
Accelerating Build Dependency Error Detection via Virtual Build
Rongxin Wu

School of Informatics
Xiamen University
Xiamen, China

wurongxin@xmu.edu.cn

Minglei Chen
School of Informatics
Xiamen University
Xiamen, China

mlchen@stu.xmu.edu.cn

Chengpeng Wang
The Hong Kong University of Science

and Technology
Hong Kong, China
cwangch@cse.ust.hk

Gang Fan
Ant Group

Shenzhen, China
fangang@antgroup.com

Jiguang Qiu
Meiya Pico Information Co., Ltd

Xiamen, China
qiujg@300188.cn

Charles Zhang
The Hong Kong University of Science

and Technology
Hong Kong, China
charlesz@cse.ust.hk

ABSTRACT

Build scripts play an important role in transforming the source
code into executable artifacts. However, the development of build
scripts is typically error-prone. As one kind of the most prevalent
errors in build scripts, the dependency-related errors, including
missing dependencies and redundant dependencies, draw the atten-
tion of many researchers. A variety of build dependency analysis
techniques have been proposed to tackle them. Unfortunately, most
of these techniques, even the state-of-the-art ones, suer from e-
ciency issues due to the expensive cost of monitoring the complete
build process to build dynamic dependencies. Especially for large-
scale projects, such the cost would not be aordable.

This work presents a new technique to accelerate the build de-
pendency error detection by reducing the time cost of the build
monitoring. Our key idea is to reduce the size of a program while
still preserving the same dynamic dependencies as the original one.
Building the reduced program does not generate a real software arti-
fact, but it yields the same list of dependency errors and meanwhile
speeds up the process. We implement the tool VirtualBuild and
evaluate it on real-world projects. It is shown that it detects all the
dependency errors found by existing tools at a low cost. Compared
with the state-of-the-art technique, VirtualBuild accelerates the
build process by 8.74 times, and improves the eciency of error
detection by 6.13 times on average. Specically, in the large-scale
project LLVM that contains 5.67 MLoC, VirtualBuild reduces the
overall time from over four hours to 38.63 minutes.

CCS CONCEPTS

• Theory of computation→ Program verication; • Software

and its engineering→ Software defect analysis; Software main-

tenance tools; • Social and professional topics → Software

maintenance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556930

KEYWORDS

Dependency error, build system, build maintenance

ACM Reference Format:

Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu,
and Charles Zhang. 2022. Accelerating Build Dependency Error Detection
via Virtual Build. In 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556930

1 INTRODUCTION

Large-scale software projects typically rely on the build systems
and the corresponding build scripts to manage the build process.
Developers dene the rules in the build scripts to specify a series of
key elements to transform the source code into executable artifacts,
including the build targets, the prerequisites of each target, and the
recipes for building the targets. Due to the complexity of depen-
dency relations, it is dicult for developers to make the build scripts
bug-free. Among a variety of build errors, build dependency error
takes the leading position, accounting for around 53%-65% [26],
and can be mainly summarized into two categories: missing depen-
dencies (MDs) and redundant dependencies (RDs) [8]. Essentially,
both types of errors are due to the inconsistency between the static
dependencies (i.e., the dependencies dened in the build scripts)
and the dynamic dependencies (i.e., the dependencies needed in
build time) [8].

Despite the importance and severity of the build dependency
error, its detecting is typically labor-intensive and time-consuming
[22]. To tackle this problem, various automatic techniques have
been proposed, which can be summarized into three categories.
The rst category of the studies leverages the static dependency
relation extracted from the build scripts and then discovers the
erroneous patterns from the relation [2, 31]. The unsoundness of
the static dependency relation greatly limits its analysis capability,
making it only work for the error cases such as the cyclic depen-
dencies. The second category of the studies monitors the build
process to obtain the dynamic dependencies. Due to the lack of
the static dependency relation, these techniques either fail to de-
tect MDs and RDs [23, 24] or suer from the eciency issue [18].
The third category of the studies [5, 6, 8, 28, 29] detects the de-
pendency errors with higher eciency than the aforementioned

https://doi.org/10.1145/3551349.3556930
https://doi.org/10.1145/3551349.3556930

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and Charles Zhang

83.1%

15.0%

1.9%

Figure 1: The overhead proportion in VeriBuild

ones. Specically, the analysis contrasts the two kinds of depen-
dencies to discover the inconsistency and essentially works for
the errors, including MDs and RDs. A representative and state-of-
the-art technique, VeriBuild[8], leverages a unied dependency
graph (UDG) which fuses the static and dynamic dependencies, to
greatly improve the detection eciency. However, we still observe
an unneglectable overhead incurred by monitoring the build pro-
cess to capture the dynamic dependencies. As shown in Fig. 1, the
performance bottleneck of VeriBuild is the build process, which
takes up 83.1% of the total time.

In this work, we aim to accelerate the build dependency error
detection by improving the eciency of building the project. Our
idea originates from an important observation that the dynamic
dependencies obtained in the build monitoring are mainly deter-
mined by particular preprocessor directives, including the #include
directive and #define directive. The bodies of the functions, which
take up a large proportion of the source code, have no impact on
capturing the dynamic dependencies. Thus, we propose the con-
cept of the virtual build and construct a new program for the build
monitoring. Intuitively, the new program preserves the original
dynamic dependencies, while it takes much less time to build the
program than the original one.

At a high level, our approach consists of two main phases. First,
we perform the program reduction by removing the program con-
structs which do not aect the dynamic dependencies. Specically,
we only preserve the preprocessor directives in the source code,
empty the body of each main function, and eliminate all the other
function denitions. Although the new program does not behave
the same as the original one at runtime, it still preserves the dy-
namic dependencies during the build process and can guarantee the
soundness of dynamic dependency extraction. Second, we perform
the virtual build, which compiles the new program and monitors
the build to capture dynamic dependencies, which can be adapted
to the existing works directly. Finally, we can infer a UDG from
our virtual build process, which can serve as the ingredients for
the dependency error detector in the subsequent phase. Obviously,
our approach can seamlessly accelerate any analyzer reasoning
upon the UDG, showing its great potential in detecting dependency
errors eciently for large-scale projects.

To demonstrate the eectiveness, we implement a tool named
VirtualBuild by optimizing the UDG generator of the state-of-
the-art approach VeriBuild, and evaluate it upon 38 open-source

projects, which are the same experimental subjects of VeriBuild.
Our experimental results show that VirtualBuild improves the
eciency of build dependency error detection signicantly. It n-
ishes the analysis of each project in 38.63 minutes, and detects the
build dependency errors 6.13 times faster than VeriBuild. Speci-
cally, VirtualBuild only takes 38.10 minutes to generate the UDG
for the project LLVM with over ve MLoC, while the time cost of
VeriBuild is more than four hours. Besides, the soundness and
the precision do not sacrice in our approach, as VirtualBuild
generates the same reports as VeriBuild. The results provide the
strong evidence that VirtualBuild can benet any UDG-based
dependency error detector, accelerating them signicantly without
aecting the dependency error detection capability.

To sum up, we make the following contribution in this work.

• We introduce the concept of the virtual build, which utilizes
a smaller program to extract dynamic dependencies of the
original program with lower overhead.
• We propose the technique of the program reduction to con-
struct the program for the virtual build.
• We implement VirtualBuild and evaluate it upon real-
world programs. The results demonstrate the signicant
eciency improvement, showing that VirtualBuild can
benet any UDG-based detector seamlessly.

The organization of the paper is as follows. § 2 presents the
overview of VirtualBuild, demonstrating the key idea and the
technical challenges. We provide several preliminaries in § 3, includ-
ing the program syntax and dependency model, and formalizes the
virtual build dependency problem. § 4 presents the technical details,
followed by the implementation details in § 5. The experimental
results are presented in § 6. We discuss the related works in § 7,
and conclude the paper in § 8.

2 OVERVIEW OF VIRTUALBUILD

In this section, we rst introduce our motivation, and then out-
line our key idea of VirtualBuild. Finally, we demonstrate the
technical challenges of this work.

2.1 Background

Dynamic dependencies reect the dependency needed in the build
time, and are the fundamental information for the existing studies
of build dependency errors detection [6, 8, 18, 30]. To extract the
dynamic dependencies, the existing approaches rely on the process
named build monitoring, to monitor the whole building procedure,
and capture all the relevant information about the le operations
and processes via certain system call tracing tools (such as ptrace,
strace, and so on). Build monitoring typically accounts for a large
proportion of time and is the major performance bottleneck of the
detection. We investigated the state-of-the-art build dependency
error technique VeriBuild [8], and found that the build monitor-
ing takes up 83.1% of the total analysis time in their evaluation
results, as shown in Fig. 1. Therefore, the performance of the build
dependency error detection can be improved signicantly if we can
reduce the overhead of the build monitoring.

Accelerating Build Dependency Error Detection via Virtual Build ASE ’22, October 10–14, 2022, Rochester, MI, USA

train_toy.cpp
1 #include "common.h"
2 #include "task.h"
3 #include "StackRNN.h"
4 #include "Vec.h"

Makefile for Stack-RNN
1 toy : train_toy.cpp StackRNN.h common.h Nonlinearity.h
2 $(CC) $(CFLAGS) $(OPT_DEF) train_toy.cpp -o train_toy

…
99 void printhelp(…){…}

100 int main(…){…}
…

417 // end line

StackRNN.h
1 #ifndef _STACK_RNN_
2 #define _STACK_RNN_
3 #include "common.h"
4 #include "Nonlinearity.h"
5 #define STACK_VALUE -1
6 namespace stackspace{…}

…
474 # endif
475 // end line

train_toy.cpp
1 #include "common.h"
2 #include "task.h"
3 #include "StackRNN.h”
4 #include "Vec.h"

…

9 void main(void){}
10 // end line

StackRNN.h
1 #ifndef _STACK_RNN_
2 #define _STACK_RNN_
3 #include "common.h"
4 #include "Nonlinearity.h"
5 #define STACK_VALUE -1

…
12 # endif
13 // end line

Program
Reduction

Build toy: 5.140s Build toy: 0.081s

Build Build

Figure 2: A motivating example.

2.2 Key Idea

Our idea of mitigating the overhead originates from the observa-
tion that only a small proportion of program constructs determine
the dynamic dependencies during the build monitoring. Therefore,
instead of compiling the complete programs, if we use a simplied
version of the program which still preserves the same dynamic
dependencies as the original ones, it is highly expected to reduce
the time cost of the build procedure. Since our idea of building the
project in a reduced version eventually generates a virtual soft-
ware artifact, we refer to such build process as virtual build. Fig. 2
shows a motivation example of our idea, which is a C/C++ project
built by Makeles. In this example, we nd that the preprocessor
directives [7], i.e., the lines included in the code of programs pre-
ceded by the symbol “#”, induce the dynamic dependencies in the
program. Meanwhile, the implementations of the functions do not
have any inuence on the dynamic dependencies. As such, we con-
vert the source le train_toy.cpp and StackRNN.h in the left-hand
side into a reduced version which is shown on the right-hand side.
The reduced program only preserves the preprocessor directives,
empty the function body of each main function, and remove all the
non-main functions. By monitoring the build processes for the two
versions of the project, we found that the dynamic dependencies
remain the same, while the time cost is reduced by 98.4% (from
5.14s to 0.081s).

2.3 Technical Challenges

The eectiveness of the idea of the virtual build essentially relies
on how to conduct the program reduction. There are two major
technical challenges that need to be addressed in this work. First, the
program reduction approach should not only preserve the programs’
statements that may induce the dynamic dependencies during the
build time, but also guarantee the success of program compilation.
Second, the time cost of program reduction and the virtual build
should bemuch cheaper than the cost of the original build procedure
so that the dependency error detection can benet from it and obtain
better eciency.

Since we mainly target at detecting the build dependency errors
in the make-based building systems, which are typically used for
C/C++ projects, we limit the scope of the program reduction to
C/C++ programs in this work. To address the above challenges, we

Program P := {Fs | Fh | Fb }
Source File Fs := D Fs | Cf Fs | ε

Header File Fh := D Fh | Cs Fh | ε

Build Script Fb := R+

Preproc Directive D := #include str | #define str str | · · ·

Func Def Cf := Cs {B}
Func Signature Cs := Ty f (Ty p)∗

Func Body B := St ; B | ε
Dependency rule R := tдt : (pre)∗ recipe

Figure 3: The program syntax.

resort to C/C++ syntax and grammar to design a grammar-guided
translation approach to systematically abstract away the program
constructs that do not aect the dynamic dependencies and com-
pilation success. Moreover, our translation approach is essentially
based on a context-free grammar (CFG) and the complexity of the
CFG parser is linear to the program size [14]. Therefore, the pro-
gram reduction features with low overhead and further ensures the
high eciency of our approach.

3 PROBLEM FORMULATION

This section rst presents the syntax of a program (§ 3.1) and then
denes the dependency model for the program (§ 3.2). At the end
of the section, we formalize the virtual build dependency problem
(§ 3.3), which is the key concern of our work.

3.1 Program Syntax

We formalize the program syntax in Fig. 3. Dierent from the
commonly-used program syntax, it denes the syntax of multi-
ple forms of the les in the program, including the source les,
header les, and build scripts. Without the loss of generality, we
assume that a source le and a header le can both contain the
preprocessor directives at the beginning of the les. Two common
preprocessor directives are the #include and #define directives,
which begin with the string “#include” and “#define”, respectively.
A source le can also contain a series of function denitions, and a

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and Charles Zhang

Target
toy

Recipe
$(CC) $(CFLAGS) $(OPT_DEF)
train_toy.cpp -o train_toy

Static Spawn Edge Dynamic Spawn Edge Static Dependency Edge Dynamic Access Edge

Target
common.h

File
common.h

Target
Nonlinearity.h

File
Nonlinearity..h

File
train_toy

Target
StackRNN.h

File
StackRNN.h

Target
train_toy.cpp

File
train_toy.cpp

File
Vec.h

File
task.h

Figure 4: An example of UDG.

header le might contain the function signatures, where Ty is the
type of a parameter or the return value. The function denitions
and the signatures are both sentences of a context-free language.
Lastly, a build script contains a series of dependency rules, which
consist of the target, the prerequisites, and the recipe. A program
has a unique default target, which can be built without specifying
its name. In this work, we only consider the dependency errors in
the build of the default target.

Overall, the program syntax is essentially dened by a context-
free grammar. Particularly, the preprocessor directives can be re-
gard by the sentences with specic prexes, such as “#include” and
“#define”. According to the documentation of preprocessor direc-
tive [7], we introduce a nite set of string literals L to enumerate
all the literal values of the suxes of the preprocessor directives.
In our paper, we use the above syntax to formalize the problem
and our approach. For more general programs, we can extend the
grammar to depict its syntax, which is still context-free.

3.2 Dependency Model

We borrow the dependency model in VeriBuild [8] to describe
the dependencies in the build process. Specically, we leverage a
Unied Dependency Graph (UDG) to abstract the dependencies of
a program and establish the build dependency error detection upon
the UDG. We provide the formal denition of UDG as follows.

Denition 3.1. (Unied Dependency Graph) A Unied Depen-
dency GraphUDG = (V , E), whereV and E are the sets of the nodes
and edges, repetitively. Specically, a target node vt ∈ VT ⊆ V rep-
resents a target in a build script, and a le node vf ∈ VF ⊆ V
represents a le in the disk. An edge has four forms as follows:
• A static dependency edge eSE ∈ ESE ⊆ VT × VT indicates
the dependency between two targets dened in the scripts.
• A static spawn edge eSS ∈ ESS ⊆ VT ×VF indicates that the
le is statically available before the build of the target.
• A dynamic access edge eDA ∈ EDA ⊆ VT ×VF indicates the
le is accessed in the build of the target.
• A dynamic spawn edge eDS ∈ EDS ⊆ VT ×VF indicates the
le is generated or modied in the build of the target.

Particularly, the sets of dynamic access edges and dynamic spawn
edges depict the dynamic dependencies of the program.

Example 3.2. Fig. 4 shows the UDG for the target toy in Fig. 2.
There are four prerequisites specied for the target toy, so there are
four static dependency edges starting from it. The four prerequisites
are the existing les, and the dependency relations are indicated by
four static spawn edges. Besides, ve header les and one source le
are accessed in the build of the target toy, which yields six dynamic
access edges. A le named train_toy is created as the output of the
build, which is indicated by a dynamic spawn edge.

Intuitively, a UDG actually provides minimal but sucient infor-
mation for build dependency error detection. As long as we obtain
a sound UDG for a given program, we can design the sound de-
tectors for various kinds of dependency errors, such as MDs and
RDs [6, 8, 28]. By traversing the UDG with a specic policy, we can
collect the dependency fact for each dependency rule, enabling us
to discover a variety of dependency errors. The detection process
is quite standard as long as the UDG is generated. We follow the
existing approaches to detect the errors upon the UDG [6, 8], of
which the details are not discussed in this work.

Example 3.3. When building the target toy in Fig. 2, we can detect
two MDs by traversing the UDG in Fig. 4. Two header les, namely
Vec.h and task.h, are not specied as the prerequisites, while they
are accessed in the build process.

3.3 Problem Statement

Before stating the problemwe focus on, we rst provide a formaliza-
tion of the UDG-based build dependency error detector as follows,
based on which we establish our problem further.

Denition 3.4. (UDG-based Build Dependency Error Detector) A
UDG-based build dependency error detectorD is a pair of mappings
(Dд,Da), Here, Dд maps a pair of a program P and a target t to
a UDG corresponding to the build of the target t , and Da maps a
UDG to a list of build dependency errors.

As shown by Denition 3.4, the detector is essentially a com-
position of two parts, namely the UDG generator and the UDG
analyzer, which correspond toDд andDa , respectively. According
to our observation, the build monitoring takes up a large propor-
tion of time overhead, which evidences that the computation of
Dд is time-consuming. To achieve the ecient detection of build

Accelerating Build Dependency Error Detection via Virtual Build ASE ’22, October 10–14, 2022, Rochester, MI, USA

dependency errors, we aim to nd another program to support the
UDG generation with lower overhead but yield the same UDG for
further analysis. Formally, we formalize the problem as the virtual
build dependency problem.

Denition 3.5. (Virtual Build Dependency Problem) Given a pro-
gram P with the default target t∗ and a UDG-based build depen-
dency error detector D, we aim to nd a new program P ′ and a
UDG-based build dependency error detector D ′ such that:
• The UDG analyzers of D and D ′ are the same, i.e., D =
(Dд,Da) and D ′ = (D ′д,Da).
• Utilizing P and P ′, D ′д induces the same UDG as Dд , i.e.,
Dд(P, t

∗) = D ′д(P ∪ P
′, t∗).

• The total cost of computing D ′д(P ∪ P ′, t∗) is lower than the
one of computing Dд(P, t

∗).

Example 3.6. In Fig. 2, the header le StackRNN.h and the source
le train_toy.cpp on the right-hand side are the program P ′ we need
to solve the virtual build dependency problem. Several particular
program constructs, such as the non-main functions and the body
of the main function, are removed from the original ones. With
the new program, we can utilize any existing UDG generator Dд
to construct the UDG more eciently, which essentially yields a
new UDG generator D ′д . Finally, P ′ and (D ′д,Da) are exactly the
solution of the virtual build dependency problem.

In this work, we only concentrate on the acceleration of the UDG
generators, and reuse the UDG analyzers in the existing works.
Although it is also an interesting problem to improve the eciency
in analyzing the UDG, we believe the virtual build dependency
problem is meaningful enough due to the huge overhead of the
build process. An eective solution can signicantly improve the
eciency of the build dependency error detection, promoting the
practicality of original detectors seamlessly.

4 APPROACH

This section presents the details of our approach, including the
program reduction (§ 4.1) and the virtual build (§ 4.2). At the end
of the section, we present the whole procedure of detecting build
dependency errors via virtual build (§ 4.3).

4.1 Program Reduction

As demonstrated above, the build process on which the UDG gener-
ation depends is quite time-consuming for large-scale programs. To
accelerate the generation and obtain the same UDG, we start from
the observation that the build dependencies of a program do not
rely on several particular program constructs, and only preproces-
sor directives really matter for the dynamic dependency extraction.
For example, the body of a function does not have any impact on
the build dependency, which implies that we can still obtain the
same UDG after removing all the statements in each function. Fur-
thermore, only the existence of the main function really matters for
the build of a target, so we can directly eliminate all the non-main
functions from the source code. Given a program in the syntax
shown in Fig. 3, only #include directives, #define directives, and
the content of the build scripts determine the dependency model.
Thus, it is possible to construct a new program that only contains

Algorithm 1: Program reduction
Input: P : A program;
Output: P ′: A reduced program;

1 P ′ ← ∅;
2 foreach F ∈ P do

3 /* Process build scripts */

4 if Type(F) = Build Script then
5 Fv ← F ;
6 else

7 /* Process header files and source files */

8 Fv ← EmptyFile;
9 foreach C ∈ F do

10 if Prefix(C) ∈ L then

11 Fv ← append(Fv ,C);
12 if C is main function then

13 Cv ← EmptyMainFunc;
14 Fv ← append(Fv ,Cv);

15 P ′ ← P ′ ∪ {Fv };
16 return P ′;

such program constructs to preserve the equivalence of the depen-
dency model, while the build process could be achieved much more
eciently than the one upon the original program.

To obtain the program for a more ecient build, we perform the
program reduction on a given program. Alg. 1 shows the procedure
of the program reduction, which takes as input a program P and
outputs a reduced program P ′. Essentially, the reduction process is a
grammar-guided translation based on the syntax in Fig. 3. For each
build script in the program P , we preserve its content unchanged
so that the edge sets ESE of the UDGs for P and P ′ are the same
(lines 3 to 4). For each source le or header le, we only store the
preprocessor directives (lines 10 to 11), and remove all the functions
except for the main functions (lines 12 to 14). Particularly, we empty
the function body of each main function (lines 12 to 13), as it does
not aect the static dependency relation or the build monitoring
process. If a le does not contain any content after the reduction,
we still store it in the disk to ensure that it is available in the build
process, which is the necessity of a successful build. Finally, we
enumerate all the les together to form a new program P ′ (line 15),
which is what we need for the further virtual build.

Example 4.1. Consider the program in Fig. 2. Based on the syntax,
we can identify the #include and #define directives precisely, and
preserve the lines 1 to 4 of the le train_toy.cpp and the lines 1 to
5 of the le StackRNN.h in the new program. To make the target
build and generate output les successfully, we remain the main
function in the le train_toy.cpp of the new program, while we
empty its body to avoid the unnecessary compile process.

Intuitively, the reduced program P ′ abstracts away the constructs
which do not aect the build dependencies. Its reduced size can
signicantly reduce the compilation overhead in the build process.
Lastly, it is worth noting that the program reduction in Alg. 1 runs
with quite low overhead. Assume that the program conforms to the

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and Charles Zhang

Algorithm 2: Virtual build
Input: P : A program; Dд : a UDG generator;
Output:UDG: Unied dependency graph of P ;

1 /* Program reduction */

2 P ′ ← ReduceProgram(P);
3 /* Virtual build */

4 foreach t ∈ Targets(P ′) do
5 status ← Build(P ′, t);
6 if status is Success then
7 UDGt ← Dд(P

′, t);
8 else

9 /* Fall back to actual build */

10 UDGt ← Dд(P, t);

11 /* Merge the UDGs */

12 UDG =
⋃
t ∈Targets(P ′)UDGt ;

13 returnUDG;

syntax in Fig. 3. The program reduction essentially identies a series
of strings with specic prexes, such as “#include” and “#define” in
the set L, and further simplies them in specic manners, which
can be achieved in the linear time complexity to the size of the
program. Our evaluation also evidences that the program reduction
only introduces little overhead even if the program is large-scaled.

4.2 Virtual Build

With the benet of the reduced program, we can extract the dy-
namic dependencies by performing the build monitoring upon it,
which enables us to generate the UDG eciently. According to our
investigation of real-world programs, several targets in the build
scripts are built by an executable le generated by its prerequi-
sites. For example, in the build script of the project Bash shown in
Fig. 5, the target declare.o takes the targets builtext.h and builins.c
as its prerequisites, both of which are built by the output le of
building the targetmkbuiltins, i.e., the lemkbuiltins.o. To perform
the build monitoring, we have to build the two targets using the
original program. Otherwise, the target declare.o at the line 7 can
not be successfully built due to the lack of the les builtext.h and
builins.c. Inspired by this observation, we design the virtual build
upon two programs, and fall back to the actual build if an error
occurs in the build of the reduced program.

Makefile for Bash
1 mkbuiltins : mkbuiltins.o
2 gcc $(LDFLAGS_FOR_BUILD) -o mkbuiltins mkbuiltins.o –ldl
3
4 builtext.h builtins.c: mkbuiltins $(DEFSRC)
5 ./mkbuiltins -externfile builtext.h -structfile builtins.c –D . $(DEFSRC)
6
7 declare.o: declare.def mkbuiltins builtext.h builtins.c
8 $(CC) -c $(CCFLAGS) $*.c || $(RM) $*.c

Figure 5: An example of dynamically generated executable

les for building targets

Algorithm 3: Dependency error detection
Input: P : A program;

D: A UDG-based build dependency error detector;
Output: Errs: A list of build dependency errors;

1 Dд ← GetUDGGenerator(D);
2 Da ← GetAnalyzer(D);
3 /* Generate UDG with virtual build */

4 UDG ← VirtualBuild(P,Dд);
5 /* Dependency error detection */

6 Errs ← Da (UDG);
7 return Errs;

Alg. 2 shows the overall procedure of the virtual build. By in-
voking the procedure shown in Alg. 1, we can obtain the reduced
program P ′(lines 1 to 2). Then, we attempt to build each target
that is the direct or indirect prerequisite of the default target in the
reduced program P ′ (lines 4 to 10). If the target t in the reduced
program P ′ can be successfully built, we can directly construct its
UDG by invoking the existing UDG generator upon the reduced
program (lines 6 to 7). Otherwise, we roll back to the actual build
upon the original program (lines 9 to 10). Finally, we merge all the
UDGs together by the graph union operator ∪, yielding a UDG
equivalent to Dд(P) (lines 11 to 12). Therefore, Alg. 2 can further
ensure that the dependency errors detected upon the output UDG
are the same as D. We present the details of adopting the virtual
build to the detection in § 4.3.

Example 4.2. Consider the dependency rule at line 7 in the build
script shown in Fig. 5. At the beginning, other targets are built
successfully upon the reduced program. The failure of building the
target declare.o enforces the virtual build fall back to the actual build.
This further triggers the actual build of their transitive prerequisites,
and nally generates the executable le mkbuiltins.o to support
the build of the targets builtext.h and builtins.c.

The virtual build in Alg. 2 is essentially a hybrid mechanism
of generating the UDG of a program. To reduce the overhead of
the build, it eagerly attempts to obtain dynamic dependencies in
the build of the reduced program. To ensure the program is built
successfully, Alg. 2 shifts to the actual build if necessary. Although
it can fall back to the actual build of the default target in the worst
case, our evaluation can show that there are quite a few cases in
which the actual build is triggered. Even if several targets are built
upon the original program, other targets can still be able to be built
by the virtual build process upon the reduced program, which still
saves the time consumption in the UDG generation.

4.3 Dependency Error Detection

As formulated in Denition 3.4, we decompose a UDG-based de-
pendency error detector D into two components, namely the UDG
generatorDд and the UDG analyzerDa . With the benet of the vir-
tual build, we can construct another UDG generator D ′д to achieve
the acceleration. In this work, we only focus on the optimization of
the build process and directly reuse the UDG analyzer Da for the
further detection phase upon the UDG.

Accelerating Build Dependency Error Detection via Virtual Build ASE ’22, October 10–14, 2022, Rochester, MI, USA

Program

Program
Reduction

Virtual Build UDG Dependency
Error

UDG
Generator

UDG
Generator

UDG
Analyzer

Reduced Program

Figure 6: Schematic overview of VirtualBuild

Leveraging the virtual build-based UDG generator, we can obtain
the overall build dependency error detection algorithm shown in
Alg. 3. It takes as inputs any UDG-based detectorD and a program
P , and nally returns the same dependency errors in the program as
D does. Our acceleration is mainly achieved at line 4, avoiding the
actual build as much as possible. Intuitively, Alg. 3 constructs a new
UDG-based detector, of which the UDG generator is much more
ecient than the one of D, and the UDG analyzer is the same as
the original one. Thus, our approach can improve any UDG-based
detector seamlessly [8, 28], showing its generality of accelerating
the build dependency error detection.

5 IMPLEMENTATION

We implement our approach as a tool named VirtualBuild to
accelerate the build dependency error detection. VirtualBuild
is an extension of the state-of-the-art dependency error detector
VeriBuild [8]. It reuses the UDG analyzer of VeriBuild to hunt
the build dependency errors while leveraging the virtual build to
improve the eciency of generating the UDG. Fig. 6 shows the
architecture of VirtualBuild. It takes as inputs the program and
then performs the program reduction to generate the reduced pro-
gram. The two programs are fed to the module of the virtual build
simultaneously, fusing two kinds of build processes to accelerate
the UDG generation and ensure the correctness of the UDG.

To achieve the program reduction, we utilize the parser generator
ANTLR [1] and customize a parser to identify the irrelevant pro-
gram constructs that do not aect the result of the build monitoring.
By removing irrelevant constructs, VirtualBuild generates a new
program with a much smaller size after the reduction. Particularly,
the body of each main function is set to empty so that the output
les of the related targets can be generated with lower overhead. It
is worth mentioning that VirtualBuild only performs the syntac-
tic analysis in the program reduction, which can be achieved in the
linear time complexity to the program size. The high eciency of
the program reduction is also evidenced by our evaluation.

For a real-world program, it can include a large number of the
system les, which also aects the overhead of the build process.
In our implementation, we perform the program reduction upon
the system les as a preprocessing phase. Thus, the reduced sys-
tem les can replace the original ones to support the virtual build.
Moreover, the preprocessing is only conducted one time for all the
programs, as dierent programs share the same system les in a
given environment. Hence, we directly redirect an original system
le to the reduced one when we analyze a specic program.

In the virtual build, we adopt the build monitoring module in
VeriBuild to obtain the dynamic dependencies. Dierent from
VeriBuild, we utilize LD_PRELOAD trick to monitor build process

instead of utilizing strace. It can decrease the overhead of the build
monitoring signicantly. Besides, we observe that several source
les and header les can be generated in the build process. To
handle such les, we attempt to identify them in the virtual build
and reduce their sizes by performing the program reduction.

Lastly, the UDG generator and the UDG analyzer both come
from VeriBuild. We do not change the major implementation
of VeriBuild and simply adapt it to our virtual build and detec-
tion phases. However, we found several implementation aws in
VeriBuild, which may aect the number of dependency errors
of large-scale programs. To handle these issues, we x the incor-
rect implementations according to the feedback from the authors
of VeriBuild, and further, compare it with VirtualBuild in the
evaluation. We will not publish the source code of VirtualBuild
because we plan to commercialize it in the near future.

6 EVALUATION

In this section, we evaluate the eectiveness and eciency of Vir-
tualBuild by investigating the research questions as follows:
• RQ1:What percentage of code is removed in the program
reduction?
• RQ2: What is the eciency improvement VirtualBuild
achieves in the build dependency error detection?
• RQ3: What is the overhead of each stage in VirtualBuild?
• RQ4:Does VirtualBuild report the same build dependency
errors as the existing approaches?

Highlights. VirtualBuild is quite eective and ecient in the
acceleration of the build dependency error detection.
• VirtualBuild reduces the size of the program by 85.32%
on average, enabling the virtual build to compile less source
code than the existing approaches.
• VirtualBuild nishes analyzing any experimental project
in 38.63 minutes. The UDG generation is accelerated by 6.16
times on average.
• The two stages of VirtualBuild, i.e., the program reduction
and the virtual build, are ecient in analyzing large-scale
projects. On average, they take 0.91 and 85.62 seconds in
each analysis, respectively.
• VirtualBuild ensures the soundness and the completeness,
reporting almost the same reports of build dependency errors
as VeriBuild in the experiment projects.

6.1 Experimental Setting

Projects. We select 38 C/C++ projects from the benchmark of
VeriBuild, which are listed in Table 1. The benchmark contains
the open-source projects of various sizes, ranging from tens of lines

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and Charles Zhang
R

at
io

 o
f P

ro
gr

am
 S

iz
e

0%

20%

40%

60%
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Figure 7: The size ratio of the reduced and original programs

of code to the millions of lines of code, which can demonstrate
the eciency and practicality of VirtualBuild in analyzing the
large-scale programs. Four experimental subjects of VeriBuild are
not C/C++ programs or are currently unavailable, so we discard
them in our evaluation.

Environment. Each group of the experiments is conducted on
a computer running Ubuntu 18.04.6 LTS system with an Intel(R)
Xeon(R) Gold 6230R CPU @ 2.10GHz forty-core processor and 512
GB physical memory.

6.2 Results

This section presents the answers to the research questions and
demonstrates the eciency and eectiveness of VirtualBuild.

6.2.1 Percentage of Removed Code. To show the change of the
program size in the program reduction, we quantify the lines of
the code after and before the program reduction, and compute the
size ratio of the two versions. Specically, we utilize the command
cloc to measure the lines of the header les and source les. Several
les are not used in the build process, so we do not consider their
sizes and only count the lines of the les used in the build.

Fig. 7 shows the ratio of the reduced program size and the origi-
nal program size. The projects are listed in the same order shown in
Table 1. On average, a reduced program only contains 14.68% of the
code in the original one, and 85.32% of the code is removed in the
reduction. Several programs, especially the large-scaled programs,
i.e., the project Python, contain a large number of macro deni-
tions to support the deployment in various platforms, so the ratios
are relatively larger than the ones of other programs. Besides, the
project named greatest contains a large number of lines of macro
denitions, which are introduced to dene functions. We do not
adopt particular strategies to lter such cases, so the ratio of the
program sizes is much larger than others. However, the sizes of
most of the projects are reduced by at least 80%. Thus, the virtual
build processes much less source code than the actual build, which
can reduce the overhead of the build process.

Answer to RQ1: VirtualBuild reduces the size of a program
by 85.32% on average in the program reduction.

6.2.2 Eiciency Improvement. To quantify the eciency improve-
ment, we measure the time cost of VirtualBuild in the UDG
generation and the overall analysis. Also, we compare the overhead
of VirtualBuild with the one of VeriBuild to demonstrate the
benet of our approach. To have a fair comparison, we re-evaluate
VeriBuild upon the subjects under our evaluation environment.

Size(KLoC)

Ti
m
e
of
Pr
og
ra
m
R
ed
uc
tio
n
(s
ec
)

Figure 8: The regression result of the overhead of program

reduction and the number of lines

Table 1 shows the experimental results. It is shown that Virtu-
alBuild nishes the UDG generation for any experimental project
in 38.10 minutes (2,286.07 seconds), and the overall analysis in 38.63
minutes (2,317.79 seconds). On average, the UDG generation and
the overall analysis are accelerated by 6.16 times and 6.13 times,
respectively. More importantly, the build process is accelerated by
8.74 times averagely, showing the eectiveness of virtual build.
Particularly, the time overhead of detecting dependency errors in
the project LLVM only takes 38.10 minutes, while VeriBuild takes
over four hours to nish the overall analysis. The signicant e-
ciency improvement benets from the overhead reduction of the
build time. For the project hpd, VirtualBuild is slightly slower
than VirtualBuild, as it has to probe the targets that demand the
actual build iteratively in Alg. 2, introducing the extra overhead in
the virtual build. Apart from the project hpd, there are other four
projects in which the virtual build can fall back to the actual build,
including lighpd, Bash, OpenSSL, and LLVM. However, in the
above ve projects, only a few (no more than three) targets make
the virtual build fall back to the actual build. Therefore, the virtual
build still benet the overall eciency signicantly for almost all
the projects, evidencing the practicality of VirtualBuild in the
build script maintenance for large-scale programs.

Answer to RQ2: VirtualBuild nishes the UDG generation
and the overall analysis of any project in 38.10 minutes and
38.63 minutes, and achieves the 6.16× and 6.13× speedups on
average, respectively.

6.2.3 Overhead Breakdown. To investigate the overhead of each
stage in VirtualBuild, we quantify the time consumption of the
program reduction, the virtual build, and the UDG construction
separately. As explained in § 5, we scan the system les in the
preprocessing phase, and only reduce them one time. Thus, we do
not consider the overhead of the reduction of the system les.

In Table 1, the columns Reduce, Build, and Construct show the
overhead of the program reduction, the virtual build, and the UDG
construction, respectively. According to the experimental data, the
program reduction introduces little overhead to the overall analysis.
On average, each project can be reduced in 0.91 second. Even for
the project LLVM, which contains over 5 MLoC, VirtualBuild
can nish the reduction in 13 seconds, showing its great potential
in analyzing large-scaled programs. Furthermore, we adopt the

Accelerating Build Dependency Error Detection via Virtual Build ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: The overhead of VirtualBuild and VeriBuild

Size VeriBuild(sec) VirtualBuild(sec) Speedup(×)
Project

#Files #Lines Build UDG Total Reduce Build Construct UDG Total Build UDG Total

Generic-C-Project 3 5 0.24 0.35 0.35 0.01 0.15 0.11 0.27 0.27 1.58 1.29 1.29
http-parser 6 6,347 13.74 14.32 14.33 0.05 0.19 0.09 0.33 0.33 72.29 43.38 43.41
CacheSimulator 10 953 0.50 0.60 0.60 0.06 0.21 0.07 0.34 0.34 2.39 1.77 1.77
Stack -RNN 10 1,746 10.15 10.55 10.55 0.14 0.16 0.05 0.35 0.35 63.46 30.15 30.15
greatest 11 1,581 0.92 1.02 1.02 0.04 0.36 0.07 0.47 0.47 2.54 2.16 2.16
kleaver 14 734 1.22 1.52 1.53 0.06 0.48 0.27 0.81 0.81 2.54 1.87 1.89
namespaced_ parse 15 599 0.53 0.64 0.65 0.05 0.28 0.13 0.46 0.47 1.91 1.40 1.39
mpc 16 4,566 14.96 15.20 15.21 0.10 1.26 0.10 1.46 1.47 11.87 10.41 10.34
libco 30 3,798 4.75 5.03 5.04 0.07 0.92 0.24 1.23 1.23 5.16 4.09 4.10
fzy 31 3,727 0.90 1.02 1.03 0.05 0.22 0.06 0.33 0.34 4.11 3.10 3.04
cctz 33 7,782 10.46 10.78 10.80 0.04 1.05 0.18 1.27 1.28 9.96 8.49 8.44
gwion-util 34 1,238 1.00 1.14 1.15 0.13 0.36 0.10 0.59 0.60 2.79 1.94 1.92
Bftpd 37 5,003 2.72 3.17 3.18 0.07 0.74 0.39 1.20 1.21 3.68 2.64 2.63
grbl 51 4,514 1.21 1.34 1.35 0.26 0.42 0.12 0.80 0.81 2.88 1.67 1.66
gravity 56 17,817 3.83 4.24 4.26 0.11 1.22 0.33 1.66 1.68 3.14 2.55 2.54
fastText 68 6,749 10.06 10.55 10.56 0.07 0.61 0.18 0.86 0.87 16.49 12.26 12.13
8cc 82 10,165 1.63 1.78 1.79 0.02 0.48 0.11 0.61 0.62 3.40 2.92 2.89
clib 105 14,843 3.86 4.12 4.14 0.09 1.37 0.16 1.62 1.64 2.82 2.54 2.52
zlib 106 28,998 6.52 6.81 6.83 0.09 1.32 0.17 1.58 1.59 4.94 4.31 4.29
cJSON 107 19,437 6.19 6.91 6.96 0.09 2.63 0.60 3.32 3.37 2.35 2.08 2.06
LAME 146 47,124 13.13 14.74 14.78 0.38 5.18 1.55 7.11 7.14 2.53 2.07 2.07
GNU Aspell 184 30,821 45.39 46.82 46.92 0.13 11.36 1.22 12.71 12.80 4.00 3.68 3.67
neven 186 22,743 1.94 3.19 3.20 0.12 1.18 1.22 2.52 2.53 1.64 1.27 1.26
Tmux 206 52,244 28.06 29.35 29.44 0.19 7.26 0.81 8.26 8.33 3.87 3.55 3.53
lighttpd 232 61,072 43.98 47.35 47.46 0.18 28.66 3.31 32.15 32.24 1.53 1.47 1.47
tig 238 43,394 9.92 10.44 10.51 0.28 2.21 0.39 2.88 2.94 4.49 3.62 3.57
ck 244 31,743 1.90 2.94 2.95 0.22 0.56 1.01 1.79 1.80 3.40 1.64 1.64
Cppcheck 399 182,121 106.20 107.05 107.10 0.16 2.72 0.38 3.26 3.30 39.04 32.84 32.45
Bash 442 126,820 42.45 43.99 44.16 5.05 19.53 1.29 25.87 26.04 2.17 1.70 1.70
Redis 457 111,435 29.89 32.51 32.56 2.68 5.13 2.04 9.85 9.89 5.83 3.30 3.29
httpd 502 199,327 120.24 136.50 136.76 1.87 140.96 25.21 168.04 168.28 0.85 0.81 0.81
Capstone 604 161,930 32.06 33.51 33.59 1.07 4.57 0.92 6.56 6.63 7.01 5.11 5.07
OpenSSL 1,767 580,653 458.36 486.53 491.12 2.47 447.49 24.48 474.44 478.92 1.02 1.03 1.03
GMP 1,878 258,875 135.53 141.14 141.51 0.54 71.68 4.47 76.69 77.02 1.89 1.84 1.84
PHP 2,077 766,944 523.11 552.13 552.95 0.53 132.71 19.91 153.15 153.93 3.94 3.61 3.59
Python 2,645 1,053,963 125.68 129.58 129.85 2.49 83.67 2.93 89.09 89.36 1.50 1.45 1.45
OpenCV 3,746 1,670,991 2,191.72 2,222.68 2,225.04 2.19 110.72 15.72 128.63 131.02 19.80 17.28 16.98
LLVM 41,788 5,670,236 15,667.89 15,798.07 15,829.89 12.51 2,163.69 109.87 2,286.07 2,317.79 7.24 6.91 6.83
Average 517.71 524.73 525.82 0.91 85.62 5.80 92.33 93.41 8.74 6.16 6.13

regression analysis on the overhead of the program reduction. As
shown in Fig. 8, the value of R square is 0.9214, which is quite closed
to 1, indicating the gentle overhead of the program reduction.

Meanwhile, the virtual build also features low overhead. Com-
pared with the actual build, the virtual build spends less time com-
piling the body of each function. Particularly, the virtual build of
the project LLVM only takes less than forty minutes, while the
actual build has to take more than four hours. The signicant ef-
ciency improvement demonstrates the possibility of integrating
VirtualBuild in the integrated development environment or the
continuous integration platform, supporting the developers to main-
tain the dependencies during the development phase.

We also quantify the overhead of constructing the UDG accord-
ing to the dynamic dependencies obtained in the virtual build.
Specically, we reuse the original module of VeriBuild to con-
struct the UDG, which is not our major concern in this work. It can
be one of the future works to optimize the UDG construction to
further decrease the overhead.

Answer to RQ3: The program reduction and the virtual build
take 0.91 and 85.62 seconds per project on average, respectively,
reducing the overhead of the build dependency error detection
signicantly.

6.2.4 Soundness and Completeness. To demonstrate the soundness
and completeness of the virtual build, we quantify the dierence
between the reports of missing dependencies (MDs) and redundant
dependencies (RDs) discovered by VirtualBuild and VeriBuild.

Table 2 shows the comparison of two sets of the reports. For the
MD reports, there are 9,437 MDs uncovered by both the analyses,
while one MD is only reported by VeriBuild. Besides, both the
analyses report 6,103 RDs, while there is one RD only reported by
VeriBuild. As Table 2 indicates, the reports of VirtualBuild and
VeriBuild highly overlap, showing that our approach almost has
no impact on the reports of dependency errors.

Furthermore, we delve into the details of the two divergent cases.
Fig. 9 shows the MD not detected by VirtualBuild. In the build
of the target check, the three executable les, namely test-static,

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and Charles Zhang

Table 2: The comparison of MD and RD reports

Bug Type Common Report VeriBuild VirtualBuild

MD 9,437 1 0
RD 6,103 1 0

Percentage 99.99% 0.01% 0%

Makefile for mpc
1 check: test-file test-static test-dynamic math.grammar
2 ./$(DIST)/test-file
3 ./$(DIST)/test-file
4 ./$(DIST)/test-dynamic

Figure 9: The MD not detected by VirtualBuild

test-file, and test-dynamic, are executed. The execution of the three
les accesses the le named digits.txt, which is not created by
any previous targets or specied as a transitive prerequisite of
the target check. However, the virtual build only generates the
three empty executable les, which do not access any les in the
execution. Thus, digits.txt is not identied as an instance of the MD
by VirtualBuild. Fortunately, such a case is not common in our
evaluation, and we only discover this case in the project mpc. The
other divergent case is a false positive of VeriBuild. The incorrect
dynamic dependencies collected by strace cause the spurious RD
report of VeriBuild, while our implementation of VirtualBuild
avoids it with the benet of LD_PRELOAD trick.

Lastly, Table 2 shows that VeriBuild detects more MDs and RDs
than the ones reported in [8]. The major reason is that the original
implementation of VeriBuild constructs the UDG in a faulty man-
ner. After communicating with the authors [8], we xed the bug
and re-analyzed the experimental subjects for the comparison.

Answer to RQ4: The dependency errors reported by Virtual-
Build are almost the same as the ones reported by VeriBuild,
sharing 15,640 reports out of 15,642 ones in total.

6.3 Discussion

In this section, we discuss the threat to the validity of Virtual-
Build, several limitations, and future works.

6.3.1 Threat to Validity. The major threat to the validity of our ap-
proach is whether the speedup of the experimental subjects depends
on the environment. Generally, the environment of the machine
aects the build time and the eciency of other procedures in the
UDG generation and analysis. To minimize the stochastic factors,
we stop other user processes in the system, repeat the evaluation
of a single experimental subject ten times, and choose the aver-
age time consumption of each stage as the nal result. Therefore,
the speedup of each subject is convincing enough to evidence the
eectiveness of VirtualBuild.

6.3.2 Limitations and Future Works. Although VirtualBuild is
highly ecient and eective, it still has several drawbacks that
need to be tackled in the future. First, the current implementation
of VirtualBuild only accelerates the build process of C/C++ pro-
grams. For other programming languages, VirtualBuild can not

perform the program reduction to support the virtual build. How-
ever, our approach can be further generalized by specifying the
subsets of the program constructs that aect the build monitoring
process. Second, we nd that several projects utilize the macros
to dene the functions, which are not identied and reduced by
VirtualBuild. More aggressive program reduction strategies can
be proposed to handle such cases. Third, VirtualBuild has to fall
back to the actual build if the virtual build of the reduced program
fails, in which Alg. 2 introduces the extra overhead in the build of
such targets. This prevents VirtualBuild from achieving a more
signicant acceleration of several projects, and even slows down
the detection upon the project hpd in our evaluation. In the future,
VirtualBuild can be further optimized by identifying the targets
that demand the actual build in advance. The static analysis of
the build scripts might provide meaningful guidance to determine
such targets without any build process, further reducing the time
consumption of the virtual build in Alg. 2 eectively.

7 RELATEDWORK

There has been a large amount of literature covering the related
area, which is discussed in detail as follows.

Static analysis of build scripts. Several works establish the
graph models for the dependencies encoded in the build scripts,
which indicate the expected dependencies specied by the devel-
opers. For instance, Gunter [11] introduces a Petri net to depict
the dependencies in a build script and performs the correctness
checking upon it. Similarly, SYMake uses symbolic dependency
graphs to detect the bad smells, including the cyclic and duplicated
dependencies [31]. Based on the dependency graph, the missing de-
pendencies can also be predicted by data mining techniques [36, 37].
However, the analyses can not guarantee soundness, missing many
dependency issues, and suer the low precision and recall without
the dynamic dependency information.

Build script testing. Dynamic testing has shown to be eective
in discovering the dynamic dependencies of a program, providing a
new way of detecting the dependency errors in the build script. One
typical kind of approaches attempts to monitor the build process
in the runtime and infer the dependencies based on the execution
state [18, 21, 25, 32]. For example,MkCheck [18] utilizes a fuzzing-
like process to obtain a dependency graph, which indicates the
le-level dependency relation in the build. Bazel [16] builds each
build task by creating a separate environment to prevent the anony-
mous outcomes from being stored in the system. Other commercial
tools, including Tup [27], IBM ClearCase [15] and VESTA [35],
only check whether the runtime states violate the dependencies or
not. Although these approaches can trigger the dependency issues
with concrete executions, they can not detect the dependency issues
if the build process does not trigger them, making the underlying
dependency issues dicult to be discovered. Moreover, they suer
the huge overhead caused by an incredibly large number of the
builds, especially in the cases of large programs. The insight under-
lying the virtual build can benet the build script testing, reducing
the overhead of each build task signicantly.

Hybrid analysis of build scripts. Several recent works com-
bine the advantages of the static and dynamic approaches to detect
dependency errors, which have been proven to be eective for

Accelerating Build Dependency Error Detection via Virtual Build ASE ’22, October 10–14, 2022, Rochester, MI, USA

various build systems. Bezemer et al. [6] proposes a tool to detect
unspecied dependencies in the Makele systems. VeriBuild es-
tablishes a unied graph representation to encode the expected
dependencies and the dynamic dependencies and designs dierent
policies of traversal to detect the dependency issues, such as miss-
ing dependencies and redundant dependencies [8]. These hybrid
approaches, similar to the dynamic ones, require a successful build
of the projects, which has been shown to be quite time-consuming
for the large-scale programs [8, 28]. Our work provides a general
mechanism to accelerate the analyses, reducing the overhead of the
build process without sacricing soundness and completeness.

Build script refactoring. Refactoring a build script has been a
popular topic in the community of software maintenance [17, 33].
For example,Makao[3] leverages an aspect-oriented approach and
visualizes the dependency relation by the graphs, which enables
the developers to perform the refactoring for the build scripts in a
better style. Similarly, Formiga and SYMake support the renaming
and the removal of the targets in the build scripts [12, 31]. Although
the refactoring of a build script is relatively trivial, it is still an open
problem to establish reasonable criteria and propose a new way to
generate the new build scripts better than the original one. This
problem has signicant importance in the migration of the build
systems [9, 10]. We believe the techniques of build script refactor-
ing and the solution we processed are complementary, which can
localize [4, 5, 20, 23, 34] and repair the dependency issues [13, 19]
with a low overhead based on the refactoring design.

8 CONCLUSION

We have introduced VirtualBuild, a UDG-based dependency error
detector to support the maintenance of build systems. It leverages a
light-weighted syntactic analysis to perform the program reduction
and generates the reduced program for the virtual build, supporting
the ecient build monitoring in the UDG generation. By fusing the
build upon the original and the reduced programs, VirtualBuild
obtains the same dynamic dependencies and constructs the same
UDG as the one based on the actual build. VirtualBuild is quite
ecient in analyzing real-world programs. It nishes the analysis
of the project LLVM with 5.67 MLoC in 38.63 minutes, while the
state-of-the-art approach has to take over four hours. Meanwhile,
it reports the same results as the existing ones, ensuring soundness
and completeness. The insight underlying VirtualBuild enables
us to extend existing UDG-based dependency error detectors via the
virtual build seamlessly, showing its great potential in the ecient
maintenance of real-world build systems.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful comments.
The authors are supported by the Leading-edge Technology Pro-
gram of Jiangsu Natural Science Foundation (BK20202001), Natural
Science Foundation of China (61902329), Xiamen Youth Innova-
tion Fund (3502Z20206036), the RGC16206517, ITS/440/18FP and
PRP/004/21FX grants from the Hong Kong Research Grant Council
and the Innovation and Technology Commission, Ant Group, and
the donations from Microsoft, TCL, Tencent, and Huawei. Cheng-
peng Wang is the corresponding author.

REFERENCES

[1] 2022. ANTLR. https://www.antlr.org/ [Online; accessed 05-May-2022].
[2] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. 2008.

The evolution of the Linux build system. Electronic Communications of the EASST
(2008). https://doi.org/10.14279/tuj.eceasst.8.115.119

[3] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007.
Design recovery and maintenance of build systems. In 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris, France.
IEEE Computer Society, 114–123. https://doi.org/10.1109/ICSM.2007.4362624

[4] Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault localization
for make-based build crashes. In Proceedings - 30th International Conference on
Software Maintenance and Evolution (ICSME). https://doi.org/10.1109/ICSME.
2014.87

[5] Jafar M. Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault local-
ization for build code errors in makeles. In 36th International Conference on
Software Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31
- June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.).
ACM, 600–601. https://doi.org/10.1145/2591062.2591135

[6] Cor Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M. German, and
Ahmed E. Hassan. 2017. An empirical study of unspecied dependencies in
make-based build systems. Empirical Software Engineering (2017). https:
//doi.org/10.1007/s10664-017-9510-8

[7] Microsoft Build. 2022. Preprocessor Directives. https://docs.microsoft.com/en-
us/cpp/preprocessor/preprocessor-directives?view=msvc-170 [Online; accessed
05-May-2022].

[8] Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles
Zhang. 2020. Escaping dependency hell: nding build dependency errors with
the unied dependency graph. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 463–474. https:
//doi.org/10.1145/3395363.3397388

[9] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated migration of build scripts
using dynamic analysis and search-based refactoring. ACM SIGPLAN Notices
(2014). https://doi.org/10.1145/2714064.2660239

[10] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated migration of build scripts
using dynamic analysis and search-based refactoring. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 599–616.
https://doi.org/10.1145/2660193.2660239

[11] Carl A. Gunter. 1996. Abstracting Dependencies between Software Conguration
Items. In Proceedings of the Fourth ACM SIGSOFT Symposium on Foundations of
Software Engineering, SIGSOFT1996, San Francisco, California, USA, October 16-18,
1996, David Garlan (Ed.). ACM, 167–178. https://doi.org/10.1145/239098.239129

[12] Ryan Hardt and Ethan V. Munson. 2013. Ant build maintenance with Formiga.
In Proceedings of the 1st International Workshop on Release Engineering, RELENG
2013, San Francisco, California, USA, May 20, 2013, Bram Adams, Christian Bird,
Foutse Khomh, and Kim Moir (Eds.). IEEE Computer Society, 13–16. https:
//doi.org/10.1109/RELENG.2013.6607690

[13] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: an automatic approach to
history-driven repair of build scripts. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman
(Eds.). ACM, 1078–1089. https://doi.org/10.1145/3180155.3180181

[14] Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su, Jing Zheng, and Gerard
de Melo. 2021. R2D2: Recursive Transformer based on Dierentiable Tree for
Interpretable Hierarchical Language Modeling. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia, Wenjie Li,
and Roberto Navigli (Eds.). Association for Computational Linguistics, 4897–4908.
https://doi.org/10.18653/v1/2021.acl-long.379

[15] International Business Machines Corporation (IBM). 2020. IBM Rational
Clearcase. https://www.ibm.com/us-en/marketplace/rational-clearcase [Online;
accessed 05-May-2022].

[16] Google Inc. 2022. Bazel - a fast, scalable, multi-language and extensible build
system. https://bazel.build/ [Online; accessed 05-May-2022].

[17] Lukás Jendele, Markus Schwenk, Diana Cremarenco, Ivan Janicijevic, andMikhail
Rybalkin. 2019. Ecient Automated Decomposition of Build Targets at Large-
Scale. In 12th IEEE Conference on Software Testing, Validation and Verication,
ICST 2019, Xi’an, China, April 22-27, 2019. IEEE, 457–464. https://doi.org/10.1109/
ICST.2019.00055

[18] Nándor Licker and Andrew Rice. 2019. Detecting incorrect build rules. In Pro-
ceedings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevk Bultan, and Jon
Whittle (Eds.). IEEE / ACM, 1234–1244. https://doi.org/10.1109/ICSE.2019.00125

https://www.antlr.org/
https://doi.org/10.14279/tuj.eceasst.8.115.119
https://doi.org/10.1109/ICSM.2007.4362624
https://doi.org/10.1109/ICSME.2014.87
https://doi.org/10.1109/ICSME.2014.87
https://doi.org/10.1145/2591062.2591135
https://doi.org/10.1007/s10664-017-9510-8
https://doi.org/10.1007/s10664-017-9510-8
https://docs.microsoft.com/en-us/cpp/preprocessor/preprocessor-directives?view=msvc-170
https://docs.microsoft.com/en-us/cpp/preprocessor/preprocessor-directives?view=msvc-170
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/2714064.2660239
https://doi.org/10.1145/2660193.2660239
https://doi.org/10.1145/239098.239129
https://doi.org/10.1109/RELENG.2013.6607690
https://doi.org/10.1109/RELENG.2013.6607690
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.18653/v1/2021.acl-long.379
https://www.ibm.com/us-en/marketplace/rational-clearcase
https://bazel.build/
https://doi.org/10.1109/ICST.2019.00055
https://doi.org/10.1109/ICST.2019.00055
https://doi.org/10.1109/ICSE.2019.00125

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and Charles Zhang

[19] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure xing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller (Eds.). ACM,
43–54. https://doi.org/10.1145/3293882.3330578

[20] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically
repairing dependency-related build breakage. In 25th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). https:
//doi.org/10.1109/SANER.2018.8330201

[21] Bill McCloskey. 2022. memoize. https://github.com/kgaughan/memoize.py
[Online; accessed 05-May-2022].

[22] Eric S Raymond. 2003. The art of Unix programming. Addison-Wesley Profes-
sional.

[23] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. 2018. Automated Localization
for Unreproducible Builds. In Proceedings of the 40th International Conference on
Software Engineering (ICSE). Association for Computing Machinery, New York,
NY, USA, 71–81. https://doi.org/10.1145/3180155.3180224

[24] Zhilei Ren, Changlin Liu, Xusheng Xiao, He Jiang, and Tao Xie. 2019. Root
Cause Localization for Unreproducible Builds via Causality Analysis Over System
Call Tracing. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 527–538.
https://doi.org/10.1109/ASE.2019.00056

[25] Ryan G. Scott, Omar S. Navarro Leija, Joseph Devietti, and Ryan R. Newton. 2017.
Monadic composition for deterministic, parallel batch processing. Proc. ACM
Program. Lang. 1, OOPSLA (2017), 73:1–73:26. https://doi.org/10.1145/3133897

[26] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ build errors: A case study (at google).
In Proceedings - International Conference on Software Engineering (ICSE). https:
//doi.org/10.1145/2568225.2568255

[27] Mike Shal. 2009. Build system rules and algorithms. Published online (2009).
Retrieved July 18 (2009), 2013. http://gittup.org/tup/build_system_rules_and_
algorithms.pdf

[28] Thodoris Sotiropoulos, Stefanos Chaliasos, Dimitris Mitropoulos, and Diomidis
Spinellis. 2020. A model for detecting faults in build specications. Proc. ACM

Program. Lang. 4, OOPSLA (2020), 144:1–144:30. https://doi.org/10.1145/3428212
[29] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. Practi-

cal fault detection in puppet programs. In ICSE ’20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rother-
mel and Doo-Hwan Bae (Eds.). ACM, 26–37. https://doi.org/10.1145/3377811.
3380384

[30] Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. 2020. Build scripts with
perfect dependencies. Proc. ACM Program. Lang. 4, OOPSLA (2020), 169:1–169:28.
https://doi.org/10.1145/3428237

[31] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
2012. SYMake: a build code analysis and refactoring tool for makeles. In Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE). ACM, 366–369.

[32] Brush Technology. 2022. fabricate. https://github.com/brushtechnology/fabricate
[Online; accessed 05-May-2022].

[33] Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, and Vahab S. Mirrokni.
2015. Automated Decomposition of Build Targets. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1, Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.).
IEEE Computer Society, 123–133. https://doi.org/10.1109/ICSE.2015.34

[34] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2018.
Un-breakMy Build: Assisting Developers with Build Repair Hints. 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC) (2018), 41–4110.

[35] VestaSys. 2020. Vesta Conguration Management System. http://www.vestasys.
org/ [Online; accessed 05-May-2022].

[36] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2014. Build system analysis
with link prediction. In Symposium on Applied Computing, SAC 2014, Gyeongju,
Republic of Korea - March 24 - 28, 2014, Yookun Cho, Sung Y. Shin, Sang-Wook
Kim, Chih-Cheng Hung, and Jiman Hong (Eds.). ACM, 1184–1186. https://doi.
org/10.1145/2554850.2555134

[37] Bo Zhou, Xin Xia, David Lo, and Xinyu Wang. 2014. Build predictor: More
accurate missed dependency prediction in build conguration les. In Proceedings
- International Computer Software and Applications Conference (COMPSAC). https:
//doi.org/10.1109/COMPSAC.2014.12

https://doi.org/10.1145/3293882.3330578
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1109/SANER.2018.8330201
https://github.com/kgaughan/memoize.py
https://doi.org/10.1145/3180155.3180224
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1145/3133897
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://doi.org/10.1145/3428212
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1145/3428237
https://github.com/brushtechnology/fabricate
https://doi.org/10.1109/ICSE.2015.34
http://www.vestasys.org/
http://www.vestasys.org/
https://doi.org/10.1145/2554850.2555134
https://doi.org/10.1145/2554850.2555134
https://doi.org/10.1109/COMPSAC.2014.12
https://doi.org/10.1109/COMPSAC.2014.12

	Abstract
	1 Introduction
	2 Overview of VirtualBuild
	2.1 Background
	2.2 Key Idea
	2.3 Technical Challenges

	3 Problem Formulation
	3.1 Program Syntax
	3.2 Dependency Model
	3.3 Problem Statement

	4 Approach
	4.1 Program Reduction
	4.2 Virtual Build
	4.3 Dependency Error Detection

	5 Implementation
	6 Evaluation
	6.1 Experimental Setting
	6.2 Results
	6.3 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

