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Abstract—A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large

collection of images taken by a camerawhosemotion has been constrained to planar concentric circles.We resample regular perspective

images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our

panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of

multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional

multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from

different locations, where the epipolar constraints are sine curves. For ourmultiperspective panoramas, the epipolar geometry, to the first

order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective

panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that

uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast,

uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in

multiperspective panoramas. It comprises a novel and efficient 1Dmultibaseline matching technique, followed by tensor voting to extract

the depth surface.Experiments show that our algorithmsare capable of producing comparable high quality depthmapswhich canbeused

for applications such as view interpolation.

Index Terms—Multiperspective panorama, epipolar geometry, stereo, correspondence, tensor voting, plane sweep stereo,

multibaseline stereo.
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1 INTRODUCTION

TRADITIONAL stereo reconstruction begins with two cali-
brated perspective images taken with pinhole cameras.

To reconstruct the 3D position of a point in the first image, its
corresponding point in the second image has to be found
before applying triangulation. Perspective cameras have the
property that corresponding points lie on straight lines,
which are called epipolar lines. In order to simplify the search
for correspondences, the two images can optionally be
rectified so that epipolar lines become horizontal.

In thispaper,weare interested in computingadensedepth
map with a large field of view (e.g., 360 degrees) for
applications such as large environment navigation. In
traditional stereo, the field of view of the reconstructed depth
map is usually small. Combining intermediate depth maps
obtained from overlapping stereo pairs may be a plausible
solution to widen the field of view [13]. Unfortunately,
accumulation error can quickly add up. An alternative
approach is to apply stereo algorithms to panoramic images,
bypassing theneed formerging intermediate representations.
In [11], a multibaseline stereo algorithm is proposed that

employs omni-directional panoramic images. The epipolar
constraints, however, are no longer straight lines [18].

Recently, multiperspective panoramas [31] have been
proposed to reconstruct large environments. Unlike conven-
tional images, multiperspective panoramas capture parallax
effects as each column of pixels is taken from a different
perspective point. It has been shown in [31] that the imaging
geometry of multiperspective panoramas can be greatly
simplified for depth reconstruction since the epipolar
geometry, to the first order, consists of horizontal lines. On
the other hand,multibaseline stereo using several images has
produced better depth maps by averaging out noise and
reducing ambiguities [12], [20]. Space-sweep approaches,
which project multiple images onto a series of imaging
surfaces (usually planes), also explore significant data
redundancy for better reconstruction (e.g., [5], [15], [27],
[32]). Space-sweep approaches in general need to discretize
the scene volume and, therefore, sampling strategies ([3],
[33]). Though the use of multiple images for stereo
reconstruction improves accuracy, the computation cost
may become an issue.

In this paper, we present a new approach to computing
dense 3D reconstruction from a large collection of images.
First, we constrain our camera motion to planar concentric
circles [30]. This constraint is practical and can easily be
satisfied using a number of simple camera rigs. For each
concentric circle, we take one ormore columns of pixels from
each input image (or use line scan sensors such as linear
pushbroom cameras [7]) and rebin these intomultiperspective
panoramas. Rather thanusing the original perspective images,
we perform stereo reconstruction from these resampled and
rebinned multiperspective panoramas.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004 45

. Y. Li and C.-K. Tang are with the Computer Science Department, Hong
Kong University of Science and Technology, Clear Water Bay, Hong Kong.
E-mail: liyin@ust.hk, cktang@cs.ust.hk.

. H.-Y. Shum is with Microsoft Research Asia, 3F, Beijing Sigma Center,
No. 49, Zhichun Road, Haidian District, Beijing 100080, China.
E-mail: hshum@microsoft.com.

. R. Szeliski is with Microsoft Research, One Microsoft Way, Redmond, WA
98052-6399. E-mail: szeliski@microsoft.com.

Manuscript received 18 Sept. 2002; revised 13May 2003; accepted 25 July 2003.
Recommended for acceptance by R. Kumar.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 117405.

0162-8828/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society



In previous work, [8] observed that such panoramas
capture the range information, although neither epipolar
analysis nor dense stereowas provided in [8]. In [21] and [28],
itwas shownthat theonly existingepipolar geometry that can
be shared by three or more views is the planar epipolar
geometry, which is the requirement to produce epipolar
plane images (EPI). One way to produce it is by linearly
translating the pushbroom camera. However, in this paper,
we show that in many cases the epipolar geometry of
multiperspective panoramas can be well approximated by
horizontal epipolar lines, as in the conventional stereo
algorithms. This allows a wide range of preexisting stereo
matching algorithms to be applied without much modifica-
tion to multiperspective panoramas representation. In this
paper, we develop two algorithms to reconstruct depth from
suchmultiperspective panoramas. The first is a cylinder sweep
stereo algorithm. The second is a multibaseline stereo
matching on locally linear epipolar plane images that makes
use of the approximate linear epipolar geometry andperform
dense 3D reconstruction. Both algorithms output a panoramic
depth map. We demonstrate experimentally that our ap-
proach produces high-quality reconstruction results.

Preliminary versions of this paper have appeared in [17],
[31]. This paper explains the epipolar geometry for multi-
perspective panoramas, describes and compares the two
algorithms we developed for computing panoramic depth
maps, and presents experimental results.

1.1 Overview of Multiperspective Panoramas

Our multiperspective panoramas are a special case of the
more general multiperspective panoramas for cel animation [34],
and are actually very similar to multiple-center-of-projection
images [24], manifold mosaics [23], and circular projections [22].
They are also closely related to images obtained by
pushbroom cameras [7]. Unlike these approaches, however,
we constrain our camera motions to be along one or more
radial paths around a fixed rotation center and always take
the same column from a given camera to generate a
multiperspective panorama. As we show in this paper, this
results in an epipolar geometry that, in most cases, is well
approximated by traditional horizontal epipolar lines.

The idea of resampling and rebinning has recently become
popular in image-based rendering. For example, the Lumi-
graph and Lightfield resample all captured rays and rebin
them into a 4D two-plane parameterization [6], [16]. Rebin-
ning the input images produces a representation that
facilitates the desired application. For the Lumigraph, this is
the resynthesis of novel views. For our multiperspective
panoramas, the application is 3D stereo reconstruction of
depthmaps to be associated with panoramic images in order
to support a “look around andmove a little” kind of viewing
scenario [30].

The advantage of extracting depth from multiperspective
panoramas is that it provides a 360 degree field of view.
This wide field of view dense depth map enables the
application of view interpolation between panoramas. In
spite of this very wide field of view, adapting an existing
stereo algorithm to multiperspective panoramas stereo is
not difficult. Some approaches [11], [18] use stereo matching
of single-perspective panoramic images taken at several
different locations. However, the sampling of correspond-
ing pixels is nonuniform in the radial and angular
directions, resulting in biased stereo reconstructions. For

instance, points along the baseline of two panoramas cannot
be reconstructed. Moreover, the epipolar geometry for
panoramic images is complicated because epipolar curves
are sine curves [18]. In contrast, the epipolar geometry of
multiperspective panoramas can often be well approxi-
mated by horizontal lines (Section 3). Therefore, traditional
stereo matching algorithms can be used with few modifica-
tions. In this paper, we propose two algorithms to extract
dense depth map from multiperspective panoramas. The
first one is a cylinder sweep stereo algorithm, while the
second is multibaseline stereo with locally linear EPIs.

1.2 Outline of this Paper

The organization of this paper is as follows: In Section 2, we
introduce how multiperspective panoramas are captured
andhow they are generated from regular perspective images.
In Section 3, we analyze and show that the epipolar geometry
of multiperspective panoramas, to first order, consists of
horizontal lines. Two stereo reconstruction methods are
described in Sections 4 and 5, respectively. One is a novel
cylinder sweep method. The other is a multibaseline stereo
using epipolar plane images. In Section 6, we show the
experimental results of both algorithms and, in Section 7, we
compare the features of two algorithms. Finally, we conclude
in Section 8.

2 MULTIPERSPECTIVE PANORAMA IMAGING

To generate multiperspective panoramas, the camera
motion is constrained to planar concentric circles. A
multiperspective panorama is formed by selecting the same
column from each of the original perspective images taken
at different positions along a circle. Multiperspective
panoramas differ from conventional single-perspective
panoramas in that each column in a multiperspective
panorama is taken from a different optical center.

Two camera rigs have been proposed to capture multi-
perspective panoramas [30]. These multiperspective panor-
amas have also been used to synthesize novel view images
without 3D information. There exist, however, vertical
distortions in the synthesized images without depth
correction.

We first review these two camera rigs: concentric
panoramas and swing panoramas. The concentric panorama
is theoretically simple to construct and, thus, very suitable
for synthetic scene and experimental evaluation. Swing
panorama is a practical set-up for capturing real multi-
perspective panoramas.

2.1 Concentric Panoramas

The first proposed capturedeviceuses several slit cameras (or
regular cameraswhere only a few columns of pixels are kept)
mounted on a rotating bar as shown in Figs. 1a and 1b. It is
also possible to use only a single slit camera and to slide it to
different locations along the bar before rotation. A multi-
perspective panorama is constructed by collecting all slit
images at all rotation angles. We call these images concentric
panoramas. Fig. 11a in Section 6 shows a synthetically
generated concentric panorama. Figs. 11e, 11f, and 11g show
detail views from several input panoramas illustrating the
parallax effects.We can also use amore general configuration
of one or more cameras oriented at various angles other than
along the tangent direction and sample one or more columns
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of pixels from each camera to construct the concentric
panoramas.

The general imaging geometry and trigonometric rela-
tionships for a single concentric panoramas are shown in
Fig. 1c. Here, C is the center of rotation, around which the
camera rotates with radius of R. The camera is located at V
and the selected columnofpixels is looking at a scenepointP ,
which is at an in-plane distance r from the center C and at an
in-plane distance d from the camera V . The current angle of
rotation, denoted by �, varies between 0 degrees and
360 degrees. In this configuration, the horizontal dimension
of a panoramic image is indexed by �. The other (vertical) axis
in the panoramic image is indexed by the elevation or row
number y.

The plane of pixels captured by this particular panoramic
imager forms an angle � with the swing line in the normal
direction connecting V and C. Let  be the in-plane viewing
angle of P in camera V , i.e.,  ¼ tan�1ððx� xcÞ=fÞ, where x is
the column number in the input image, xc is the center
column, and f is the focal length in pixels. In the concentric
panorama configuration (Fig. 1c), � ¼ 90� and  ¼ 0. Note
that, if � is not 90�, the resulting panorama has an effective
radius R sin�. We vary R to obtain different concentric
panoramas, depending on the number of samplesK.

2.2 Swing Panoramas

The other design is to swing a regular camera mounted on a
rotating bar looking outwards, as shown in Figs. 2a and 2b. In
this case, different columns are used to construct different
multiperspective panoramas. For example, a rebinned
panoramic image may have 2,160 columns with 1=6 degree

increment, each one taken from the same column in
successive frames of a given input video. We call such
panoramas swing panoramas (Peleg et al. call these circular
projections [22]). A video sequence of F frames of image size
W �H can be rebinned into (up to)W panoramas with size
F �H, as illustrated in Fig. 6.

The general imaginggeometry and trigonometric relation-
ship for a multiperspective panorama is shown in Fig. 2c.
Definitions of � and  are same as in concentric panoramas.
Different swing panoramas are formed by changing the
 angle, which results in panoramas of different  by the
rebinning construction (Fig. 2b). When multiple columns are
selected froma camera pointing outward fromC in the swing
panoramas configuration (Fig. 2c), we have � ¼  .

2.3 Summary and Comparison

To summarize:

. Each panoramic image is indexed by ð�; yÞ;

. Each panoramic image’s acquisition geometry is
parameterized by ðR; �;  Þ;

. For swing panoramas,  ¼ �, �k ¼ tan�1ðkwÞ; k ¼
�K . . .K;

. For concentricpanoramas, ¼ 0,� ¼ �90�,Rk ¼ kR1,
k ¼ 0 . . .K.

3 EPIPOLAR GEOMETRY OF MULTIPERSPECTIVE

PANORAMAS

Conventional panoramic images taken at different locations
can be used to compute 360 degree field of view stereo.
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Fig. 1. Concentric panoramas: (a) acquisition rig, (b) rebinning process, and (c) imaging geometry of concentric panoramas.



However, they have a nonlinear epipolar geometry. There-

fore, the matching window shape has to be carefully

designed and the multibaseline stereo has to be redesigned.

In contrast, the epipolar geometry of multiperspective

panoramas can be well approximated by horizontal lines

under reasonable and practical constraints. In fact, for a

symmetric pair of multiperspective panoramas, the epipo-

lar geometry is exactly the same as horizontal parallel

motion. Consequently, a fixed matching window shape

combined with a linear 1D search can be used during stereo

matching.
In this section, we analyze the epipolar geometry of

multiperspective panoramas. First, we derive the formulas

for the horizontal and vertical parallax of a point located on

a cylindrical surface of radius r (Figs. 1c and 2c).

3.1 Horizontal Parallax

Using the basic law of sines for triangles, we have

R

sinð�� �Þ ¼
r

sinð180� � �Þ ¼
d

sin �
ð1Þ

or

� ¼ �� sin�1 R

r
sin�

� �
: ð2Þ

Therefore, the horizontal parallax ��2:1 ¼ �2 � �1 for a

point at a distance r seen in two panoramic images I1 and I2
consists of a constant factor �2 � �1 and two terms

depending on r. If we (circularly) shift each panoramic

image by �i, the first factor drops out, leaving

��2:1 ¼ sin�1 R1

r
sin�1

� �
� sin�1 R2

r
sin�2

� �
: ð3Þ

3.2 Vertical Parallax

The vertical parallax can be derived using the following
observation. Recall that, according to the laws of perspective
projection, the appearance (size) of an object is inversely
proportional to its distance along the optical axis, e.g.,
x ¼ fX=Z, y ¼ fY =Z. For pixels at a constant distance r from
C and, therefore, at a constant distance from V along the
opticalaxis, thevertical scalingcanbecomputeddirectly from
this distance Z ¼ d cos (Figs. 1c and 2c). Here, d is the in-
plane distance between V and P and d cos is the distance
alongtheopticalaxis (aswementionedbefore, typically ¼ �
or  ¼ 0).

We can write this scale factor as s ¼ f=Z ¼ f=ðd cos Þ.
Using the law of sines (1) again, we can compute the change

of scale between two panoramic images as

s2:1 ¼
s2
s1

¼ d1 cos 1

d2 cos 2
¼ sin �1= sin�1

sin �2= sin�2

cos 1

cos 2
:
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Fig. 2. Swing panoramas. (a) acquisition rig, (b) rebinning process, and (c) Imaging geometry of swing panorama.



Expanding sin �, where � is given by (2), we obtain

sin � ¼ sin� cos sin�1ðR
r
sin�Þ

� �
� cos� sin sin�1ðR

r
sin�Þ

� �

¼ sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðR

r
sin�Þ2

r
�R

r
cos�

" #
:

We can thus rewrite the scale change as

s2:1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðR1

r sin�1Þ
2

q
� R1

r cos�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðR2

r sin�2Þ
2

q
� R2

r cos�2

cos 1

cos 2
: ð4Þ

The first factor in this equation depends on r and goes to

1 as r! 1. The second factor is a global scale that

compensates for the off-axis angle of a given column.

3.3 Epipolar Geometry of Symmetric
Multiperspective Panoramas

An imaging configuration of special interest is a two-frame

stereoarrangementwhere theoptical raysare symmetricwith

respect to the swing line CV , i.e., �1 ¼ ��2 (we also assume

that  ¼ � or  ¼ 0). This occurs when, for example, the left

and right columns of a swing stereo sequence [22], [29] are

taken or when you fix two cameras at equal distances but at

opposite ends of a rotating beam (concentric panorama).
An important conclusionof (4) is that, fora symmetricpairof

multiperspective panoramas as defined above, the epipolar

geometry consists of horizontal lines. That is, s2:1 ¼ 1. An

informalproof couldbeobtainedbydrawinganotherpointP 0

in Fig. 1c at an angle �� and observing that z ¼ d cos is the

same for both viewing rays. This conclusion first appeared in

[31]andwas latergeneralized in [28]. In [21], epipolar surfaces

similar to [28] are classified, where the epipolar geometry for

multiperspective images are generalized.
A direct consequence of selecting such a pair of

panoramic images is that any traditional stereo algorithm

[26] can be used. More general camera configurations, e.g.,

those which do not constrain cameras to planar motion, are

discussed in [29].

3.4 Small Disparity and Angle Approximations

In practice, we would like to use more than two images in
order to obtain a more accurate and robust correspondence
[5], [20]. In this section, we study whether the epipolar
geometry is sufficiently close to a horizontal epipolar
geometry so that conventional multiimage stereo matching
algorithms such as EPI analysis [4], SSSD [20], and plane
sweep [5], [12], [32] can be used.

A requirement for a conventional multibaseline stereo
algorithm to be applicable is that the location of pixels at
different depths should be explained by a collection of
pinhole cameras. In our case, we further restrict our attention
to the horizontal epipolar geometry, in which case, the
horizontal parallax as specified in (3) must be of the form

��k:0 ¼ mkfðrÞ;

i.e., we have a fixed linear relationship between horizontal
parallax and some common functions of r for all images.
The horizontal parallax equation given in (3) does not
exactly satisfy this requirement. However, if either R=r or
sin� is small in both images, we obtain

��k:0 �
Rk

r
sin�k �

R0

r
sin�0 ¼½Rk sin�k �R0 sin�0�r�1: ð5Þ

Therefore, the inverse of r plays the same role as inverse
depth (disparity [20]) does in multibaseline stereo.

Fig. 3 plots (3) for horizontal parallax as a function of r�1

for various values of � and R. The left plot shows the ratio
of ��k:0 (divided by 1=r) to 1=r (since it is very hard to tell
the deviation from linearity by eye) for �0 ¼ 0 (central
column) and varying �k for swing panoramas. The right
plot shows the ratio of ��k:0 (divided by 1=r) to 1=r for
R0 ¼ 0 (no parallax) and varying Rk for concentric panor-
amas with �k ¼ 90� and  k ¼ 0. As we can see from these
plots, the linear approximation to parallax is quite good as
long as the nearest scene point does not get too close, e.g.,
no closer than 50 percent of R for moderate focal lengths.

A second requirement for assuming a horizontal epipolar
geometry is that the vertical parallax needs to be negligible
(preferably under one pixel). For images of about 240 lines (a
single field from NTSC video), we would like j�yj �
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120js2:1 � 1j < 1 (120 is half of the image height), i.e.,
js2:1 � 1j < 0:008.

We can approximate the vertical parallax (4) under two
different conditions. For swing stereo (R1 ¼ R2,  ¼ �),
assume that �2 ¼ 0 (central column) and �1 is small. We can
expand (4) to obtain

s2:1 � cos 1 1� R2

2r2
sin2 �1 �

R

r
þ R

2r
sin2 �1

� �
1þR

r

� �

� cos 1 1þ R

2r
sin2 �1 �

R2

r2

� �
:

ð6Þ

Thus, once the global scale change by cos 1 (which is
independent of depth) is compensated for, we have a
vertical parallax component that is linear in R=r and
quadratic in sin�.

For concentric panoramas, � ¼ 90� and  ¼ 0. Therefore,

s2:1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

1=r
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

2=r
2

p � 1þ 1

r2
R2

2 �R2
1

� �
:

The vertical parallax is inversely proportional to squared
distance r and proportional to the difference in squared
radii R.

Fig. 4 plots the exact formula (4) for vertical parallax as a
function of r�1 for various values of � and R. The left plot
shows scale change sk:0 � 1 for �0 ¼ 0 (central column) and
varying�k for swingpanoramas. The right plot shows sk:0 � 1
for R0 ¼ 0 (no parallax) and varying Rk for concentric
panoramas with �k ¼ 90� and  k ¼ 0. As we can see from
these plots, the amount of vertical parallax is very small
(< 1 percent) if the field of view is moderately small or the
ratio of the nearest scene point to the variation in radial
camera positions is large.

To wrap up this section, we have the following result:
When the disparityR=r and/or off-axis angle � are small, we
obtain a nearly horizontal epipolar geometry (classic multi-
baseline stereo [20]), after compensating once for the vertical
geometry scaling of each image. For our swing panoramas, we
can further make use of the above to derive the following
valid approximations, which is useful in later discussion.

1. The epipolar geometry is approximately horizontal,
i.e., s2:1 is constant up to order OðRr �2Þ. This can be
explained from the above result and (6).

2. The ratio of horizontal disparity amongmultiperspec-
tive panoramas, i.e., ���� , is linear to

R
r up to orderOð�Þ.

For swing panoramas, notice that  ¼ �, cos ¼
1�Oð�2Þ, and Rk ¼ R0 ¼ R. From (5), �� ¼ �sin
� � Rr ¼ cos��� � Rr ¼ �� R

r ð1�Oð�2ÞÞ. The conclu-
sion can be drawn since (5) is obtained from (3) by
the first order approximation.

For example, typically, we use a camera with 40 degree
horizontal FOV lens to take images with the horizontal
resolution of 400 pixels. Tomake the approximations in 1 and
2 valid and practical for swing panoramas, we take the
panorama rebinned from the 20th column (x ¼ 20); according
to Fig. 2c, we have � ¼ tan�1ð20 tanð20�Þ=200Þ � 2� � 0:04,
which corresponds to a very small s� 1, as shown in Fig. 4a.

4 CYLINDER SWEEP STEREO

In this section, we develop a novel multi-image cylinder
sweep stereo reconstruction algorithm that generalizes the
concept of plane sweep stereo. Because of the special
structure of our concentric panoramas, the cylinder sweep
algorithm only requires horizontal translations and vertical
rescalings of the panoramic images during matching.

The cylinder sweep stereo algorithm uses a few multi-
perspective panoramas to perform matching. Plane-sweep
and space coloring/carving stereo algorithms have recently
become popular because they support true multi-image
matching [5], enable reasoning about occlusion relationships
[12], [14], [15], [27], [32], and are more efficient than
traditional correlation-based formulations [10]. Traditional
stereomatching algorithms pick awindowaround each pixel
in a reference image and then find corresponding windows
in other images at every candidate disparity (searching along
an epipolar line). Plane sweep algorithms consider each
candidate disparity as defining a plane in space and project
all images to be matched onto that plane, using a planar
perspective transform (homography) [1], [5], [32]. A per-
pixel fitness metric (e.g., the variance of the corresponding
collection of pixels) is first computed and then aggregated
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spatially using an efficient convolution algorithm (e.g., a
moving average box filter) or some other techniques [25],
[26]. After all the cost functions have been computed, a
winning disparity can be chosen. If the planes are processed
in a front-to-back order, occlusion relationships can also be
inferred [27].

Our novel cylinder sweep algorithm works similarly.
Insteadof projecting images ontoplanes, however,weproject
our multiperspective panoramas onto cylinders of varying
radii r. The transformations that map panoramas onto these
cylinders and, hence,onto each other, are particularly simple,
i.e., the reprojectionof eachpanoramic imageontoa surfaceof
radius r consists of a horizontal translation and a vertical
scaling. This conclusion follows directly from (3) and (4) for
horizontal and vertical parallax. A less formal but more
intuitive argument is to just observe that the image of any
column of a cylinder at a fixed radius r seen by a concentric
pushbroom camera is just a scaled version of the pixels lying
on that cylinder. Since our representation has no preferred
direction, the shift between the panoramic image and the
cylinder must be the same for all pixels.

4.1 The Cylinder Sweep Algorithm

The traditional plane sweep algorithm projects images onto a
set of parallel planes, which are swept through space along a
line normal to each plane, as shown in Fig. 5a. The volume of
interest in space is bounded by two planes Z ¼ zmin and
Z ¼ zmax. The volume is sampled by a sweeping plane at a
discrete number of equally spaced Z intervals within the
limits zmin to zmax. The projection of images onto the

candidate plane Z ¼ zi is simply a planar projective trans-
formation (homography).

For our novel cylinder sweep algorithm, the input multi-
perspective panoramas are reprojected onto concentric
cylinders instead of planes. Once the projection is done, the
samestrategycanbeappliedon thesedataas in the traditional
plane sweep algorithms [5]. Details of the reprojection
process are shown in the following and illustrated in Fig. 5b.

We start with a set of multiperspective panoramas,
ðRi; �i;  iÞ, i ¼ 1; � � � ; K, which can be either concentric or
swing panoramas.K is the number of panoramas used, e.g.,
K ¼ 7 in our experiments. Recall that each panorama is
parameterized by ð�; yÞ. We perform horizontal shifting for
each panorama with an offset equal to �� ¼ �i to satisfy the
precondition of (3).

Then, the projection from each panorama onto each
sweeping plane is simply one horizontal shift plus one
vertical scaling. As the shift and scaling is relative, without
losing generality, we can always fix one panorama without
shifting and scaling, say ðR0; �0;  0Þ. In practice, in order to
take the advantage of symmetric property, we usually
choose the panorama at �0 ¼ 0 in swing panoramas or R0 ¼
0 in concentric panoramas.

For each candidate sweeping cylinder with radius of
r ¼ rj, j ¼ 1; � � � ; N , horizontal shifting is performed, with
an offset equals to ��j:0, according to (3). Then, we perform
the vertical scaling yi ¼ yc þ ðy0 � ycÞ ��si:0, where yc is
the scaling center, i.e., the intersection of this vertical scan
line with sweeping plane, and �si:0 is given by (4).

Since a 360 degree panorama is considered, there is no
view clipping in the horizontal direction. Hence, the
amount of horizontal shifting does not matter. In contrast,
in the traditional plane sweep algorithm, the input images
have to be viewed at a restricted range (usually a subset of
the camera’s field of view) after projection.

Given that the input set of multiperspective panoramas
is well captured, the horizontal shift offset and vertical
scaling factor are fixed constants for each multiperspective
panorama. However, the cameras do not have to lie on the
same plane. A sufficient condition is that they should be on
the circles that share the same axis. If a camera is on a
different plane, yc does not have to be the center of images,
a vertical shift offset can be added in addition to the vertical
scaling described above. This enables us to stack cameras
vertically in order to exploit vertical parallax, if desired [2].
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Fig. 5. Illustration of (a) plane sweep algorithm and (b) cylinder sweep

algorithm.

Fig. 6. An EPI is produced by extracting a horizontal slice as shown.
Each EPI corresponds to a 2D potential inverse depth image of a
scanline in the corresponding multiperspective panorama.



Once the reprojection is done, the same algorithm as in the
traditional plane sweep stereo can be applied to obtain a
360 degree depth map.

4.2 Efficient Algorithm for Swing Panoramas

For swing panoramas, we can develop an even more
efficient projection algorithm. According to the results at
the end of Section 3.4, there exists a linear relationship
between the disparity �� and the inverse radius � ¼ R

r . We
can discretize the sweeping cylinder equally in inverse
radius, instead of equally in the radius r. This is particularly
useful for outdoor scenes in which zmax ¼ 1.

If the panoramas are not far from the center, i.e., � is
small, we can further ignore the vertical scaling for swing
panoramas. Therefore, the reprojection part of the cylinder
sweep algorithm is simply a horizontal shift, which can be
efficiently performed.

5 DENSE DEPTH ESTIMATION FROM LOCALLY

LINEAR EPI

In this section, we describe a multibaseline stereo algorithm
that makes use of the approximate horizontal epipolar
geometry. The multibaseline stereo algorithm [20] has been
proposed to achieve robust reconstruction by taking advan-
tage of the inherent data redundancy in a large collection of
images.

In our case of multiperspective panoramas, an approx-
imate EPI1 is obtained by concatenating corresponding
scanlines, as shown in Fig. 6, where x indicates the pixel
location along the scan line and � represents the rotation angle
of the camera. One enlarged EPI is depicted in Fig. 7. A
straight line in the EPI indicates the locus or trajectory of an
imagepoint. By the results presented in Section 3.4,we obtain
the following:

��k:0
�xk:0

� R

r
: ð7Þ

Note that the left-hand side of (7) is exactly a line gradient
in an EPI, as depicted in Fig. 7. Therefore, the depth
estimation from multiperspective panoramas can be trans-
lated into slope estimation of the straight lines in an EPI.
(See [9] for more recent work in EPI processing.)

This linear relationship further implies thatmatching only
requires a 1D search in a single EPI. It can be implemented as
1D convolution using a constant 1D search window. No
rectification is needed. Further, since (7) is linear, we simply
quantize the inverse depth uniformly without introducing
bias or negligence. Hence, the dimensionality of our scene
reconstruction problem is reduced from 3D to 2D.

Note that the above derivation pertains to a single EPI in
which the slopes detected (along x ¼ 0 in Fig. 7) represent the
inverse depth of the corresponding scanline. The panoramic
depth map can be generated by considering the correspond-
ing EPIs of other scanlines as well, as shown in Fig. 6.

Thus, using multibaseline stereo and a 1D matching
window, a panoramic depth map can be reconstructed by
estimating line gradients in approximate EPIs derived from
rebinned multiperspective panoramas.

5.1 Computing Potential Inverse Depth Image

In this section, we design a multibaseline stereo algorithm
based on the above. An EPI is indexed by x and �, as shown in
Fig. 7. Following the traditional multibaseline stereo algo-
rithm [20], we evaluate the similarity with multiple
1D matching window inside individual EPIs.

Let Iðx; �Þ be an EPI. Given any �, we define a 1Dwindow,
Wð�Þ, tobeWðx; �Þ ¼ fIðxþ xi; �Þjxi 2 ½�w;w� for integerwg,
wherex is the center of the 1Dwindow. The typical value ofw
is 10 in our experiments. Suppose we slide this 1D window
alonga certaindirection and compute the consistency of pixel
colors between this 1D window and the overlapping pixels.
The line gradient is equal to the direction that produces the
maximum consistency.

Let �0 be the location of the 1D window centered at
x ¼ 0. To compute color consistency, we compute sum of
squared difference, or SSD, which is defined by

SSDð�; �Þj�0 ¼
Xw
i¼�w

½Iðxi þ ð�� �0Þ�; �Þ � Iðxi; �0Þ�2: ð8Þ
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Fig. 7. An example EPI from the real scene of the balcony in Fig. 16. Note the linear patterns. The vertical bars in the inset are 1D windows that are

used to estimate the line gradient, which indicate inverse depth.

1. EPIs, or epipolar plane images, first proposed by Bolles et al. [4], are
extracted from parallel motion image sequence, each of which consists of
pixels sharing a common epipolar line in other input images.



With multiple panoramas, we compute SSSD (sum of
SSD) for the reference image at �0 in a neighborhood of
size M as color consistency evaluation, which is defined as

SSSDð�Þj�0 ¼
XM
n¼�M

SSDð�; �nÞj�0 : ð9Þ

Note that the definition of (9) is analogous to the SSSD
used in [20] for multibaseline matching and that the
matching presented in this section is performed on an
EPI. A small SSSDð�Þ indicates a high color consistency.
The typical value of M we use is 5.

By considering more EPIs, a 3D potential inverse depth

image is built, as shown in Fig. 8. Each voxel in this volume is

the similarity at a given image pixel ðy; �Þ at a given inverse

depth �, represented as P ðy; �; �Þ. It is normalized for each

pixel, s.t.
P

� P ðy; �; �Þ ¼ 1. The brightest locations indicate

themost probable inverse depth surface. Aplausible solution

for our depth estimation can thus be translated into

extracting a salient surface from the 3D potential depth

image, assuming the scene is opaque,

S¼
[
Y ;�

fðY ; �; �nÞjP ðY ; �; �nÞ	P ðY ; �;�iÞ; 8i ¼ 1 � � �Ng;

where N is the number of the quantized (inverse) depths.
However, this straightforward winner-takes-all algorithm
usually producesmany outliers, as shownby the noisy image
of Fig. 9a.

It is worth noting that the use of 1Dmatching windows in
our stereo algorithm will inevitably run into the aperture
problem. Our solution is to keep a set of possible inverse
depth maps at the initial reconstruction stage; the aperture
problem is then solved by an adaptive smoothing criterion in
the first pass of tensor voting [19], which also removeswrong
matches and handles depth discontinuities. The uniqueness
constraint is then applied by the second pass of tensor voting.

5.2 Extracting the Inverse Depth Surface

Atwo-passalgorithmbasedon tensorvoting [19] isproposed.
Given the initial set of matches from the 3D potential inverse
depth image P ðY ; �; �Þ, our objectives are two-fold:

1. Remove wrong matches and infer smooth features
that are possibly missed due to the aperture problem
associated with a 1D matching window, and

2. Infer missing matches and compute the inverse
depth with maximum support.

At the same time, we want to preserve depth discontinuities
and occlusion boundaries. Two passes of tensor voting are

used. The first pass propagates the continuity constraint to
achieve Step 1. After removing wrong matches, a reliable set
of inverse depths are obtained. The second pass implements
Step 2 by applying the uniqueness constraint along the line of
sight. The terminology and exact algorithms we use in this
section are explained in Appendix A.

5.2.1 Pass One: Continuity Constraint

In the first pass,S is first computed,whereS is the set of voxel
locations whose P ð�Þ is themaximum among all values along
the line of sight. The algorithm is described below alongwith
a running example.2

1. Compute S given by (1). Encode S into a set of
default ball tensors. All eigenvalues are made equal
to its P ð�Þ, as illustrated in Fig. 9a.

2. Compute V , the set of voxel locations whose
associated P ð�Þ 	 p1 and S \ V ¼ ;. We also encode
V into a set of ball tensors, with all the eigenvalues
equal to their respective P ð�Þs.

3. The encoded S and V vote with the ball voting field.
4. S collects votes by tensor addition. The resulting

eigensystem is computed.
5. A subset of points in S, whose normalized surface

saliencies exceed p2, is obtained, Fig. 9b.

The choice of p1 is not critical and is set at 0:01 in our
experiments. The choice of p2 is not critical either since we
shall collect votes in every voxel location in the 3D image in
pass 2. It is 0:1 in our experiments. Figs. 9a and 9b,
respectively, depict the S before and after pass 1. Note that
both smooth structures and depth discontinuities are
preserved simultaneously, while most of the outliers are
eliminated. We use a homogeneous ball tensor in our
experiments, where the three dimensions are all related to
image resolution. It is a reasonable assumption that the
scale differences on the three dimensions are not large.

Let S 
 S be the resulting set shown in Fig. 9b, which
provides more reliable evidence. In pass 2, we resample the
whole 3D volume using S by computing a generic tensor
vote at all quantized inverse depths.

5.2.2 Pass Two: Uniqueness Constraint

Inpass two,weapply theuniqueness constraint along the line
of sight by voting for the maximum inverse depth: The inverse
depth that receives the maximum support from the S.

1. Each point in S is initially encoded as a ball tensor,
with three eigenvalues set to its surface saliency
ssal ¼ �max � �mid, which is obtained in the first pass.
In doing so, voters with higher surface saliency are
preferred.

2. Each encodedball casts a ball vote in its neighborhood
to resample thewhole 3Dvolume. For every ðY ; �Þ, we
compute all N tensor votes, received at ðY ; �; �1Þ;
ðY ; �; �2Þ; � � � ; ðY ; �; �nÞ. A voxel not in S will assume a
zero tensor initially. In thisvotingpass,wealsouse the
same � as the scale of analysiswe used in the previous
stage. Since S 
 S, jSj < jSj. Therefore, S is now
sparser. There may exist some location ðY ; �Þ where
all N tensor votes received at ðY ; �; �1Þ; ðY ; �; �2Þ; � � � ;
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2. For better visualization, we use a 2D example, which is one slice
obtained from the 3D volume.

Fig. 8. Three-dimensional potential depth image.



ðY ; �; �nÞÞ are zeros.Weusuallyhave about 1-5percent
of such locations. To deal with this, we progressively
increase � by one (approximately equals to three
voxels) until at least one of these N votes obtain
nonzero votes.

3. When the whole ðY ; �; �nÞ volume has collected all
nonzero votes, we apply the uniqueness constraint:
for each ðY ; �Þ, we return �Y ;�, that receives the
maximum support, or the largest surface saliency
along the line of sight:

�Y ;�¼ f�njssalðY ; �;�nÞ	ssalðY ; �;�iÞ; i ¼ 1 � � �Ng:

Fig. 9c shows one slice of our result. Note that each

column consists of one and only one solution that

corresponds to the maximum salient inverse depth.

6 EXPERIMENTS

We perform experiments on some challenging synthetic and
real data to evaluate our approaches.

6.1 Cylinder Sweep Stereo Algorithm

Fig. 11 shows the stereo reconstruction results by our
Cylinder Sweep algorithm from seven concentric panoramas
thatwere synthesizedwith a slit camera rotating along circles
of different radii (0:4; 0:5; . . . ; 1:0). The right and the center
panoramas are shown in Figs. 11a and 11b, respectively.
Horizontal parallax can be observed from close-up of regions
of three original panoramas shown in Figs. 11f, 11g, and 11h.
Because a small field of view (24 degrees) camera was used,
these concentric panoramas have negligible vertical parallax.
Using the estimated depth map shown in Fig. 11c, we
synthesize a panorama shown in Fig. 11d bywarping Fig. 11b
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Fig. 9. Running example. (a) The candidate set S with maximum SSSD along the line of sight. (b) Outlier removal and discontinuity preservation by
applying the smoothness constraint. (c) Missing details are filled in by applying the uniqueness constraint.

Fig. 10. Error map corresponding to Fig. 13. (a) The ground truth panoramic depth map rendered by Discrete 3D Max. (b) The error map in

pseudocolor mode.



to the same camera parameters as in Fig. 11a using the depth
map Fig. 11c. The new panorama is almost indistinguishable
fromFig. 11aexcept in the regionswhere significant occlusion
occurs as shown in the close-up Fig. 11h. Notice that the
reflection of the spotlight is synthesized well even though its
depth estimation is clearly wrong.

Two rebinned panoramas from a real swing sequence of a
lab scene are shown in Figs. 12a and 12b. We used a digital
video camera in portrait mode with a field of view of around
27� � 36� and a digitized image size of 240� 320 pixels. The
camera was mounted off-center on a plate rotated with a
stepper motor that provided accurate rotation parameters.
After scaling the images vertically by cos , we found that
there was a small (0.5 pixel) drift remaining between the
panoramas. This was probably caused by a slight rotation of
the camera around its optical axis. In practice, compensating
for such registration errors is not difficult: A simple point

tracker followedby linear regression canbeused to obtain the

best possible horizontal epipolar geometry. The panoramas

after vertical scaling and drift compensation are shown in the

close-up regions inFigs. 12e, 12f, and12g.Asyoucansee, very

little vertical parallax remains. The reconstructed depth map

is shown in Figs. 12c and a synthesized novel panorama (from

an extrapolated viewpoint) and its close-up are shown in

Figs. 12d and 12f, respectively.

6.2 Multibaseline Algorithm on Approximate EPI

We capture the following three swing multiperspective

panorama using the setup shown in Fig. 2 using a camera of

horizontal FOV of 40 degrees. The synthetic scene with

ground true depth image is rendered byDiscrete 3DMax and

the real scenes are captured using a commercial digital video

camera.
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Fig. 11. Concentric panoramic stereo results: (a) an input panorama (rightmost camera, R ¼ 1:0), (b) another input panorama (center camera,

R ¼ 0:7), (c) estimated depth map for the center panorama, (d) panorama resynthesized from center panorama and depth, (e), (f), (g) close-up of

input panoramas (note the horizontal parallax), and (h) close-up of resynthesized panorama.



Figs. 13a and 13b show a 360 degree multiperspective
panorama for a synthetic Virtual Room and its corresponding
dense depth map by our method. The multiperspective
panorama in Fig. 13a is then reprojected to a novel viewpoint
where occlusions between objects (e.g., teapot, ball) and the
walls are clearly visible. Due to the cylindrical mapping, the
walls appear curved.Using the depthmap shown in Fig. 13d,
the teapot can be observed from a novel viewpoint at a lower
viewing angle as in Fig. 13e. To demonstrate the high-quality

reconstruction of the virtual room, we show the top-down

viewand the top-side view of the Euclidean reconstruction in

Figs. 13f and 13g, respectively. Note that the four recon-

structed walls are perpendicular and four objects keep their

respective shapes very well. The reconstruction quality with

40 swing panoramas (Fig. 13) is much better than that of the

cylinder sweep algorithm (Fig. 11), which only uses seven

concentric panoramas.
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Fig. 12. Swing panoramic stereo results: (a) an input panorama from left column, (b) input panorama from center column, (c) estimated depth map

for the center panorama, (d) novel panorama extrapolated from center panorama and depth, (e), (f), (g) close-up of input panoramas, and (h) close-

up of extrapolated panorama.



Fig. 10 compares our result on the same synthetic scene in

Fig. 13 with the ground truth geometry obtained from

Discrete 3D Max. Fig. 10a is the ground truth panorama

depth map, which encodes inverse radius as gray level.

Fig. 10b shows the errormap. The pure black region indicates

error that is less thanonequantization step (64 steps forwhole

depth range). The dark gray regionmeans one step error. The

bright regions mean that the errors are larger than one step.

This error map shows that our algorithm performs well at
textured region, while occlusion boundaries suffer some
“fattening” problem as well.

Figs. 14 and 15 show the acceptable results and graceful

degradationof our approach in two complex real scenes,with

severe depth discontinuities, camera noise, and low image

resolution. Figs. 14a and 15a show two multiperspective

panoramas and Figs. 14b and 15b show the corresponding
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Fig. 13. Virtual Room (synthetic scene): (a) and (b), respectively, show the multiperspective panorama and its corresponding inverse depth map, (c) a

novel view of the panorama, (d) depth map of the teapot, (e) a novel view of teapot reprojected with the depth map, (f) and (g) the reconstructed room

at top-down and top-side views.



depth maps automatically computed by our method. In

Figs. 14c and 15c , the reprojected depth maps from a novel

viewpoint, show the good quality of our reconstruction.

Figs. 14 and 15d, 15e, 15f, and 15g show the close-up texture

mapped views at novel viewpoints. Note that this is a very

challenging outdoor scenewithmany textureless regions and

occlusions. Figs. 14f and 14g show the depth inside the

window is reconstructed as a farawaybackgroundbecause of

mirror reflection. Note that, while depth discontinuities can

still be preserved to a large extent, as shown in Figs. 15d and

15f, the occlusion boundaries are not very well localized.

7 DISCUSSION

In this section,wediscuss theproperties of the twoalgorithms

weproposed.Wehavesummarized thecomparison inTable1

to help one choose between different algorithms.
The first (cylinder sweep) algorithm does not require the

multiperspective panoramas to be rebinned from nearby

columns because it can use a nonlinear epipolar geometry. Of

course, using an approximate horizontal epipolar geometry,

the cylinder sweeping step can be further simplified

into a horizontal shifting one. In contrast, the second

(multibaseline stereo with locally linear EPI) algorithm
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Fig. 14. Balcony (real scene with depth discontinuities, textureless objects, and mirror reflection): (a) Shows one multiperspective panorama,

(b) shows the corresponding inverse depth map, (c) is the depth map from a novel viewpoint. (d), (e), (f), and (g) are two close-up pairs of the

textured reprojected views. Note the depth inside the window in (f) and (g) is reconstructed as a faraway background due to the mirror reflection.



selects the multiperspective panoramas from nearby col-
umns since it relies on the approximate horizontal epipolar
geometry and the local linear relationship of disparity with
inverse radius.

Both algorithms output 360 degree field of view dense

depth maps. Although the space and time complexities of

both algorithms are linear in the number of pixels and the

number of discrete depths (in the case of the first algorithm,

we may need to perform iterative optimization), the second

algorithm makes better use of the approximate horizontal

epipolar geometry by decomposing the matching problem

into subproblems inside each EPI image.

The first algorithm does offer more flexibility than the

second algorithm since there is actually nothing preventing

the cameras from being located in different (parallel) planes

so long as their rotation axes are all the same (i.e., the

camera motions are coaxial, rather than concentric). The

only difference, in this case, is the addition of some extra

depth-dependent vertical parallax, which can easily be

accommodated in both traditional stereo algorithms and

in our novel cylinder sweep algorithm.
Capturing swing panoramas only uses one camera that

undergoes simple rotation. Therefore, real scenes are usually
captured as swing panoramas, as shown in our experiments.
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Fig. 15. Film Studio (real scene): (a) Shows one multiperspective panorama, (b) shows the corresponding inverse depth map, (c) is the depth map

from a novel viewpoint. (d), (e), (f), and (g) are two close-up pairs of the textured reprojected views. Note the severe depth discontinuity behind the

door in (d) and (e) and the standing characters in (f) and (g). Although the depth discontinuities can be preserved to a large extent, the occlusion

boundaries are not well located due to the fattening effect.



8 CONCLUSIONS

In this paper, we have introduced a novel representation,
multiperspective panoramas, that efficiently captures the
parallax available in a scene or environment. Multiperspec-
tive panoramas, either concentric panoramas or swing
panoramas, are constructed by resampling and rebinning
perspective images from one or more off-center rotating
cameras.

Multiperspective panoramas are ideally suited for stereo
reconstruction of 3D scenes. Instead of using many original
images, only several rebinned multiperspective panoramas
need to be used. Unlike a collection of single-perspective
panoramas taken from different locations, there are no
preferred directions or areas where the matching fails
because the disparity vanishes.

We have also shown, both analytically and experimen-
tally, that the epipolar geometry of multiperspective panor-
amas is often well approximated by a traditional horizontal
epipolar geometry. This property allows us to apply tradi-
tional multibaseline and multiview stereo algorithms
without any modification. We have shown experimentally
that good stereo reconstructions can be obtained from such
panoramas and that the original parallax in the scene can be
recreated from just one panorama and one panoramic depth
map. It is also possible to extrapolate novel views from
original panoramas and the recovered depth map.

We have developed two novel reconstruction algorithms.
One uses a cylinder sweep algorithm. The other uses
multibaseline stereo on approximate EPIs. The cylinder
sweep algorithm only requires us to translate and scale the
panoramas during the matching phase, while 1D matching
is sufficient for the other algorithm. We have analyzed and
compared the two methods.

The novel representation of concentric multiperspective
panoramas and good quality stereo reconstruction from such
panoramas suggest a powerful new way of modeling and
rendering a large environment. Instead of using a single
globalmodel for thewhole environment, we envision using a
collection of local models for overlapping subregions of the
environment. Each subregion is represented by a small set of
multiperspective panoramas and their associated depth
maps. At each subregion, the user is free to “look around

and move a little” inside a circular region using the local
panoramas and depth maps. As the user moves from
subregion to another, a different local model is activated.
We are developing novel rendering algorithms based on this
representation that will bring the “third dimension” back
into panoramic photography and the viewing and explora-
tion of virtual environments.

APPENDIX A

TENSOR VOTING

Tensor voting [19] uses a second order symmetric tensor for
data representation and a voting methodology for data
communication. Each input site is encoded as a tensor,
propagating preferred direction in a neighborhood. In
essence, we collect a large number of tensor votes at each
input point in order to attenuate the effect of outlier noise
and analyze their direction consistency simultaneously. A
high agreement in the normal direction indicates a high
surface saliency. A high disagreement in the normal
direction indicates a surface orientation discontinuity. If
only a small number of inconsistent votes are received, the
point is an outlier. We now introduce the terminology used
in this appendix.

A.1 Representation as Tensors

A point in the 3D space can assume one of the following: a

surface patch, a discontinuity, or an outlier. A point on a

smooth surface is very certain about its surface normal

orientation (or stick tensor) while at a point junction at which

surfaces intersect has absolute orientation uncertainty (in-

dicated by a ball tensor). A second order symmetric tensor in

3D is used to represent this continuum. This tensor

representation can be visualized as an ellipsoid (Fig. 16). To

describe it, we use an eigensystem with three unit

eigenvectors V̂Vmax, V̂Vmid, and V̂Vmin and three eigenvalues

�max 	 �mid 	 �min. An ellipsoid can thus be expressed

as: ð�max � �midÞSþ ð�mid � �minÞPþ �minB, where S ¼
V̂VmaxV̂V

T
max defines a stick tensor, P ¼ V̂VmaxV̂V

T
max þ V̂VmidV̂V

T
mid

defines a plate tensor, and B ¼ V̂VmaxV̂V
T
max þ V̂VmidV̂V

T
mid þ

V̂VminV̂V
T
min gives a ball tensor (Fig. 16). These tensors define
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TABLE 1
Comparison of Our Proposed Algorithms



the three basis tensors for any ellipsoid. �max � �mid is used to

indicate surface saliency [19]. See Fig. 16.

A.2 Tensor Decomposition

The eigenvectors encode orientation (un)certainties: Stick
tensor, indicating certainty along a single direction, encodes
surface normal orientation. Uncertainties are abstracted by
two other tensors: Curve junction is produced from two
intersecting surfaces, where the uncertainty in orientation
only spans a single plane perpendicular to the tangent of the
junction curve, and is thus described by a plate tensor. At
point junctionswheremore than two intersecting surfaces are
present, a ball tensor is used since there is no preferred
orientation. The eigenvalues encode the magnitudes of
orientation (un)certainties, or the size of the ellipsoid.

In this paper, we define �max � �mid to be our surface
saliency at each tensor, with V̂Vmax indicating the normal
direction.

We perform eigensystem decomposition and derive the
following geometric interpretation to measure feature
saliencies, with the associated directions:

. Surface-ness: Surface saliency is measured by
�max � �mid,with V̂Vmax indicating thenormaldirection.

. Curve-ness: Curve saliency ismeasuredby�mid � �min,
with V̂Vmin indicating the tangent direction.

. Junction-ness: Junction saliency is measured by �min.
There is no preferred direction associated with point
junctions.

A.3 Data Communication by Voting

First, we encode the input into a set of default tensors: If the

voxel contains an input point, we associate it with a

3D default ball tensor, having all �max ¼ �mid ¼ �min,

and V̂Vmax ¼ ½1 0 0�T , V̂Vmid ¼ ½0 1 0�T , and V̂Vmin ¼ ½0 0 1�T .
Otherwise, if the voxel does not contain an input point, it is

associated with a zero tensor (i.e., zero eigenvalues and zero

eigenvectors). These input tensors cast votes or are made to

align (by translation and rotation) with predefined voting

fields. Inparticular,wedescribe the ball voting fieldhere,which

is used for depth estimation in this paper. One slice on the

x-yplaneof this 3D tensor field is shown inFig. 17. It is adense

isotropic field without any orientation preference, which

propagates all possible directions in a neighborhood with

equal likelihood. The neighborhood size is determined by the

scale of analysis or, equivalently, the size of the voting field.
When each input point has cast its tensor vote to its

neighboring voxels, by aligningwith the ball voting fields (or

votes with the ball voting field), each voxel in the volume

receives a set of tensor votes. These votes are collected, using

tensor addition, as a 3� 3 covariance matrix of second order

moment collection of all the vote contribution. Upon

eigensystem analysis, we obtain a generic saliency tensor or

ellipsoid, encoding preferred normal orientation and dis-

continuity information by the stick and the ball tensors,

respectively.
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