Lecture 11 Supplementary note: Ray-Object Intersections

CS341 Computer Graphics Spring Semester 2007

Mathematics

- • The heart of any ray tracer, or ray casting for hidden surface removal, is the intersection routines.
- \bullet Each kind of primitive has different properties, so we have different intersection equations.

Parametric Ray Equation

- \bullet Let
	- the COP be $\mathbf{P}_0 = (x_0, y_0, z_0)^\top$ and
	- the viewing direction be **D** = (d_x , d_y , d_z) ^T
- Any point P lying on the eye ray is given by

$$
\mathbf{P} = \mathbf{P}_0 + \mathbf{D} t
$$

 \bullet Or writing each coordinate separately:

$$
x = x_0 + d_x t
$$

$$
y = y_0 + d_y t
$$

$$
z = z_0 + d_z t
$$

Ray Parameterization

•The parametric ray equation is given by:

 $\mathsf{P} = \mathsf{P}_0 + \mathsf{D}$ t

•Points along the line of sight is parametrized by *t*:

 $t = 0$, at COP (eye/viewpoint)

- $t < 0$, behind COP
- $t > 0$, in front of COP

Mathematics

• Given an implicit surface (i.e., spheres and other quadrics defined by an implicit equation)

 $F(X, y, z) = 0$

• In the followings, all surface equations are assumed to be in the object space coordinate system. Therefore, we need to transform the ray before testing for intersection.

Intersecting Spheres

 \bullet The (implicit) equation of a unit sphere is given by:

$$
x^2 + y^2 + z^2 = 1
$$

 \bullet Assuming a unit sphere (radius is equal to one). Substituting the parametric ray equation yields the following:

$$
\left(d_x x_0^2 + d_y y_0^2 + d_z z_0^2\right) t^2 + 2\left(d_x x_0 + d_y y_0 + d_z z_0\right) t + \left(x_0 + y_0 + z_0\right) - 1 = 0
$$

which is a quadratic equation in t .

Intersecting Spheres

- \bullet Solving the quadratic equation in t gives the solution.
- \bullet Ray misses the sphere if the discriminant is negative.
- •If the discriminant is non-negative, the smallest positive t is taken.
- \bullet Else, the intersection point is given by:

$$
x = x_0 + d_x t_1
$$

$$
y = y_0 + d_y t_1
$$

$$
z = z_0 + d_z t_1
$$

Possible cases

1. Ray intersects sphere twice with t>0

2. Ray tangent to sphere

3. Ray intersects sphere with $t < 0$

4. Ray originates inside sphere

5. Ray does not intersect sphere

- Solving a ray-plane equation determines if the ray hits the polygon plane. It is followed by an extent check to see if the ray hits the polygon.
- •Let's write the ray equation as:

$$
\mathbf{P} = \mathbf{P}_0 + \mathbf{D} t
$$

which defines a ray as:

$$
\mathbf{P}_0 = (x_0, y_0, z_0)^\top \n\mathbf{D} = (d_x, d_y, d_z)^\top
$$

•Define the plane in terms of $[A \, B \, C \, D]$ as:

 A x + B y + C z + D = 0

•Note: the unit vector normal of the plane is defined by:

$$
P_{normal} = P_n = [A \ B \ C]
$$

 \bullet Substituting the ray equation into the plane equation yields: $A(X_0 + d_x t) + B(Y_0 + d_y t) + C(Z_0 + d_z t) + D = 0$

$$
\text{Solving for } t \qquad t = \frac{-\left(Ax_0 + By_0 + Cz_0 + D\right)}{Ad_x + Bd_y + Cd_z}
$$

- • In vector form, the equation becomes *P D* $t = \frac{- (P_n \cdot P_0 + D)}{P_n}$ *n* $\frac{n-0}{\rightarrow}$ \rightarrow ⋅ $-(P_{\cdot}\cdot P_{\cdot} +$ = $(P_n \cdot P_0 + D)$
- \bullet The vector equation will have no solution if the dot product of \boldsymbol{P}_n and **D** is zero (ray direction exactly perpendicular to plane normal).

•Define

> V_d = $P_n \cdot D$ $V_0 = -(\mathbf{P}_n \cdot \mathbf{P}_0 + D)$

•Hence,

$$
t = v_0 / v_d
$$

- If t < 0, then the line defined by the ray intersects the plane behind the COP. Therefore, no intersection actually occurs.
- \bullet Else, the intersection point is given by:

$$
\mathbf{P} = \mathbf{P}_0 + \mathbf{D} \left(V_0 / V_d \right)
$$

• Further extent check is required if the intersection point lies within the region bounded by the quadrilaterals

Any fast way to do this?

CS341 Computer Graphics Spring Semester 2007

Intersecting a disk

- \bullet Intersecting circles is similar to intersecting quadrilaterals
- • The extent check, after computing the intersection point, becomes one of using the circle equation
- \bullet Consider a circle lying on the $z=0$ plane. If the ray intersects the $z=0$ plane, it also intersects the circle if:

$$
x^2 + y^2 - 1 \leq 0
$$

Intersecting Cylinders

 \bullet Recall the parametric ray equation is:

$$
x = x_0 + d_x t
$$

$$
y = y_0 + d_y t
$$

$$
z = z_0 + d_z t
$$

 \bullet The equation for an infinite cylinder (along Z-axis) is:

$$
x^2 + y^2 - 1 = 0
$$

 \bullet Substituting the ray equation yields a quadratic equation in t :

$$
(x_0 + d_x t)^2 + (y_0 + d_y t)^2 - 1 = 0
$$

$$
t^2 (d_x^2 + d_y^2) + 2(x_0 d_x + y_0 d_y)t + (x_0^2 + y_0^2) - 1 = 0
$$

•An extent check is applied for a finite cylinder.

Intersecting Cones

•The implicit equation for a cone is

$$
x^2 + y^2 - z^2 = 0
$$

• Substituting the ray equation into the above yields a quadratic equation in t :

$$
(x_0 + d_x t)^2 + (y_0 + d_y t)^2 - (z_0 + d_z t)^2 = 0
$$

$$
t^2 (d_x^2 + d_y^2 - d_z^2) + 2(x_0 d_x + y_0 d_y - z_0 d_z)t + (x_0^2 + y_0^2 - z_0^2) = 0
$$

•Compute the discriminant, and solve for t if the discriminant is nonnegative.

