive in our evaluation. Saturn [53] simplifies path con-
ditions using binary decision diagrams [6] and only works
with the precision of intra-procedural path-sensitivity. Babic
and Hu [2] proposed a refinement-based method that expects
to determine path feasibility with small or imprecise path
conditions. As shown in our evaluation, such refinement-
based methods only work for small projects, as the scal-
ability suffers with the refinement of abstractions. Simi-
lar issues also have been shown in other refinement based
works [3, 9, 12, 14, 31].

Other path-sensitive analyses include ESP [18], trace par-
titioning [38], elaborations [44], and many others. They em-
ploy various heuristics to control the trade-off between per-
forming a join operation or a disjunction at the merge points
on the control flow graph. SMPP [29] enumerates program
paths and learns facts from a path to accelerate the analysis
of other paths. Dillig et al. [21] focused on solving recursive
path conditions and proposed a sound and complete path-
sensitive analysis. Different from these techniques, we focus
on a totally different problem, i.e., the explosive size of path
conditions in a path-sensitive sparse analysis. We believe
that these previous ideas are complementary to ours, and
their combination has the potential for greater scalability.

7 Conclusion

This paper presents Fusion, a sparse analysis framework
embodying a fused design that lowers the bar of deploying
static analysis in practice. Our evaluation shows that Fu-
sion is able to path-sensitively analyze millions of lines of
code within just a few computational resources available in
a common personal computer. Fusion has demonstrated a
promising bug detection capability, and found over a hundred
previously-unknown bugs in mature open-source software.
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