
Precise Divide-By-Zero Detection with Affirmative Evidence

Yiyuan Guo
The Hong Kong University of Science

and Technology

Hong Kong, China

yguoaz@cse.ust.hk

Jinguo Zhou
Ant Group

China

jinguo.zjg@antgroup.com

Peisen Yao
The Hong Kong University of Science

and Technology

Hong Kong, China

pyao@cse.ust.hk

Qingkai Shi
Ant Group

China

qingkai.sqk@antgroup.com

Charles Zhang
The Hong Kong University of Science

and Technology

Hong Kong, China

charlesz@cse.ust.hk

ABSTRACT

The static detection of divide-by-zero, a common programming

error, is particularly prone to false positives because conventional

static analysis reports a divide-by-zero bug whenever it cannot

prove the safety property — the divisor variable is not zero in all

executions. When reasoning the program semantics over a large

number of under-constrained variables, conventional static analy-

ses significantly loose the bounds of divisor variables, which easily

fails the safety proof and leads to a massive number of false pos-

itives. We propose a static analysis to detect divide-by-zero bugs

taking additional evidence for under-constrained variables into

consideration. Based on an extensive empirical study of known

divide-by-zero bugs, we no longer arbitrarily report a bug once the

safety verification fails. Instead, we actively look for affirmative

evidences, namely source evidence and bound evidence, that imply

a high possibility of the bug to be triggerable at runtime. When

applying our tool Wit to the real-world software such as the Linux

kernel, we have found 72 new divide-by-zero bugs with a low false

positive rate of 22%.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

Static program analysis, bug detection, divide-by-zero.

ACM Reference Format:

Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang.

2022. Precise Divide-By-Zero Detection with Affirmative Evidence . In

44th International Conference on Software Engineering (ICSE ’22), May 21–

29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510066

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510066

1 INTRODUCTION

Divide-by-zero is one of the most common programming errors that

can lead to undefined runtime behaviors. Over the past five years,

there are more than 90 security vulnerabilities related to divide-by-

zero documented in the Common Vulnerabilities and Exposures

(CVE) database. Static analysis is an important approach to combat

this problem. However, its high false positive rate remains a major

obstacle for adoption. In our experiments, we observe false positive

rates of over 70% in representative static analyzers.

To understand the reason behind these high false positive rates,

we first examine how static analysis reports a potential divide-

by-zero bug. The central question is how to decide if the divisor

variable may equal zero in some executions. More specifically, a

divide-by-zero happens when

C1. There exists a feasible execution path 𝑃 reaching the division
instruction (Let 𝑝𝑐 denote the path condition for 𝑃).

C2. The divisor variable 𝑣 may equal zero when 𝑃 reaches the

division instruction (Let 𝑄
def
= (𝑣 = 0) denote the error

condition for triggering a divide-by-zero bug).

Conventionally, static analysis reports a divide-by-zero bug if 𝑝𝑐∧𝑄
is satisfiable, i.e., under the condition 𝑝𝑐 , the divisor variable 𝑣 can-
not be proved to be non-zero. However, we observe that this scheme

often leads to a high false positive rate in divide-by-zero detection

since the under-constrainedness of static analysis makes it easy to

satisfy the query 𝑝𝑐 ∧𝑄 . Many variables are under-constrained in
the static analysis [13]:

• The program under analysis can be an open program. For

example, the analysis often sees a module by interface only,

of which the variables are under-constrained [11, 15].

• The inherent limitations of static analysis introduce the

under-constrained variables to represent imprecision in the

analysis, e.g., the runtime state of the operating system and

the presence of unmodeled code constructs, such as inline

assembly and many others [13, 14].

To improve the precision, our key insight is that, instead of

reporting errors whenever safety verification fails, we can attack

the divide-by-zero detection problem from a different angle by

actively finding affirmative evidence for triggering the bug. Such

evidence serves as the extra information on the under-constrained

variables, thus contributes to improving the precision.

1718

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang

1 struct control_panel {
2 int x; int y; int z;
3 int flag; int distantce; ...
4 };
5
6 void top_fun() { // not tracked by the analysis when analyzing move
7 ...
8 if (dx != 0 && dy != 0)
9 // calls move with non−zero values of dx and dy.
10 move(dx, dy, d, ctr);
11 }
12
13 void move (int dx, int dy, int d, control_panel ∗ctr) {
14 int diff;
15 if (dx >= dy)
16 diff=1+dx−dy;
17 else
18 diff = −1;
19
20 ctr−>z += get_step(ctr, diff);
21 if (dx >= d || dy >= d)
22 ctr−>setFlag(LONG_MOVE);
23
24 int dz = 2∗dx − (dy+d);
25 ctr−>x += get_step(ctr, dx);
26 ctr−>y += get_step(ctr, dy);
27 ctr−>z += get_step(ctr, dz);
28 }
29
30 int get_step(control_pane ∗ctr, int step_size) {
31 return ctr−>distantce / step_size;
32 }

Figure 1: A motivating example.

We use the motivating example in Figure 1 to illustrate the idea.

In Figure 1, the function move updates the control panel ctr by
adding values to its (x,y,z) coordinates computed in the function
get_step through a division operation. Also, we assume that the
caller function top_fun for the function move is external to the
module under analysis and, thus, not tracked by the analysis. Now

consider how static analysis can detect potential divide-by-zero

errors in this program.

Line 20 cannot trigger a divide-by-zero because the used divisor

diff is either −1 or no less than 1. A path-sensitive static analysis

correctly verifies its safety since the two queries dx ≥ dy∧ 1 + dx−

dy = 0 and dx < dy ∧ −1 = 0 associated with the two paths across

Lines 15-18 are both unsatisfiable.

However, the path-sensitive static analysis still encounters the

precision problem. In our example, the divide-by-zero errors are

reported for the three calls to get_step at Line 25, 26, and 27

because the queries dx = 0, dy = 0, and dz = 0 are all satisfiable.

However, since top_fun only calls movewith non-zero values for dx
and dy (Line 10), the reports at Lines 25-26 are false positives. This
fact is unknown to the static analysis because it fails to trace back

to the origin of the arguments of move in the function top_fun.
On the other hand, we notice that the divide-by-zero report at

Line 27 has high confidence to be true since we can find evidence

to explain it. Specifically, Line 21 of Figure 1 explicitly compares

dx and dy with d, suggesting that the programmer has beliefs [16]
that they may be equal to d. If such beliefs actually hold, dz must
equal zero at Line 24, i.e., dz = 2*dx-(dy+d) = 2*d-(d+d) = 0,
leading to a plausible divide-by-zero report for Line 27.

How to report the high confidence divide-by-zero bug at Line

27 instead of the false positives at Lines 25-26? Note that all of the

three divisions cannot be proved safe by the static analysis, regard-

less of being path-sensitive or not. However, we have identified

the evidence based on analyzing the programmer’s beliefs for the

bug report at Line 27, which leads to its high confidence to occur.

Specifically, in this work, we identify two categories of evidence:

(a) Source evidence: The fact that an explicit source of “bad”

value is assigned to a variable 𝑣 . The source can be either a
direct assignment of zero (e.g., the assignment v:=0) or takes
the value of some tainted input (e.g., v:=atoi(argv[1])).

(b) Bound evidence: The equality fact 𝑣1 = 𝑣2 generated from
a bound checking statement in the program that compares

𝑣1 and 𝑣2. Statements like Line 21 of Figure 1 that check
numerical bounds of variables can convey the important

information on the possible values of the checked variables: a

comparison between 𝑣1 and 𝑣2 suggests that the programmer
may believe that 𝑣1 can equal 𝑣2.

With the generated evidence, our method reports a divide-by-zero

bug by adapting the requirements C1 and C2 as follows.

C1*. C1 and C2 hold: 𝑝𝑐 ∧𝑄 is satisfiable, where 𝑝𝑐 denotes the
path condition for reaching the division instruction, and

𝑄 ≡ (𝑣 = 0) is the error condition for divide-by-zero.

C2*. One of the following conditions holds:

• The divisor variable 𝑣 has the source evidence.
• There exists a set 𝐸 of bound evidence consistent with 𝑝𝑐
such that 𝑣 must be zero under 𝐸.

In other words, we seek to detect a fraction of divide-by-zero bugs

with high confidence by finding the affirmative evidence to explain

its occurrence. For example, in Figure 1, 𝑑𝑧 at Line 27 is the only
variable that meets these requirements: 𝑑𝑧 = 0 must hold if the

evidence 𝑑𝑥 = 𝑑 and 𝑑𝑦 = 𝑑 hold. Hence, our approach will only
report one divide-by-zero bug at Line 27.

In this paper, we propose Wit, a framework for the precise de-

tection of divide-by-zero with the affirmative evidence. First, to

understand the applicability of our definition of evidence and the cri-

teria C1* - C2* for detecting bugs, we perform an empirical study on

existing CVEs related to divide-by-zero bugs and investigate if they

can be detected by finding a set of supporting evidence. The result

shows that 74% of the studied divide-by-zero bugs have the support-

ing evidence that explains its occurrence, showing the generality of

our intuition. To capture the evidence-based reasoning in achieving

the precise divide-by-zero detection, we design a static analysis

algorithm to perform the evidence-based inference, adhering to

the criteria C1*-C2* for reporting bugs. The algorithm generates

evidence directly from certain code patterns and propagates the

generated evidence path-sensitively. To improve its efficiency, we

utilize a symbolic domain to compactly encode the possible numer-

ical values for variables and apply the data dependence analysis

[17] to prune irrelevant execution paths, scaling to million lines of

code.

In summary, we make the following contributions in this paper:

• The insight for improving the precision of divide-by-zero

detection by finding the affirmative evidence to trigger the

bug.

1719

Precise Divide-By-Zero Detection with Affirmative Evidence ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

• An empirical study of CVEs related to divide-by-zero bugs.

We investigate and classify these existing divide-by-zero

bugs and show that many of them can be effectively detected

based on evidence.

• A formalization of the insight in a semantic framework and

an algorithm for finding high confidence divide-by-zero er-

rors through the evidence propagation.

• An implementation and extensive evaluation of the divide-

by-zero checker. We demonstrate that it is both precise and

efficient, uncovering 72 divide-by-zero bugs (14 of which are

confirmed by the developers) in large codebases such as the

Linux kernel with a low false positive rate of 22%.

2 EMPIRICAL STUDY ON DIVIDE-BY-ZERO
BUGS

To further understand the applicability of the evidence-based divide-

by-zero detection method, we perform an empirical study on CVEs

caused by divide-by-zero bugs. Through the empirical study, we

aim to answer the following research questions:

• RQ1: How often can we find the evidence for the divide-by-

zero bugs? In other words, how often do our bug detection

criteria C1* - C2* apply to the existing divide-by-zero bugs?

• RQ2: What is the distribution for the two kinds of evidence

defined in § 1?

2.1 Data Collection

We search for the keywords “divide-by-zero” and “divide by zero”

in the CVE database and examine the CVEs starting from the year

2011. There are 123 CVEs in total that are caused by the divide-

by-zero bugs. We exclude the bugs with no source code or stack

traces (16), or unable to understand without a deep knowledge of

the system (12), or sharing the same root with other bugs (8). Thus,

we are left with 87 CVEs to study.

2.2 Classification Criteria

Since our goal is to study the problem in general without being tied

to a specific analysis algorithm or target system, we have adopted

the following criteria to mimic the reasoning process of a static

analyzer:

(1) Starting from the crash site of the bug (i.e., the division

instruction with zero divisor), we manually examine a back-

ward slice B of some fixed size. In our experiment, we ex-

amine backwards at most 10 call frames from the involved

division. This is reasonable as lengthy bug traces output by

static analyzers take a non-trivial amount of time for users

to triage [1, 4], thus should be avoided by practical tools.

(2) Based on our manual inspection of B, we classify the divide-

by-zero bugs based on the evidence found:

(a) Class Src: Source evidence is found. An explicit source of

zero value for the divisor variable exists in B. The source

is either a direct assignment of zero value to the variable

or of a tainted value from the input.

(b) Class Bd: Bound evidence is found. We can find a set

of evidence from the bound checking statements in B

Table 1: Classification of 87 CVEs caused by divide-by-zero

bugs. Class Src is bugs with source evidence (further classi-

fied into constant source and taint source), Class Bd is bugs

with bound evidence, and Class Un is bugs with no evidence.

Class Src
Class Bd Class Src ∩ Class Bd Class Un

const taint

19 28 21 4 23

that guarantee the divisor variable to be zero. Specifi-

cally, for any branching statement involving comparisons:

if (x cmp y) (cmp is <, <=, etc.), we consider the fact x=y
as the bound evidence likely to be true.

(c) Class Un: No evidence is found (i.e., unknown). We can

neither find source evidence nor bound evidence in B. For

example, CVE-2018-19628 is marked as unknown because

it requires a deep context of 14 call frames to understand

the root cause, exceeding the code range of B.

Conventional static analysis methods detect all three classes of

divide-by-zero bugs. As illustrated in § 1, they are likely to incur

massive false positives. Our method detects bugs of Class Src and

Class Bd since they are the classes that satisfy the requirement C1*

- C2*, aiming for a fraction of high confidence divide-by-zero bugs

with possible false negatives. The classification attempts to study

how much can be covered by our method.

2.3 Study Result

Bug Classification. Table 1 shows the classification result of

the 87 CVEs caused by divide-by-zero bugs. For Class Src bugs with

explicit sources, we further divide them into two groups: those

with constant zero value as the source (the column labeled with

“const”) and those with the tainted input as the source (the column

labeled with “taint”). The bugs with both the source evidence and

the bound evidence are counted in the column labeled “Class Src ∩

Class Bd”.

From the data we gather, we answer the two research questions

empirically as follows:

Answer to RQ1: We can find evidence for a large proportion

(𝑆𝑟𝑐+𝐵𝑑−𝑆𝑟𝑐∩𝐵𝑑87 = 74%) of divide-by-zero bugs. Thus, our

bug detection criteria C1* - C2* are widely applicable.

Answer to RQ2: For the divide-by-zero bugs that we can find

evidence, 73% of them have source evidence, 33% of them

have bound evidence, and 6% of them have both evidence.

Therefore, we conclude that finding evidence to facilitate the

precise divide-by-zero detection indeed works in real scenarios,

covering a large proportion of interesting bugs. Also, both source

evidence and bound evidence are useful for bug detection in prac-

tice.

Case Study of Bugs with Evidence. To give an intuitive un-

derstanding of the bugs detected based on evidence, we illustrate

some example CVEs from Class Src and Bd.

1720

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang

1 void start_input_gif(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) {
2 U_CHAR hdrbuf[10];
3 // ReadOK is a wrapper of fread
4 if (!ReadOK(source−>pub.input_file, hdrbuf, 6))
5 EREXIT(cinfo, JERR_GIF_NOT);
6 width = LM_to_uint(hdrbuf, 0);
7 height= LM_to_uint(hdrbuf, 2);
8 // use the second arg as divisor
9 DIVOP(cinfo, width ∗ NUMCOLORS);
10 }

(a) Example #1: CVE-2021-20205

1 int ApplyEvaluateOperator(RandomInfo ∗r, Quantum p, Operator op, int v) {
2 ...
3 switch(op) {
4 case DivideEvaluateOperator:
5 result = p / (v == 0 ? 1 : v);
6 break;
7 case GaussianNoiseEvaluateOperator:
8 result = GenerateDifferentialNoise(r,p,GaussianNoise,v)
9 }
10 }
11 int GenerateDifferentialNoise(RandomInfo ∗r, Quantum p, NoiseType ty, int v)

{
12 ...
13 noise = (QuantumRange ∗ i / v);
14 }

(b) Example #2: CVE-2021-20176

Figure 2: Example of bugs with evidence.

Figure 2a shows a Class Src bug. The buffer hdrbuf is tainted by
the call to ReadOK (Line 4), allowing it to parse the variable width
to zero value, leading to a divide-by-zero bug at Line 9.

Figure 2b shows a Class Bd bug. At Line 5 of the code in Fig-

ure 2b, the programmer explicitly checks the value of variable 𝑣
against 0. We can propagate the checked bound as evidence to

Line 8, uncovering a divide-by-zero bug inside the called function

GenerateDifferentialNoise at Line 13. This bug is due to the
fact that the programmer has missed the check at Line 8, which is

successfully captured by the generated bound evidence.

Implications of our Findings. From the findings of our empir-

ical study, we conclude that:

(1) Many real divide-by-zero bugs do have the supporting evi-

dence. In addition, both the source evidence and the bound

evidence are useful for understanding existing divide-by-

zero bugs. Thus, criteria C1*-C2* for the divide-by-zero de-

tection are applicable for a large proportion of divide-by-zero

bugs.

(2) Static analyzers can be designed to discover and reason about

the evidence to achieve precise detection results, aiming for

the high confidence bugs of Class Src and Class Bd.

3 OVERVIEW

In this section, we give an overview of our evidence-based divide-

by-zero detection method, using the motivating example in Figure 1.

Existing Approaches. Before presenting our approach, we first

briefly discuss two conventional techniques for divide-by-zero de-

tection and their drawbacks, namely the numerical abstract interpre-

tation [8, 9, 25] and the under-constrained symbolic execution [28].

If we apply the polyhedra abstract domain [9] that is an expres-

sive domain capable of reasoning about the linear relations among

variables, the branch statements from Line 15 to Line 18 in Figure 1

will produce the following abstractions along the two paths:

𝐴𝑏𝑠1 : {dx − dy ≥ 0, dx − dy − diff + 1 = 0}

𝐴𝑏𝑠2 : {dx − dy ≤ 0, diff + 1 = 0}

Since the two abstractions are joined to produce a sound over-

approximation when paths merge in abstract interpretation, a se-

vere precision loss can occur. Specifically, since 𝐴𝑏𝑠1 � 𝐴𝑏𝑠2 =
{diff ≥ −1}, the analysis concludes that diff may be equal to

zero and generates a false positive divide-by-zero bug for the call

at Line 20. Thus, lacking path sensitivity, the numerical abstract

interpretation can be imprecise for divide-by-zero detection.

On the other hand, the under-constrained symbolic execution

performs the path-by-path exhaustive exploration, starting from

the tested function move (recall we assume that the analysis does
not track the function top_fun). The analysis records the two paths
in the function move reaching Line 20 as the following execution
states:

𝑠1 = (dx ≥ dy) ∧ (diff = 1 + dx − dy)

𝑠2 = (dx < dy) ∧ (diff = −1)

With the path-sensitive state encoding, the under-constrained sym-

bolic execution successfully proves that divide-by-zero cannot hap-

pen for Line 20. However, as illustrated in § 1, due to the presence

of the under-constrained variables, we conclude that all three calls

at Lines 25-27 of Figure 1 can trigger divide-by-zero with two false

positives. This is because all the execution paths reaching these

lines have satisfiable constraints for triggering divide-by-zero. Thus,

without finding the affirmative evidence, even a path-sensitive tech-

nique for divide-by-zero detection can be imprecise when faced

with under-constrained variables.

To summarize, conventional approaches to divide-by-zero detec-

tion suffer from imprecision problems because they may lack path

sensitivity or do not attempt to find evidence for potential bugs.

Our Approach. As illustrated in § 1, our work uses the criteria

C1* - C2* to precisely report potential bugs. We argue that both

path sensitivity of the analysis and finding affirmative evidence

are crucial in achieving good precision. Thus, we seek to track

the evidence path-sensitively to achieve the precise divide-by-zero

detection.

For this purpose, the analysis needs to reason about the nu-

merical computations path-sensitively and fuse the evidence in

the analysis process. We propose to apply a dedicated symbolic

domain Γ to track the numerical computation in the analysis path-
sensitively and utilize the evidence to refine the analysis result.

Specifically, Γ represents the abstract state for a variable 𝑣 as a
guarded symbolic value set Γ(𝑣) = {(𝑣𝑎1, 𝑐1), . . . , (𝑣𝑎𝑘 , 𝑐𝑘)}, mean-
ing that 𝑣 == 𝑣𝑎𝑖 may hold under the condition 𝑐𝑖 . Note that it is
nontrivial to compute Γ efficiently, and we defer the details of the
algorithm to § 4. For the example in Figure 1, our analysis deduces

that

(1 + dx − dy, dx ≥ dy), (−1, dx < dy) ∈ Γ(diff)

(2 × dx − (dy + d), 𝑡𝑟𝑢𝑒) ∈ Γ(dz)

1721

Precise Divide-By-Zero Detection with Affirmative Evidence ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

The analysis successfully infers that no divide-by-zero can occur for

Line 20 based on the path-sensitive representation of Γ(diff). How-
ever, it still reports two spurious divide-by-zero bugs for Lines 25-26,

similar to the under-constrained symbolic execution approach, as

the variables dx, dy, and d are under-constrained in Γ.
Thus, to further improve the precision, our analysis attempts to

deduce the evidence for those under-constrained variables. First,

it attempts to find the source evidence for dx, dy, and d by asking
“Are these variables tainted?”. The tracking of the source evidence

can be done by the taint analysis [31], following the value that

originates from a bad source and checking where it flows to. In this

example, no such source evidence exists. On the other hand, the

analysis tries to find the bound evidence to constrain the under-

constrained variables. As introduced in § 1, we generate the bound

evidence 𝑣1 = 𝑣2 from the bound checking statements that compare

𝑣1 with 𝑣2, which represent the possible beliefs the programmers
may have. For example, in Figure 1, Lines 15 compares dx with
dy, while Line 21 compares dx with d and dy with d, causing the
analysis to generate the following bound evidence:

𝑑𝑥 = 𝑑𝑦,𝑑𝑥 = 𝑑,𝑑𝑦 = 𝑑

How can we take advantage of the generated bound evidence to

improve the precision of divide-by-zero detection? We treat the

bound evidence as the additional constraints and propagate it to

update the representation of Γ, such that the additional constraints
are enforced. For the variable dz, from the bound evidence above

and the guarded value (2 × dx − (dy + d), 𝑡𝑟𝑢𝑒) for dz, we deduce
that

(2 × 𝑎 − (𝑏 + 𝑐), 𝑡𝑟𝑢𝑒) ∈ Γ(𝑑𝑧), 𝑎, 𝑏, 𝑐 ∈ {dx, dy, d}

Apparently, 0 ∈ Γ(𝑑𝑧) and thus our analysis successfully reports
Line 27 of Figure 1 as a divide-by-zero bug. Meanwhile, since no

evidence is inferred for dx or dy to be zero (i.e., 0 ∉ Γ(𝑑𝑥), 0 ∉
Γ(𝑑𝑦)), it avoids generating spurious reports at Lines 25-26.
In summary, our analysis encodes the possible values for the

variables in the program path-sensitively using a symbolic domain.

During the numerical inference process, it attempts to (1) directly

find the source evidence and (2) propagate the generated bound

evidence to refine the analysis result. Since we apply standard meth-

ods in tracking the source evidence, we mainly focus on utilizing

the bound evidence in our method. There are two major challenges:

• How to efficiently compute the guarded symbolic value set

Γ(𝑣) for variable 𝑣? A naive approach that exhaustively enu-

merates all execution paths can be too expensive, wasting

time exploring irrelevant paths.

• How to propagate bound evidence to refine the symbolic

analysis result?

To address the first challenge, we utilize the data dependence

analysis to slice away the irrelevant control flow paths for improv-

ing the efficiency. For the second challenge, we encode the bound

evidence as the additional constraints for Γ and enforce these con-
straints when computing the guarded symbolic value sets.

Program P ::= fun+

Function fun ::= fun : (𝑣1, . . . , 𝑣𝑛) → 𝑟
{𝑠}

Statement s ::= 𝑠1; 𝑠2 | 𝑣 := 𝑒
| if (𝑣1 𝑐𝑚𝑝 𝑣2) 𝑠2 else 𝑠3, cmp ∈ {≤,=}
| 𝑣 := 𝑔(𝑎1, . . . , 𝑎𝑛) | 𝑣 := 𝜙 (𝑣1, . . . , 𝑣𝑛)

Expression e ::= 𝑣 | 𝑐 | 𝑡𝑎𝑖𝑛𝑡𝑒𝑑 | 𝑒1 op 𝑒2, op ∈ {+,−,×,÷}

Figure 3: A simple programming language.

step_size@30

dz@24

𝑡1 − 𝑡2

dy@13dx@13

diff@20−1

1 + 𝑡3

2 × 𝑑𝑥

𝑡1

𝑑𝑦 + 𝑑

𝑡2

𝑡3

𝑑𝑥 − 𝑑𝑦

1

𝑑𝑥 < 𝑑𝑦

𝑑𝑥 ≥ 𝑑𝑦

Figure 4: Augmented data dependence graph for Figure 1.

4 METHODOLOGY

4.1 Preliminary Definitions

We formulate our analysis using a simple imperative programming

language defined in Figure 3. The language is assumed in the static

single assignment form [10] in which each variable has a unique

definition, and we denote the SSA phi function by 𝜙 . We use 𝑣@𝑙 to
denote a variable 𝑣 defined at the program location 𝑙 . The language
has standard semantics, and we omit a formal definition for brevity.

As mentioned in § 3, we utilize data dependence analysis to

compute Γ efficiently. Specifically, the analysis operates over a

sparse representation of the program called the augmented data

dependence graph, defined as follows:

Definition 4.1. An augmented data dependence graph G is a di-

rected graph G = (𝑉 , 𝐸, 𝐿𝑉 , 𝐿𝐸) where:

(1) 𝑉 = 𝑉𝑐∪𝑉𝑛∪𝑉𝑜∪𝑉𝑡 is the set of nodes.𝑉𝑐 are constant values,
𝑉𝑛 are variable definitions, and 𝑉𝑜 are nodes corresponding
to an arithmetic operation 𝑣1 op 𝑣2, where 𝑣1, 𝑣2 ∈ 𝑉 \𝑉𝑜 .𝑉𝑡
is the set of tainted input sources.

(2) 𝐸 ∈ 𝑉 ×𝑉 is the set of edges representing data dependence

relations such that 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸 when 𝑣1 is used to define
𝑣2. 𝐿𝐸 labels any 𝑒 ∈ 𝐸 with a condition 𝑐𝑜𝑛𝑑 under which
the value flow can happen.

(3) 𝐿𝑉 labels each node𝑛 ∈ 𝑉𝑛 with (𝑣@𝑙, 𝑐𝑜𝑛𝑑). 𝑐𝑜𝑛𝑑 is the con-
dition for 𝑣 ’s definition (i.e., for some execution to reach Line
𝑙). 𝐿𝑉 also labels nodes in 𝑉𝑜 with its arithmetic expression
𝑣1 op 𝑣2 and nodes in 𝑉𝑐 with its constant 𝑐 .

Example 4.1. Figure 4 shows the augmented data dependence

graph for the program in Figure 1. An arrow 𝑣1 → 𝑣2 indicates that
𝑣1 is used to define 𝑣2 (i.e., (𝑣1, 𝑣2) ∈ 𝐸), and each arrow is labeled

with a path condition under which the flow of value can happen

(omitted in Figure 4 if it is 𝑡𝑟𝑢𝑒). Notice that arithmetic operations
are also compactly encoded on the graph by introducing temporary

variables 𝑡1, 𝑡2, and 𝑡3 to represent intermediate computation results.

1722

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang

The sparse graph representation is used to track relevant data

and control dependencies of the concerned variable while skipping

irrelevant statements [17]. It has been previously shown effective

in detecting null pointer dereference [3, 29], use after free [29], and

memory leak [6, 30]. We take inspiration from these works to first

utilize data dependence analysis in finding divide-by-zero bugs.

As illustrated in § 3, to achieve precise divide-by-zero detection,

our analysis needs to track numerical computations path-sensitively

and utilize affirmative evidence to find high confidence bugs. For

tracking numerical computations, we apply a symbolic domain Γ,
formally defined as follows:

Definition 4.2. The guarded symbolic value set domain is a map-

ping Γ ∈ 𝑉 → P(𝑉𝑎𝑙 ×𝐶𝑜𝑛𝑑), where:

𝑉𝑎𝑙
def
= {𝑐, 𝑣 |𝑐 ∈ Z, 𝑣 ∈ 𝑉 } ∪ {𝑣𝑎1 𝑜𝑝 𝑣𝑎2 | 𝑣𝑎1, 𝑣𝑎2 ∈ 𝑉𝑎𝑙}

𝐶𝑜𝑛𝑑
def
= the set of path conditions

We use 𝑣 to denote an unknown symbolic value for a node 𝑣 .

Γ encodes the symbolic values for variables path-sensitively. It
maps a node 𝑣 ∈ G to guarded value pairs of the form (𝑣𝑎, 𝑐),
where 𝑣𝑎 ∈ 𝑉𝑎𝑙 is a symbolic expression and 𝑐 is the condition
under which 𝑣 may have the value 𝑣𝑎. The symbolic expression
in 𝑉𝑎𝑙 is either a basic term (i.e., constant or unknown symbolic

value) or a binary operation involving other symbolic expressions.

At a high level, our analysis first constructs the augmented data

dependence graph G utilizing the existing method [29]. We then

compute the guarded symbolic value set Γ(𝑣) for a divisor variable
𝑣 on-demand. Finally, we use the result Γ(𝑣) in detecting divide-by-
zero bugs. Specifically, we compute Γ(𝑣) by building and resolving a
system of constraints for Γ. To improve the precision, our analysis is
path-sensitive and evidence aware, encoding bound evidence as ad-

ditional constraints. To remain efficient, we utilize data dependence

relations in constructing and resolving constraints.

4.2 Evidence-based Symbolic Analysis

Given a program 𝑃 and a variable 𝑣 , our evidence-based symbolic
analysis shown in Algorithm 1 computes the guarded symbolic

value set for 𝑣 . We build the augmented data dependence graph

G for 𝑃 using standard methods (Line 2), generate a system of

constraints 𝐶𝑜𝑛𝑠 (Γ) on-demand (Line 4), and solve the constraints
to obtain the guarded symbolic value set for 𝑣 (Lines 5-6).

§ 4.2.1 demonstrates the process of on-demand constraints gener-

ation for a node 𝑛 ∈ G, which is the node corresponding to a given
variable 𝑣 . We also generate bound evidence to produce additional

constraints, further refining the result and improving the preci-

sion. § 4.2.2 discusses the procedure 𝑠𝑜𝑙𝑣𝑒 for resolving constraints
and obtaining the solution Γ, which maps from variables to their

guarded symbolic value sets.

4.2.1 Symbolic Constraints Generation. Our analysis generates

constraints for Γ from the program’s augmented data dependence

graph G. Before presenting the rules for constraint generation, we

first define some operators for Γ (cf. Definition 4.2):

Definition 4.3. Operators and helper functions definitions for Γ:

Algorithm 1: Demand-driven evidence-based symbolic

analysis.

Input: A program 𝑃 and a cared variable 𝑣 .
Output: The guarded symbolic value set for 𝑣 .

1 def symbolicAnalysis(𝑃 , 𝑣):
2 G(𝑉 , 𝐸) ← buildGraph(𝑃)

3 𝑛 ← node in G corresponding to 𝑣

4 𝐶𝑜𝑛𝑠 (Γ) ← genConstraints(G, 𝑛)

5 Γ ← solve(𝐶𝑜𝑛𝑠 (Γ))

6 return Γ(𝑛)

7 def genConstraints(G, 𝑛):
8 𝐶𝑜𝑛𝑠 (Γ) ← ∅

9 𝑆𝑒𝑞 = {𝑣𝑖 } ← backward dfs order of G starting from 𝑛

10 foreach 𝑣 ∈ 𝑅𝑒𝑣𝑒𝑟𝑠𝑒 (𝑆𝑒𝑞) do
11 Apply the rules in Figure 5 and add the generated

constraints to 𝐶𝑜𝑛𝑠 (Γ)

12 end

13 return 𝐶𝑜𝑛𝑠 (Γ)

14 def solve(𝐶𝑜𝑛𝑠 (Γ)):
15 Γ ← 𝜆𝑣 .∅

16 while Γ has changed do
17 foreach (𝐶 : Γ(𝑜) ←↪ 𝑆) ∈ 𝐶𝑜𝑛𝑠 (Γ) do
18 𝑆 ′ ← Γ(𝑜) �∪ eval(𝑆, Γ)

19 Γ ← Γ [𝑜 ↦→ 𝑆 ′]

20 end

21 end

22 return Γ

(1) The binary operator õp on P(𝑉𝑎𝑙 × 𝐶𝑜𝑛𝑑) is defined as:

𝐺𝑉1 õp 𝐺𝑉2 = {simplify(𝑣𝑎1 op 𝑣𝑎2), 𝑐1 ∧ 𝑐2) | (𝑣𝑎1, 𝑐1) ∈
𝐺𝑉1, (𝑣𝑎2, 𝑐2) ∈ 𝐺𝑉2}

(2) The logical and operation ∧ is extended to add an additional

condition to a guarded value set 𝑆 ∈ P(𝑉𝑎𝑙 ×𝐶𝑜𝑛𝑑): 𝑐𝑜𝑛𝑑 ∧
𝑆 = {(𝑣𝑎, 𝑐 ∧ 𝑐𝑜𝑛𝑑) | (𝑣𝑎, 𝑐) ∈ 𝑆}.

(3) �∪ unions two guarded value sets 𝑆1, 𝑆2 ∈ P(𝑉𝑎𝑙×𝐶𝑜𝑛𝑑) and
combines guarding conditions for the same value: 𝑆1 �∪𝑆2 =
{(𝑣𝑎, 𝑐1∧𝑐2) | (𝑣𝑎, 𝑐1) ∈ 𝑆1, (𝑣𝑎, 𝑐2) ∈ 𝑆2}∪(𝑆1\𝑆2)∪(𝑆2\𝑆1).

Figure 5 lists the inference rules for generating constraints for

Γ based on G. We use 𝑆1 ←↪ 𝑆2 to denote a weak update to the

guarded value set 𝑆1 (i.e., 𝑆1 = 𝑆1 �∪𝑆2), and
𝑐𝑜𝑛𝑑
−−−−→ to denote data

dependence edges (c.f. Definition 4.1). The first five rules in Figure 5

translate the data dependence relations in G to constraints for Γ.
Rule init-var and Rule init-op indicate that every node 𝑛 ∈ 𝑉𝑛 ∪𝑉𝑜
is associated with an unknown symbolic value �̂�, meaning that the
value for 𝑛 is initially unknown. On the other hand, constant nodes
have fixed values (Rule init-cst). For node encoding operations, the

operator õp is applied to the guarded symbolic value sets for the

incoming nodes (Rule operation) 1. For a variable node 𝑛 ∈ 𝑉𝑛 , we
aggregate the guarded symbolic value sets for all the nodes that 𝑛 is
data dependent on, and track the appropriate path conditions (Rule

1For brevity, the rule only lists the case when both operand nodes are from𝑉𝑛 . Other
cases can be transformed to it by introducing temporary variables.

1723

Precise Divide-By-Zero Detection with Affirmative Evidence ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

init-var
𝑛 ∈ 𝑉𝑛, 𝐿𝑉 (𝑛) = (𝑣, 𝑐𝑜𝑛𝑑)

Γ(𝑛) ←↪ {(�̂�, 𝑐𝑜𝑛𝑑)}

init-op
𝑛 ∈ 𝑉𝑜

Γ(𝑛) ←↪ {(�̂�, 𝑡𝑟𝑢𝑒)}

init-cst
𝑛 ∈ 𝑉𝑐 , 𝐿𝑉 (𝑛) = 𝑐𝑠𝑡

Γ(𝑛) ←↪ {(𝑐𝑠𝑡, 𝑡𝑟𝑢𝑒)}

operation

𝑛 ∈ 𝑉𝑜 , 𝐿𝑉 (𝑛) = 𝑣1 op 𝑣2
𝑜𝑝1 → 𝑛, 𝐿𝑉 (𝑜𝑝1) = (𝑣1, 𝑐1)
𝑜𝑝2 → 𝑛, 𝐿𝑉 (𝑜𝑝2) = (𝑣2, 𝑐2)

Γ(𝑛) ←↪ Γ(𝑜𝑝1) õp Γ(𝑜𝑝2)

variable

𝑜𝑝1
𝑐𝑜𝑛𝑑1
−−−−−→ 𝑛, . . . , 𝑜𝑝𝑘

𝑐𝑜𝑛𝑑𝑘
−−−−−→ 𝑛

𝑛 ∈ 𝑉𝑛, 𝐿𝑉 (𝑛) = (𝑣@𝑙, 𝑐𝑜𝑛𝑑)
𝑣𝑎𝑠 = 𝑡𝑟𝑎𝑛𝑠 ([(Γ(𝑜𝑝1), 𝑐𝑜𝑛𝑑1), . . . , (Γ(𝑜𝑝𝑘), 𝑐𝑜𝑛𝑑𝑘)])

Γ(𝑛) ←↪ 𝑐𝑜𝑛𝑑 ∧ 𝑣𝑎𝑠

bound-evi
𝑣1 𝑐𝑚𝑝 𝑣2 occurs in the program

Γ(𝑣𝑖) ←↪ Γ(𝑣1) �∪ Γ(𝑣2), 𝑖 ∈ {1, 2}

Figure 5: Rules for generating constraints from G. 𝑆1 ←↪ 𝑆2

abbreviates 𝑆1 = 𝑆1 �∪𝑆2, and 𝑖
𝑐𝑜𝑛𝑑
−−−−→ 𝑗 abbreviates 𝑒 = (𝑖, 𝑗) ∈

𝐸, 𝐿𝐸 (𝑒) = 𝑐𝑜𝑛𝑑 .

variable). The 𝑡𝑟𝑎𝑛𝑠 function is used for this reason and defined as:

𝑡𝑟𝑎𝑛𝑠 ([(Γ(𝑜𝑝1), 𝑐1), . . . , (Γ(𝑜𝑝𝑘), 𝑐𝑘)])
def
=

�⋃𝑘

𝑖=1
(𝑐𝑖 ∧ Γ(𝑜𝑝𝑖))

Finally, the condition associated with 𝑛 in 𝐿𝑉 (𝑛) is added to Γ(𝑛).

Example 4.2. For G shown in Figure 4, we can apply the above

inference rules to build the following constraints (the constraints

for temporary variables are left out for brevity):

Γ(step_size) ←↪ Γ(diff) �∪ Γ(dx) �∪ Γ(dy) �∪ Γ(dz) (1)

Γ(diff) ←↪ 𝑡𝑟𝑎𝑛𝑠 ([(Γ(−1), dx < dy), (2)

(Γ(1) +̃ (Γ(dx) −̃ Γ(dy)), dx ≥ dy)]) (3)

Γ(dz) ←↪ Γ(2) ×̃ Γ(dx) −̃ (Γ(dy) +̃ Γ(d)) (4)

Γ(𝑣) ←↪ {(𝑣, 𝑡𝑟𝑢𝑒)}, 𝑣 ∈ {step_size, dx, dz, diff, dy, d} (5)

Since we build the constraints from the augmented data depen-

dence graph shown in Figure 4, only relevant path conditions are en-

coded in the constraint representation. For instance, no branch con-

dition in Figure 1 can affect the value of dz, i.e., dz = 2×dx−(dy+d)

holds on all eight execution paths. The above constraint (4) effec-

tively captures this fact, indicating that Γ(dz) is dependent on Γ(dx),
Γ(dy), and Γ(d) without distinguishing among different execution
paths, which are irrelevant in this case.

Generating Bound Evidence. Although we have shown how

to generate constraints for Γ according to the data dependence

relations on G, the presence of under-constrained variables in the

analysis can still lead to imprecision, as illustrated in § 1. The

key challenge is to infer additional information for these under-

constrained variables when solely relying on the data dependence

relations gives imprecise results.

As motivated in § 1, a bound checking statement if (𝑣1 𝑐𝑚𝑝 𝑣2)
reveals programmer’s beliefs about the values of the checked vari-

ables: a comparison between 𝑣1 and 𝑣2 suggests that the program-
mer may believe that 𝑣1 = 𝑣2, which we call a bound evidence. Bound
evidence can aid in providing additional information for the under-

constrained variables, e.g., it is used to infer 0 ∈ Γ(dz) as discussed
in § 3. Therefore, we propose to generate additional constraints on

Γ for bound evidence. Specifically, Rule bound-evi of Figure 5 will
unify the guarded symbolic value sets for the compared variables

𝑣1 and 𝑣2 to Γ(𝑣1) �∪ Γ(𝑣2). These additional evidence constraints,
together with the data dependence constraints generated before

will be resolved later to propagate evidence according to the data

dependence relations.

Example 4.3. In our motivating example of Figure 1, the two

bound checking statements at Line 15 and Line 21 will cause the

analysis to generate bound evidence. Applying Rule bound-evi, we

obtain the additional constraints:

Γ(dx), Γ(dy) ←↪ Γ(dx) �∪ Γ(dy) (6)

Γ(dx), Γ(d) ←↪ Γ(dx) �∪ Γ(d) (7)

Γ(dy), Γ(d) ←↪ Γ(dy) �∪ Γ(d) (8)

We know from the above constraints that the symbolic values for dx,

dy, and d are unified. As we will see later, this information refines

the constraints generated in Example 4.2 and helps us to infer the

evidence for dz to be zero.

On-demandConstraints Generation. In Algorithm 1, the pro-

cedure 𝑔𝑒𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 generates a system of constraints 𝐶𝑜𝑛𝑠 (Γ)
on-demand from G and a given node 𝑛. Specifically, we perform a

backward depth-first traversal on G starting from 𝑛 (Line 9). This
effectively computes a slice of G affecting the value of 𝑛. Following
the reverse node order of this DFS traversal, we collect constraints

using the rules in Figure 5 (Lines 10-12) and finally return these

constraints at Line 13. The order ensures that the rules for 𝑣1 come
before 𝑣2 if 𝑣1 is used to define 𝑣2’s value, thus speeding up the
convergence of the solving process introduced later, similar to data

flow analysis [2].

4.2.2 Constraint Resolution. Given a set of constraints 𝐶𝑜𝑛𝑠 (Γ),
the procedure 𝑠𝑜𝑙𝑣𝑒 in Algorithm 1 computes its solution, which

is a mapping Γ from nodes to guarded symbolic value sets. At a

high level, Γ starts with an initial state mapping any node to the
empty set (Line 15) and is iteratively updated according to the

constraints𝐶𝑜𝑛𝑠 (Γ). Notice that each constraint in𝐶𝑜𝑛𝑠 (Γ) is built
from the rules in Figure 5 and, thus, has the syntactic form Γ(𝑜) ←↪
𝑆 . For updating Γ(𝑜), we calculate the result of the set operation
encoded by 𝑆 , denoted by 𝑒𝑣𝑎𝑙 (𝑆, Γ) at Line 18. The calculation
result is combined with the old value Γ(𝑜) using the �∪ operator

(c.f. Definition 4.3) to produce the updated value set 𝑆 ′ for 𝑜 (Lines
18-19), since←↪ represents a weak update. The algorithm finishes

when no constraint causes an update to Γ anymore (Lines 16-21).

Example 4.4. For the constraints (4)-(5) shown in Example 4.2,

Lines 18-19 of the 𝑠𝑜𝑙𝑣𝑒 procedure compute the guarded symbolic

1724

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang

value set for dz as follows:

Γ(dz) ={(d̂z, 𝑡𝑟𝑢𝑒)} �∪

{(2, 𝑡𝑟𝑢𝑒)} ×̃ {(d̂x, 𝑡𝑟𝑢𝑒)} −̃ ({(d̂y, 𝑡𝑟𝑢𝑒)} +̃ {(d̂, 𝑡𝑟𝑢𝑒)})

={(2 × d̂x − (d̂y + d̂), 𝑡𝑟𝑢𝑒), (d̂z, 𝑡𝑟𝑢𝑒)}

Constraints (6)-(8) from Example 4.3 further refines the result to:

Γ(dz) = {(2 × 𝑎 − (𝑏 + 𝑐), 𝑡𝑟𝑢𝑒), (d̂z, 𝑡𝑟𝑢𝑒) | 𝑎, 𝑏, 𝑐 ∈ {dx, dy, d}}

Since (0, 𝑡𝑟𝑢𝑒) ∈ Γ(dz), we have found the evidence for the variable
dz to trigger divide-by-zero.

The above example shows the advantage of generating and re-

solving constraints from G according to the data dependence rela-

tions. Our constraints are compact, i.e., resolving the constraints

does not require reasoning about the irrelevant control flow paths.

In contrast, an exhaustive approach such as symbolic execution

needs to enumerate all eight paths in the function move of Figure 1,
just to figure out the guarded symbolic value set for dz:

Path dz

𝑐1 = 𝑑𝑥 ≥ 𝑑𝑦 ∧ 𝑑𝑥 ≥ 𝑑 ∧ 𝑑𝑦 ≥ 𝑑 2×𝑑𝑥 − (𝑑𝑦 + 𝑑)
· · · · · ·

𝑐8 = 𝑑𝑥 < 𝑑𝑦 ∧ 𝑑𝑥 < 𝑑 ∧ 𝑑𝑦 < 𝑑 2×𝑑𝑥 − (𝑑𝑦 + 𝑑)

The constraints built by the exhaustive path enumeration would

have been overly redundant:

Γ(dz) ←↪ 𝑡𝑟𝑎𝑛𝑠 ([(Γ(2) ×̃ Γ(dx) −̃ (Γ(dy) +̃ Γ(d)), 𝑐1)])

· · ·

Γ(dz) ←↪ 𝑡𝑟𝑎𝑛𝑠 ([(Γ(2) ×̃ Γ(dx) −̃ (Γ(dy) +̃ Γ(d)), 𝑐8)])

Since 𝑐1 ∨ · · · ∨ 𝑐8 ≡ 𝑡𝑟𝑢𝑒 , the above constraints are equivalent to
our generated constraint (4) in Example 4.2.

One noteworthy point about the 𝑠𝑜𝑙𝑣𝑒 procedure is that it can pro-
duce a value set 𝑆 ′ with a large size. To keep the analysis tractable,
we join the additional values for variable 𝑣 to its sound abstraction
𝑣 when the size of Γ(𝑣) has reached a predefined threshold. In this
work, we choose the threshold to be 20 by experience.

4.3 Divide-by-Zero Bug Detection

Our system, Wit, for precise divide-by-zero detection is shown

in Algorithm 2. Specifically, given a program 𝑃 , a divisor variable
𝑣 , and the location 𝑙 of the division instruction, Algorithm 2 re-

turns whether a divide-by-zero bug may happen at 𝑙 . We first call

𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 of Algorithm 1 using 𝑃 and 𝑣 as arguments to ob-
tain the guarded symbolic value set 𝑆 for 𝑣 (Line 2). Divide-by-zero
detection is achieved by enumerating each guarded value (𝑣𝑎, 𝑐𝑜𝑛𝑑)
in 𝑆 to check for the bug condition.
To report a divide-by-zero bug, we adhere to the criteria C1* -

C2* mentioned in § 1. First, according to C1*, the conjunction of

the path condition and the error condition should be satisfiable.

In Algorithm 2, the path condition is denoted by 𝑝𝑐 , consisting
of the condition 𝐶 for reaching the division instruction and the

guarding condition 𝑐𝑜𝑛𝑑 for the checked value 𝑣𝑎 (Line 5). The

error condition is simply 𝑣𝑎 = 0. Therefore, Line 6 checks the

satisfiability of 𝑝𝑐 ∧ 𝑣𝑎 = 0 for determining C1*. Second, according

to C2*, the concerned symbolic value 𝑣𝑎 should have the affirmative
evidence to be zero:

Algorithm 2: Divide-by-zero bug detection by Wit.

Input: A program 𝑃 .
Input: A divisor variable 𝑣 and the location 𝑙 for the

division instruction.

Output:Whether divide-by-zero may happen at 𝑙
1 def decideBug(P, 𝑣 , 𝑙):
2 𝑆 ← symbolicAnalysis(𝑃, 𝑣)

3 𝐶 ← path condition for reaching 𝑙

4 foreach (𝑣𝑎, 𝑐𝑜𝑛𝑑) ∈ 𝑆 do
5 𝑝𝑐 ← 𝐶 ∧ 𝑐𝑜𝑛𝑑

6 if 𝑆𝐴𝑇 (𝑝𝑐 ∧ 𝑣𝑎 = 0) then

7 if 𝑡𝑎𝑖𝑛𝑡𝑒𝑑 (𝑣𝑎) then
8 return 𝑡𝑟𝑢𝑒

9 else if 𝑈𝑁𝑆𝐴𝑇 (𝑝𝑐 ∧ 𝑣𝑎 ≠ 0) then

10 return 𝑡𝑟𝑢𝑒

11 end

12 return 𝑓 𝑎𝑙𝑠𝑒

taint-evi
𝑣 ∈ 𝑉𝑡 , 𝑣

𝑐𝑜𝑛𝑑
−−−−→∗ 𝑣

′, 𝑆𝐴𝑇 (𝑐𝑜𝑛𝑑)

𝑡𝑎𝑖𝑛𝑡𝑒𝑑 (𝑣 ′) = 𝑡𝑟𝑢𝑒

Figure 6: Criteria for propagating the tainted flag.

• Source evidence: If 𝑣𝑎 comes from the tainted input, we can

report a divide-by-zero bug (Lines 7-8). For taint detection,

we can apply any existing taint analysis to compute the

tainted nodes on G. Specifically, we use Rule taint-evi in

Figure 6: a node is tainted if it is data dependent on the

tainted input and the condition of the value flow is satisfiable.

• Bound evidence: Otherwise, we report a divide-by-zero bug

if 𝑣𝑎 must be zero under the condition 𝑝𝑐 (Lines 9-10). This
can happen for two reasons: either the symbolic value 𝑣𝑎
is literally constant zero, or it is forced to be zero by the

condition 𝑝𝑐 (e.g., when 𝑝𝑐 = −1 < 𝑣𝑎 < 1). Recall that

the bound evidence is encoded as additional constraints in

𝐶𝑜𝑛𝑠 (Γ) during the analysis and can implicitly enforce 𝑣𝑎 to
be zero, it is thus more likely to satisfy the must query.

For the program in Figure 1, Algorithm 1 deduces that (0, 𝑡𝑟𝑢𝑒) ∈
Γ(dz) as illustrated by Example 4.4. Thus, Lines 9-10 of Algorithm 2

report a divide-by-zero bug for the variable dz.

5 EVALUATION

We implement Wit based on LLVM [20]. Similar to previous works

on static bug detection [3, 29, 30, 32], we unroll each loop once in

control flow graphs and call graphs. Our experimental evaluation

is designed to answer the following research questions:

• RQ3: The effectiveness of Wit. Particularly,

– RQ3.1: How does our intuition of evidence-based reason-

ing affect the analysis precision?

– RQ3.2: Compared to the conventional evidence agnostic

method, how many bugs are missed by Wit? What are

the reasons for missing them?

– RQ3.3: Can Wit detect real-world divide-by-zero bugs?

1725

Precise Divide-By-Zero Detection with Affirmative Evidence ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Selected projects for evaluation.

Project Loc #Div/KLoC

masscan 34k 5.4

goaccess 53k 1.1

libuv 59k 0.8

redis 131k 5.0

git 226k 4.5

vim 354k 1.8

ImageMagick 382k 6.6

openssl 465k 4.1

systemd 600k 5.0

php 1,012k 1.3

gdb 1,932k 1.6

Linux kernel 15,164k 2.1

• RQ4: How doesWit perform compared with existing divide-

by-zero detectors?

5.1 Experimental Setup

Subjects. We have selected 12 open source C/C++ projects to

perform the evaluation, shown in Table 2. Our selection criteria are

as follows:

• Popularity: The selected projects are popular (e.g., have at

least 10K stars on GitHub) and actively maintained.

• Generality: The projects cover different sizes (ranging from

tens of thousands to tens of millions of lines of code) and

functionalities (including operating system, image process-

ing, database system, network library, etc.)

• Intensive use of division instruction: The projects perform

division operation intensively, e.g., they contain 3.3 division

instructions every 1k lines of code on average.

Environment. The experiments were performed on a com-

puter with two 20 core processors Intel(R) Xeon(R) CPU E5-2698

v4@2.20GHz and 256GB physical memory running Ubuntu-16.04.

Open Data. The results of our empirical study and confirmed

bugs detected by Wit are available at the link: https://github.com/

yiyuaner/ICSE-2022-Wit-data.

5.2 Effectiveness of Divide-by-Zero Detection

To study the effectiveness of the evidence-based symbolic analysis

algorithm, we compare Wit with its variant Wit−. Wit− is the

evidence agnostic path-sensitive method. In Wit−, we remove Rule

bound-evi from Figure 5 and report an error whenever the condition

is satisfiable, i.e., whenever the check at Line 6 of Algorithm 2 passes.

All other aspects of Wit− are the same as Wit.

Table 3 shows the experiment result. We compare the total num-

ber of bug reports, the false positive rate, and the analysis time for

Wit and Wit−. For each variant on a specific project, we examine

its list of output reports and stop if the number of false positives

has exceeded 200 (when this happens, we use “NA” to denote its

false positive rate). Wit effectively reports 95 divide-by-zero bugs

(72 of them are true positives) among 12 real-world applications,

Table 3: Divide-by-zero detection on real-world projects.

Wit− represents a variant of Wit unaware of evidence.

Project
of reports FP rate Analysis time

Wit Wit− Wit Wit− Wit Wit−

masscan 3 10 30% 80% 4m24s 6m

goaccess 2 15 0 80% 1m38s 1m33s

libuv 1 3 0 67% 1m32s 1m29s

redis 1 20 0 95% 23m12s 23m9s

git 10 29 40% 79% 38m3s 34m34s

vim 4 32 25% 88% 109m55s 109m12s

ImageMagick 5 47 20% 89% 196m39s 189m10s

openssl 2 18 0 89% 31m55s 31m48s

systemd 5 20 60% 90% 202m8s 183m21s

php 4 17 50% 88% 104m38s 94m21s

gdb 5 213 20% 96% 248m28s 299m1s

Linux kernel 53 2839 19% NA 425m35s 452m12s

Table 4: Distribution of true positives reported by Wit (the

column “Total”) into Class Src and Class Bd. The column

“Missed” shows the number of true positives reported by

Wit− but missed by Wit.

Project Total Src Bd Missed

masscan 2 2 0 0

goaccess 2 2 0 1

libuv 1 0 1 0

redis 1 1 0 0

git 6 4 2 0

vim 3 1 2 1

ImageMagick 4 3 2 1

openssl 2 1 1 0

systemd 2 1 1 0

php 2 0 2 0

gdb 4 3 1 4

Linux kernel 43 36 10 NA

Table 5: Divide-by-zero bugs confirmed by developers.

git Linux gdb
Image

Magick
goaccess libuv openssl vim systemd

1 4 1 2 2 1 1 1 1

with a low average false positive rate of 22%. In contrast, Wit− has

an average false positive rate of 86%.

Answer to RQ3.1: The precision of Wit greatly outperforms

its no-evidence counterpart, proving the significance of affir-

mative evidence for precise divide-by-zero detection.

Table 4 shows the distribution of true positives reported by Wit

and the number of true positives detected by Wit− but missed by

Wit. From the table, we conclude that both source and bound evi-

dence are useful in precisely detecting divide-by-zero bugs. Besides,

Wit misses 12% of the true positives detected by Wit− on average,

1726

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang

1 int blk_mq_map_queues(blk_mq_queue_map ∗qmap) {
2 unsigned ∗map = qmap−>mq_map;
3 unsigned nr_queues = qmap−>nr_queues;
4 unsigned cpu, first_sibling;
5 unsigned q = 0;
6 for_each_possible_cpu(cpu) {
7 if (q < nr_queues) {
8 map[cpu] = queue_index(qmap, nr_queues, q++);
9 } else {
10 if (first_sibling == cpu)
11 map[cpu] = queue_index(qmap, nr_queues, q++);
12 ...
13 }
14 }
15 }
16 int queue_index(blk_mq_queue_map ∗qmap,
17 unsigned nr_queues, const int q)
18 {
19 return qmap−>queue_offset + (q % nr_queues);
20 }

Figure 7: A confirmed divide-by-zero bug in Linux kernel.

which is relatively low considering its drastic precision improve-

ment. Most of the missed bugs are due to the incomplete modeling

of the taint sources, i.e., the analysis fails to identify certain APIs

as the taint sources, thus missing the source evidence and fails

to report certain bugs. Wit currently models some common taint

sources from the standard C library but each target program may

contain its specific taint sources that we do not know beforehand.

Answer to RQ3.2: Wit only misses a small proportion of bugs

compared with its no-evidence counterpart Wit−, mainly

due to its incomplete modeling of the taint sources.

We report the detected true positives and 14 bugs have been

confirmed by the developers, as shown in Table 5. Figure 7 shows a

real divide-by-zero bug Wit discovered from the Linux kernel. The

function queue_index uses nr_queues as a divisor, which comes
from the unknown input argument qmap->nr_queues. Since the
analysis generates a bound evidence q=nr_queues from Line 7 of

Figure 7 and q is assigned zero value in Line 5, it deduces that

nr_queues may be zero and reports a divide-by-zero bug.

Answer to RQ3.3: Wit is capable of detecting real divide-by-

zero bugs: it has found 72 divide-by-zero bugs, 14 of which

have been confirmed by the developers.

5.3 Comparison with Existing Detectors

We compare Wit with three competing tools, namely Crab [18],

Infer [5], and Clang Static Analyzer (CSA). Crab adopts numeri-

cal abstract interpretation, Infer takes the bi-abduction theorem

proving technique, and CSA performs local symbolic execution.

Comparing with Crab. We instrument the program by assert-

ing the divisor variable to be non-zero and use Crab to verify the

inserted assertions with the interval domain [8] 2. When Crab fails

to verify the safety of a division instruction, it emits a warning

as a potential divide-by-zero bug. We cannot directly evaluate the

2We have tried more expressive domains. The zone domain [26] fails on 6 of the 12
projects due to time out or memory out in a 12 hours experiment, while the octagon
domain [25] fails on 8 of the 12 projects.

Table 6: Analysis results for Crab.

Project #Warnings Warning ratio Time

massscan 74 66% 1m43s

goaccess 9 53% 0m34s

libuv 6 27% 0m15s

redis 542 36% 200m30s

git 128 58% 175m49s

vim 174 42% 111m29s

ImageMagick 102 27% 389m49s

openssl 111 60% 5m26s

systemd 925 43% 68m41s

php 101 13% 141m30s

gdb 165 57% 20m10s

Linux kernel OOM OOM OOM

Table 7: Divide-by-zero detection results for Infer and CSA.

NA denotes the false positive rate when no bug is reported.

Project
of reports FP rate Analysis time

Infer CSA Infer CSA Infer CSA

masscan 0 0 NA NA 1m4s 4m8s

goaccess 1 0 0 NA 3m27s 10m59s

libuv 0 0 NA NA 3m13s 4m47s

redis 4 1 50% 0 8m47s 15m37s

git 7 0 100% NA 8m55s 15min5s

vim 0 2 NA 50% 24m21s 17m47s

ImageMagick 7 2 71% 100% 16m7s 25m24s

openssl 0 1 NA 0 49m2s 9m43s

systemd 1 0 100% NA 31m21s 11m45s

php 0 2 NA 100% 20m23s 57m28s

gdb 0 6 NA 83% 41m59s 81m17s

Linux kernel Crash 63 Crash 51% Crash 281m4s

precision of Crab because it currently does not provide an interface

to map its verification result to source code location for reports ex-

amination. Instead, we record the number of warnings it generates

and the ratio of its generated warnings over the total number of

checked assertions. Intuitively, a tool reporting warnings too often

(e.g., consider a tool that reports a bug for half of the division in-

structions in the program) maybe unusable in the industrial setting

[4, 7]. However, it should be noted that this only loosely relates

to the precision and our comparison has the caveat of possibly

underestimating the effectiveness of Crab.

The analysis result for Crab is shown in Table 6. On average,

Crab produces 212 bug reports per project, failing to verify 44%

of the checked assertions on average. Such a large number of bug

reports will impede the user from adopting the tool in divide-by-

zero detection. In contrast, Wit reports 95 divide-by-zero bugs for

the 12 projects in total, with an average false positive rate of 22%.

Comparing with Infer and CSA. Table 7 shows the results of

Infer and CSA. From the data, we conclude that:

(1) Infer generates zero reports on six projects and fails on one

project, while CSA generates zero reports on five projects.

Thus, they both have missed many true positives detected

1727

Precise Divide-By-Zero Detection with Affirmative Evidence ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

by Wit. The relatively low recall is due to practical con-

siderations for the tools, such as the limited capability for

detecting cross-file bugs and inherent approximations in

their algorithms.

(2) Over the projects where the number of bug reports is non-

zero, Infer has an average false positive rate of 64%, and CSA

has an average false positive rate of 55%.

(3) Wit runs slower than Infer and CSA in projects with large

sizes. This is mainly because we utilize SMT solving to be

fully path-sensitive. However, Wit finishes within 7.5 hours

in all projects, which is an acceptable performance given its

precision improvement.

Answer to RQ4: compared with existing divide-by-zero detec-

tors, Wit is significantly more precise and sometimes even

detects more divide-by-zero bugs.

6 RELATEDWORK

Abstract Interpretation. In abstract interpretation [8], many

abstract domains have been designed to verify numerical proper-

ties, such as the octagon [25] and polyhedra domain [9]. Recent

works have tried to balance between the precision and cost of ab-

stract interpretation. Oh et al. [27] utilize an impact pre-analysis

to apply context-sensitivity selectively, while LAIT [19] identifies

and removes redundant constraints in numerical analysis to im-

prove speed without hurting precision too much. Mansur et al.

[24] propose to automatically tailor the configurations of abstract

interpreters according to the code under analysis and resource con-

straints. Our work improves the precision from a different angle by

finding the affirmative evidence for triggering the bug.

Symbolic Analysis for Numerical Bug Detection. To the

best of our knowledge, we are the first to design a symbolic analysis

algorithm targeting the problem of divide-by-zero detection. Pre-

vious works mainly focus on applying symbolic analysis in static

buffer overflow detection and integer overflow detection. Li et al.

[22] adopt a simple symbolic value representation and filter out

irrelevant dependencies during the symbolic value computation.

Marple [21] performs on-demand backward symbolic execution,

starting from a buffer access statement and categorizing program

paths to prioritize bug reports. SIFT [23] utilizes precondition in-

ference in computing sound input filters to nullify integer overflow

errors associated with critical program sites such as memory alloca-

tion or block copy sites. These works adopt path-sensitive symbolic

domains similar to ours but do not discuss the imprecision problem

brought by the under-constrained variables or how to address it,

which is the key contribution of this work.

Reasoning About Programmer’s Beliefs. Engler et al. [16]

first propose to infer from code about the programmers’ beliefs

and detect potential bugs by spotting inconsistency of such beliefs.

Dillig et al. [12] formalize the intuition of [16] in a framework for

detecting semantic inconsistency, where they design a null pointer

dereference checker. The belief propagation is carried out using

type inference: e.g., a pointer inferred with a “possibly NULL” type

should not be used in a context that requires a “not NULL” type.

However, divide-by-zero detection requires an infinite analysis

domain and existing approaches for type-state properties are not

applicable.

Inspired by the success of utilizing beliefs in previous works on

static analysis, we firstly introduce the use of beliefs to address

the imprecision problem brought by under-constrained variables in

divide-by-zero detection. We generalize the idea of “programmer’s

belief” in analyzing numerical computation by generating bound

evidence from the bound checking statements in the program. Al-

though we do not directly infer inconsistency, the evidence we gen-

erate serves as additional constraints, which greatly improves the

overall precision of the analysis. The imprecision problem caused

by under-constrained variables in static analysis is observed in [13],

where they tackle the problem with constraints rewriting. Since

they do not consider numerical property in the constraints and

assume a finite analysis domain, their approach is not applicable in

our scenario.

7 CONCLUSION

We have proposed Wit, a static analysis method to find divide-by-

zero bugs with affirmative evidence. The analysis looks for affir-

mative evidence, namely source evidence and bound evidence, to

find divide-by-zero bugs with high confidence. It has been shown

effective in detecting divide-by-zero bugs precisely in large-scale

real-world software.

8 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.

The authors are supported by the RGC16206517, ITS/440/18FP and

PRP/004/21FX grants from the Hong Kong Research Grant Coun-

cil and the Innovation and Technology Commission, Ant Group,

and the donations from Microsoft and Huawei. Peisen Yao is the

corresponding author.

REFERENCES
[1] [n.d.]. The Economics of Static Analysis Tool Usage. https://blogs.grammatech.

com/the-economics-static-analysis-tool-usage. Online; accessed 12-August-
2021.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. https://www.worldcat.org/oclc/12285707

[3] Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and Precise Extended
Static Checking. In Proceedings of the 30th International Conference on Software
Engineering (Leipzig, Germany) (ICSE ’08). Association for Computing Machinery,
New York, NY, USA, 211–220. https://doi.org/10.1145/1368088.1368118

[4] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[5] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. 2009.
Compositional Shape Analysis by Means of Bi-Abduction. In Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Savannah, GA, USA) (POPL ’09). Association for Computing Machin-
ery, New York, NY, USA, 289–300. https://doi.org/10.1145/1480881.1480917

[6] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical Memory
Leak Detection Using Guarded Value-Flow Analysis. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(San Diego, California, USA) (PLDI ’07). Association for Computing Machinery,
New York, NY, USA, 480–491. https://doi.org/10.1145/1250734.1250789

[7] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
332–343. https://doi.org/10.1145/2970276.2970347

1728

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang

[8] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (Los Angeles, California) (POPL
’77). Association for Computing Machinery, New York, NY, USA, 238–252.
https://doi.org/10.1145/512950.512973

[9] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear
Restraints among Variables of a Program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Tucson, Arizona)
(POPL ’78). Association for Computing Machinery, New York, NY, USA, 84–96.
https://doi.org/10.1145/512760.512770

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACMTrans. Program. Lang. Syst. 13, 4 (1991), 451–490.
https://doi.org/10.1145/115372.115320

[11] Barthélémy Dagenais and Laurie Hendren. 2008. Enabling Static Analysis for
Partial Java Programs. In Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications (Nashville, TN,
USA) (OOPSLA ’08). Association for Computing Machinery, New York, NY, USA,
313–328. https://doi.org/10.1145/1449764.1449790

[12] Isil Dillig, Thomas Dillig, and Alex Aiken. 2007. Static Error Detection Using
Semantic Inconsistency Inference. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Diego,
California, USA) (PLDI ’07). Association for Computing Machinery, New York,
NY, USA, 435–445. https://doi.org/10.1145/1250734.1250784

[13] Isil Dillig, Thomas Dillig, and Alex Aiken. 2010. Reasoning about the Unknown
in Static Analysis. Commun. ACM 53, 8 (Aug. 2010), 115–123. https://doi.org/10.
1145/1787234.1787259

[14] Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated Error Diagnosis
Using Abductive Inference. SIGPLAN Not. 47, 6 (June 2012), 181–192. https:
//doi.org/10.1145/2345156.2254087

[15] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),
62–70. https://doi.org/10.1145/3338112

[16] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (Banff, Alberta, Canada) (SOSP ’01). Association for Computing
Machinery, New York, NY, USA, 57–72. https://doi.org/10.1145/502034.502041

[17] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.24041

[18] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
2015. The SeaHorn Verification Framework. In Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening
and Corina S. Pasareanu (Eds.). Springer, 343–361. https://doi.org/10.1007/978-
3-319-21690-4_20

[19] Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2020. Learn-
ing Fast and Precise Numerical Analysis. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation (London,
UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,
1112–1127. https://doi.org/10.1145/3385412.3386016

[20] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong
program analysis amp; transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/
CGO.2004.1281665

[21] Wei Le and Mary Lou Soffa. 2008. Marple: A Demand-Driven Path-Sensitive
Buffer Overflow Detector. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Atlanta, Georgia) (SIGSOFT
’08/FSE-16). Association for Computing Machinery, New York, NY, USA, 272–282.
https://doi.org/10.1145/1453101.1453137

[22] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2010. Practical and Effective
Symbolic Analysis for Buffer Overflow Detection. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Santa Fe, New Mexico, USA) (FSE ’10). Association for Computing Machinery,
New York, NY, USA, 317–326. https://doi.org/10.1145/1882291.1882338

[23] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. 2014.
Sound Input Filter Generation for Integer Overflow Errors. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA) (POPL ’14). Association for Computing Machinery,
New York, NY, USA, 439–452. https://doi.org/10.1145/2535838.2535888

[24] MuhammadNumairMansur, BenjaminMariano,Maria Christakis, Jorge A. Navas,
and Valentin Wüstholz. 2021. Automatically Tailoring Abstract Interpretation
to Custom Usage Scenarios. In Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino
(Eds.). Springer, 777–800. https://doi.org/10.1007/978-3-030-81688-9_36

[25] Antoine Miné. 2006. The Octagon Abstract Domain. Higher Order Symbol.
Comput. 19, 1 (March 2006), 31–100. https://doi.org/10.1007/s10990-006-8609-1

[26] Antoine Miné. 2007. A New Numerical Abstract Domain Based on Difference-
Bound Matrices. CoRR abs/cs/0703073. arXiv:cs/0703073 http://arxiv.org/abs/cs/
0703073

[27] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014.
Selective Context-Sensitivity Guided by Impact Pre-Analysis. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Ma-
chinery, New York, NY, USA, 475–484. https://doi.org/10.1145/2594291.2594318

[28] David A. Ramos and Dawson Engler. 2015. Under-Constrained Symbolic Ex-
ecution: Correctness Checking for Real Code. In 24th USENIX Security Sym-
posium (USENIX Security 15). USENIX Association, Washington, D.C., 49–
64. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/ramos

[29] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles
Zhang. 2018. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Mil-
lion Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 693–706.
https://doi.org/10.1145/3192366.3192418

[30] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static Memory Leak Detection Us-
ing Full-Sparse Value-Flow Analysis. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA
2012). Association for Computing Machinery, New York, NY, USA, 254–264.
https://doi.org/10.1145/2338965.2336784

[31] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: Effective Taint Analysis of Web Applications. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Dublin, Ireland) (PLDI ’09). Association for Computing Machinery, New York,
NY, USA, 87–97. https://doi.org/10.1145/1542476.1542486

[32] Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Using Boolean
Satisfiability. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Long Beach, California, USA) (POPL
’05). Association for Computing Machinery, New York, NY, USA, 351–363.
https://doi.org/10.1145/1040305.1040334

1729

