comp 180

Lecture 21

/

Qutline of Lecture

 Floating Point Addition

 Floating Point Multiplication

\

/

HKUST 1

Computer Science

comp 180 Lecture 21

" |EEE 754 floating-point stan- -
dard

In order to pack more bits into the significant,
IEEE 754 makes the leading 1 bit of normalized
binary numbers implicit.

* |In this casethe significant will be 24 bits long in sin-
gle precision(implied 1 and 23-bit fraction), and 53
bits long in double precision (1 + 52).

* |n this case, numbers ae represented asdllows:

(-1)° x (1 + significant) x 2F

 The bits of the significant representthe fraction
betweenO and 1 and E specifiesthe value in the
exponent field.

 |If the bits in the significant from left to right are sl,
s2, ..., then the slue is:

(-(1)Sx (L+(s1x2)+ (s2x22) +(s2%x23)+...)x2F

N /

HKUST 2 Computer Science

comp 180 L ecture 21

Example

s ™

Show the IEEE 754 representation of the number -
0.751n single precision and double precision.

Answer

- 0.75ten = - 0.1140
In scientific notation the value is -0.11,,, X 2° and in normalized
scientific notation it is -1.14,, X 2°L.
The general representation for single precision is:
(-1)° x (1 + significant) x 2(exponent-127)
Thus -1.14,, x 27 is represented as follows:

(-1)S x (1 + .1000 0000 0000 0000 0000 000,,,,) x 2(126 - 127)

1 01111110 1000 0000 0000 0000 0000 000 = 32 bits

The double precision representation is:
(-1)° x (1 +.1000 0000 0000 0000 000y,,) x 2{1022 - 1023)

1 01111111110 0000000000000O0 ... 000 = 64 bits

N /

HKUST 3 Computer Science

comp 180 Lecture 21

/

Example

What decimal number is represented by this verd?
1 10000001 010000000000 ... 0000 = 32 hits

Answer

The sign bit = 1, the exponentfield contains 129, and

the significant field contains 1 x Z = 0.25.
Using the equation:

(-1)S x (1 + significant) x 2(exponent - 127)
= (-1)! x (1 + 0.25) x 2(129-127)
= (-1)! x 1.25 x 2
=-1.25%x4
=-5.0

\

/

HKUST

4 Computer Science

comp 180 Lecture 21

‘Basic Floating point Additio

N

« Add 2.01* 10 to0 3.11 * 16°
- Adjust exponentsothat 2.01* 10°% becomes.00201*
107
- Then add 0.00201 to 3.11 twfm 3.11201

- Result is 3.11201 * 1¥

- Normalization may be neededif number is in IEEE
standard format. (Recall hidden 1.)

- Also needspecialhandling if result= ZERO or is too
small/ too largeto represent.(Theseare somefloating
point representation complexities to be discussed
later)

N /

HKUST 5 Computer Science

comp 180 L ecture 21

. Floating Point Addition h

« When we add numbers, for example 9.999 x 101 +

1.610 x 1071, in scientific notation, we typically fol-
low the steps below:

[We must align the decimal point of the number with the
smaller exponent - we make 1.610 x 107! into 0.016 x
101

[1 Then, we add the significants of the two numbers
together (e.g., 9.999 x 10! + 0.016 x 10' = 10.015 x
101).

[0 We normalize the result of the addition - 10.015 x 10%
becomes 1.0015 x 102,

[J The significant can only be represented using a fixed
number of digits - thus, we must round the result so that

it can fit into those digits (e.g., 1.002 x 107) if we have
only 4 digits to represent the significant

N /

HKUST 6 Computer Science

comp 180 Lecture?2l

. Floating P oint Ad dition -

N /

HKUST 7 Computer Science

comp 180

L ecture 21

. Floating P oint Har dware

\

Sign | Exponent | Significand Sign Exponent | Significand
Compare Exponents|
Exponent
diff erence
@b l RS R
* Shift smaller
number right
Contr ol Shift right N 9
_//
_ Add
Big ALU
I
C0 1> »zo >
Yy
Increment or Shift left
- Decrement or right
V Normaliz e
Rounding Har dware
Y | Y Round
Sign Exponent Significand

/

HKUST

Computer Science

comp 180 L ecture 21

s ™

Example

Add 0.5 to -0.4375 using the IEEE 754 floating point.

Answer

Change the two numbers in normalized scientific notation.

0.5ten = 1.000y,, x 271

-0.4375, = -1.1104,, X 272

Stepl: The significant of the smaller number is shifted right until
its exponent matches the larger number:

-1.1104,0 X 272 = -0.11140 X 2°¢
Step 2: Add the significants
1.0004,0 X 21 + (-0.1114,0 x 271) = 0.001 x 271

Step 3: Normalize the sum, and check the overflow and under-
flow

0.001y,0 X 271 = 1.0004,,, X 27

N /

HKUST 9 Computer Science

comp 180 L ecture 21

/127 > -4 > -126, thus there is no overflow or underflow. \
Step 4: Round the sum (assume we have 4 bits of precision)
1.000p,, X 27

The sum fits in 4 bits, so there is no need for rounding.

1.000;,. X 274 =0.0001,, = 0.0625
two two ten

Using the IEEE 754 format, 1.000,,, x 24 would be repre-

sented as:

0 01111011 0000QO 0000

N /

HKUST 10 Computer Science

comp 180

L ecture 21

/

\

/

Sign | Exponent| Significant Sign |Exponent| Significant
|
R
Small
ALU
Exponent
diff erence
Contr ol Shift right
' '
Big ALU
| |
I ' t v
.| Increment or : :
decrement | Shift left or right
|
Y
- .
Rounding har dware
v '
Sign Exponent| Significant
HKUST 11 Computer Science

comp 180 Lecture 21

/Floating-Point Multiplication

\

try to
10°):

Step 1.

Step 2:

Step 3:

Step 4.

Step 5:
N

Given two decimal numbers in scientific notation, we

multiply them (e.g, 1.11Qg,, x 10'% x 9.20Q,, x

We find the exponent of the product by adding the expo-
nents of the products together

New exponent =10 + (-5) =5
We perform the multiplication of the significants

New significant: 1.110 x 9.200 = 10.21200

The product is: 10.212 x 10°

We normalize the product.

10.212 x 10° = 1.0212 x 106

We round the product (assume the significant is only 4
digits)

New products is: 1.021 x 10°

We find the sign of the product - it is positive unless the/

HKUST 12 Computer Science

comp 180

L ecture 21

/

signs of the two numbers are different.

+1.021 x 10°

\

/

HKUST

13

Computer Science

comp 180 Lecture?2l

/Floating-P oint Multiplication

\

N /

HKUST 14 Computer Science

comp 180 L ecture 21

Example

s ™

Multiply 0.5 and -0.4375 using floating point representation

Answer

0.5 = 1.000,, x 21

-0.4375 = -1.1104,,0 % 272

Step 1: Add the exponents
New exponent= -1 + (-2) = -3
Step 2: Multiply the significants

New significant = 1.000y,,, %X 1.110,, = 1.1100004,,

New product = 1.110;,,, X 273 (significant represented
by 4 bits)

Step 3: Normalize the product and Check for overflow or under-
flow

N /

HKUST 15 Computer Science

comp 180 L ecture 21

/ The product is normalized \
127 = -3 = -126, thus there is no overflow or underflow

Step 4: Round the product
Product = 1.110p,, X 27
Step 5: The sign of the product is (-)
Product = -1.1104,,, x 27> = -0.21875,,

Using the IEEE floating point representation, the result is:

101111100 11000 000040

N /

HKUST 16 Computer Science

comp 180 Lecture 21

/Floating Point Complexities

\

Operations are somewhat more complicated (See
test)

 |n addition to overflow we can hae underflav

e Accuracy can be a big poblem

- rounding errors

- positive divided by zero yields “Not a Number” (NaN)

e Implementing the standard can be tricky
« Not using the standard can be wrse

- see text br description of 80 x 86 and pentium hg!

« The MIPS processorsupports the IEEE singleand
double precision brmats:

- Addition

add.s and add.d
- Subtraction

sub.s and sub.d

N /

HKUST 17 Computer Science

comp 180

L ecture 21

/

\

/

HKUST

18

Computer Science

