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Abstract—We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate

real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics

for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to

traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the

reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve “disocclusion,” when an

occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting

preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and

interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.

Index Terms—Visibility sorting, binary space partitioning, image-based rendering, segmentation.
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1 INTRODUCTION

REAL-TIME rendering of complex scenes has long been a
challenge for computer graphics. Image-based model-

ing and rendering (IBMR) techniques approach this
problem by using image data directly to decouple the
rendering time from the scene complexity. Input images
acquired from fixed viewpoints are then warped and
composited to generate novel views.

The rendering problem then reduces to that of synthesiz-
ing acceptable novel views. A typical solution is to warp the
image in a pixel-by-pixel manner [13], [31], [51]. A
potentially faster way is to exploit image space coherence
by triangulating the image and warping the unstructured
triangles instead of pixels. We show in this paper that, by
subdividing the image using 2D binary space partitioning
(BSP), we obtain a hierarchical image representation,
namely, the binary-space-partitioned image (BSPI), that allows
us to perform real-time visibility sorting entirely in the
2D image space.

The BSP representation has long been exploited in
graphics systems, especially for game applications [1], due
to its efficiency in solving the visibility [22], [21], [42], collision
detection, and shadow generation [14], [15] problems.

Methods for generating good BSP trees are typically studied
as a part of computational geometry (see, e.g., [6], [44], [2],
[16], [46], [61], [9]). On the other hand, the BSP representation
has also been used to encode two-dimensional images [50],
[48], [49] or evenvolumedata [55]. In this paper,we show that
the 2D BSPI is an efficient approach to visibility computation
for image-based rendering.

The primary contribution of this paper is twofold:

. A hierarchical image-based representation, the Bin-
ary-Space-Partitioned Image (BSPI), is proposed to
efficiently encode data coherence in image space and
to resolve visibility in linear time. The 2D BSPI is
actually an embedding of a 3D BSP tree. Hence,
visibility sorting can be performed to correctly and
efficiently render novel images by traversing the
embedded BSP tree. To handle scenes with occlu-
sions, multiple BSPIs can be used.

. By using epipolar geometry, we show that visibility
sorting can be performed completely in 2D (rather
than 3D) without using any 3D information such as
depth or disparity. No depth buffering [10] is
required.

The secondary contribution consists of automating the
whole process, improving the rendering quality, and also
providing the capability to handle real and noisy data
obtained from stereo, motion, and sensing devices:

. We make use of tensor voting [40] to automatically
refine noisy reference images and segment them into
a tree structure based on region partition bound-
aries. Tensor voting determines the edge locations
by separating coherent pixel groups, thus subdivid-
ing the image into triangles rather than pixels. This is
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achieved by the robust detection of discontinuity
curves [60].

. The BSPI is a unified approach for a variety of image
data, including range images, stereo image pairs,
and image sequences. To demonstrate its wide
applicability and practicability, all examples used
in this paper are real rather than synthetic data.

Our work is closely related to the work by Subramanian
and Naylor [55] on representing images using a BSP tree.
The focus of our work is on resolving visibility in image
space.

2 RELATED WORK

2.1 Visibility in Geometry-Based Computer
Graphics

Hidden-surface removal is a classical problem in computer
graphics. Analytic studies of visibility algorithms have been
carried out in [37], [41]. Related methods can be roughly
subdivided into three categories: image-space, object-space,
and hybrid methods.

Image-space methods resolve visibility after projecting
objects onto the screen. Depth buffering [10], [29] keeps track
of a per-pixel depth value to determine the closest object
fragment. It is the most popular approach used in current
graphics hardware design. On the other hand, while scanline
algorithms [65], [7], [8], [64], [52], [17] exploit scanline
coherence, the required data structure is relatively complex.

Object-space algorithms resolve visibility in the 3D object
space. The 3D scene is first partitioned and represented by
various hierarchical structures such as cells [3], [59], [58],
octrees [26], [56], kd-trees [33], or BSP trees [22], [21], [12] in
a preprocessing stage. During rendering, the visibility is
resolved by traversing the hierarchical structures. A back-
to-front ordering can also be generated in some cases [45],
[54], [22], [21] and fed to a Painter’s algorithm for rendering.
Moreover, the hierarchical nature of these representations
also facilitates fast culling of invisible objects in a complex
scene in order to achieve interactive frame rates [3], [23],
[24], [59], [58].

Among these structures, the BSP tree is widely used due
to its robustness and efficiency. Our proposed BSPI method
can be regarded as an image-based version of the classical
BSP-tree-based visibility algorithm. For a brief description
of BSP trees, consider the example in Fig. 1. In each
iteration, a polygon is chosen as the root node of the current

binary subtree. It is then extended to form a partition plane
(hyperplane) that divides the scene into two half-spaces.
The resultant BSP tree is shown in the upper part of Fig. 1b.
In general, there is no restriction on the selection of partition
planes. The plane need not contain a polygon. To render the
view at the eye position in Fig. 1a, a variant of the inorder
traversal (OðnÞ running time where n is number of nodes in
the tree) of the BSP tree can be used to generate the drawing
order from back to front (Fig. 1b, bottom). Note that this
back-to-front drawing order is essential for rendering
transparent objects correctly, which depth buffering cannot
accommodate. In addition, the algorithm is robust and view
independent. Its efficiency explains why it is favored in the
design of real-time computer games [1]. Variants can also be
applied to shadow generation [14], [15], surface modeling
[42], and visibility sorting in dynamic scenes [61].

Hybrid methods utilize information in both image space
and object space. Zhang et al. [66] used both the bounding
volume in object space and the occlusion map in image
space to compute visibility. By combining hierarchical
polygon tiling and a hierarchical visibility algorithm,
Greene [28] developed a fast algorithm, based on Warnock’s
work [63], to render highly complex scenes. Naylor [43]
proposed a 2D BSP image tree to represent the 2D projection
of 3D polyhedral models in a continuous form. The
representation proposed in his paper resembles ours since
we also construct a 2D BSP tree. While visibility in Naylor’s
approach is computed in 3D object space, we perform
visibility sorting entirely in 2D image space using 2D input
images rather than 3D geometric models.

2.2 Visibility in Image-Based Computer Graphics

IBMR systems acquire images as inputs. In light field
rendering [34] and the lumigraph method [27], the visibility
problem is treated as an interpolation problem. When the
image is equipped with depth, visibility issues can be
resolved with depth-buffering [13]. If the images (sprites)
are also associated with underlying 3D geometric models,
visibility sorting [33], [54] can be performed in object space.
Sometimes images are associated with coarse geometric
primitives [18]. In this case, visibility can be computed with
a standard depth-buffering algorithm.

However, there is no guarantee that the depth informa-
tion or geometric models will always be available. Alter-
natively, disparity or depth can be recovered [31], [19] from
stereo pairs or motion data. This information cannot be
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Fig. 1. An example of a binary space partitioning. (a) The scene (top view). (b) The BSP tree yielding the visibility order corresponding to

the eye in (a).



directly used in the geometry-based visibility algorithms

above to resolve visibility. In some cases, an intermediate

surface model (pseudo-object), has to be reconstructed,

introducing extra overhead. An alternate approach is to

directly use the disparity to approximate the true visibility

solution using a tailor-made rendering engine [35].
Starting from basic epipolar geometry, McMillan and

Bishop [38] found that, even when the true depth is not

available, visibility-correct novel views can still be gener-

ated if the epipole is known. Fig. 2 illustrates the basic idea.

Positions c and e are the reference and the desired

viewpoints, respectively. Reference image Ic contains two

pixels, i1 and i2, and their corresponding points in 3D space

are p1 and p2, respectively. The projection of e onto the

reference image is the epipole (positive in this example,

denoted by a plus sign). When we generate the novel view

at e, even though exact positions of p1 and p2 may not be

known, the correct visibility can still be ensured if we

always draw i1 before i2. Notice that p1 cannot occlude p2

since i1 is farther away from the positive epipole than i2;

thus, we can determine an occlusion-compatible drawing

order for pixels from the position of epipole even though no

absolute depth information is available.

The same visibility algorithm is also used in later image-
based rendering systems [53], [11], [36]. However, since this
original occlusion-compatible drawing order is only applic-
able to pixel-sized image entities, the rendering is less
efficient than it could be. Fu et al. [20] extended this
drawing-order strategy to arbitrarily sized triangles and
made use of texture-mapped triangles to speed up render-
ing. However, cycles may exist in the triangle drawing
order in some rare cases, leading to incorrect visibility
determination. The underlying reason is that the triangle-
based ordering rule cannot guarantee a partial order.

3 OVERVIEW

Our system overview is shown in Fig. 3. The input consists
of either a range image, a stereo pair, or a video sequence. A
BSPI is then produced and rendered at novel views. The
major steps of the system are as follows:

1. Automatic preprocessing estimates and cleans up
the given depth or disparity maps (Section 5.1).

2. Feature extraction by tensor voting (Section 5.2).
3. BSPI generation (Section 5.3).
4. BSPI rendering (Section 5.4).

The rest of this paper is organized as follows: In Section 4,
we first explain how the BSPI ensures correct hidden
surface removal, the main theoretical contribution of this
paper. We detail the four steps in Section 5. Finally, we
present results on a variety of input images in Section 6. A
review of the tensor voting method is given in the
Appendix.

4 THE BINARY-SPACE-PARTITIONED IMAGE

REPRESENTATION

IBMR research motivates us to study the efficient rendering
of image-based data that may not contain geometry
information. To synthesize the desired images, we need to
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Fig. 2. The drawing order between two pixels that lie on the same

epipolar line.

Fig. 3. Overall approach: (a) the flowchart and (b) a running example ANGEL. (Input image and initial depth map courtesy of the Signal Analysis and

Machine Perception Laboratory, The Ohio State University).



solve two subproblems: 1) where image pixels move to and
2) which pixel is in the front if more than one pixel moves to
the same place.

Subproblem 1) can be solved if depth information is
available. The new pixel positions can be calculated, for
example, by reprojection [13]. This problem can also be
solved if the disparity of each pixel is known. One can warp
the reference image pixel-by-pixel [38], [53], [11], [36] or
triangle-by-triangle [20] while exploiting pixel coherence.

Subproblem 2) also can be solved if accurate depth
information is known. Depth-buffering is the simplest
method. However, efficient rendering of high-resolution
images depends on the performance of graphics hardware
as a per-pixel depth comparison is needed. If only disparity
information can be recovered, the usual way is to fit a
3D surface (pseudo-object) and use this geometric surface
for rendering. Recovering and rendering this intermediate
pseudo-object introduces additional overhead.

In this paper, we focus on subproblem 2), the visibility
problem, with the assumption that subproblem 1) can be
handled by pixel reprojection or disparity interpolation. An
efficient algorithm based on the BSP visibility algorithm is
proposed. No intermediate pseudo-object needs to be
constructed and the algorithm is also independent of the
resolution of the final desired image. It operates on convex
polygonal primitives (not necessarily only triangles), hence
taking advantage of the coherence between adjacent pixels.
The efficiency of the BSP algorithm is evidenced by its
common applications in computer game kernels [1], despite
the wide availability of depth-buffer-based graphics hard-
ware. We will show in the following sections that the
proposed algorithm preserves the efficiency of the original
geometry-based BSP algorithm and achieves real-time
visibility sorting.

4.1 BSP in 2D

Every image reveals the visible surfaces seen from its
corresponding viewpoint. Fig. 4a shows the visible surfaces
of a cube. Taking a 2D edge in the image plane, we can
create an extended partition plane containing the reference
viewpoint (the eye) and the edge (the bold line) on the
image plane (Fig. 4b). There is a one-to-one correspondence
between the partition plane and the 2D edge on the
reference image. They are projection-equivalent with
respect to the reference viewpoint. By recursively partition-
ing the 2D reference image into 2D convex polygons (Fig. 5),

we can create a corresponding BSP tree in 3D. We call the
2D binary-space-partitioned image the BSPI.

Note that the original BSP visibility algorithm does not
restrict the selection of partition planes. What we have done
in the BSPI is to constrain all partition planes to intersect at
the reference viewpoint, as illustrated in Fig. 6, which
depicts the top view of a simplified scene. The gray region
indicates the space inside the field of view. The thick lines
radiating from the reference viewpoint are the partition
planes. The BSPI representation contains an implicitly
embedded 3D BSP tree and, hence, it inherits the
corresponding visibility sorting capability.

4.2 Visibility Sorting in 2D

Given the desired viewpoint as shown in Fig. 6, we need to
warp the reference image to generate the related novel
image. Since we have subdivided the reference image into a
set of 2D convex polygons, warping is a process of moving
and distorting these convex polygons. To ensure correct
visibility, we can derive a drawing order from the BSPI. Just
like traditional 3D BSP visibility, the visibility drawing
order can be derived by traversing the BSP tree embedded
in the BSPI. Recall that, during the tree traversal, we need to
check to see on which side of the partition plane the desired
viewpoint is found. Interestingly, we can carry out all such
checks in 2D by projecting the desired viewpoint onto the
reference image plane. The projection is the epipole.

To illustrate the idea, we show the 2D analogy (Fig. 7). In
2D, the 3D partition plane degenerates to a partition line
(the thick blue line in Fig. 7). Similarly, the image plane
degenerates to a line (symbolized by a horizontal line in
Fig. 7). The desired viewpoint e is projected onto the
reference image plane. In Fig. 7a, the projection is a positive
epipole, since the desired viewpoint is in front of the
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Fig. 4. Forming the partition plane. (a) The reference image and (b) the

partition plane formed by connecting the reference viewpoint and an

edge in the image.

Fig. 5. Recursive partition of the 2D reference image.

Fig. 6. Partition planes (thick dark (blue) lines) are all constrained to

pass through the reference viewpoint (top view). The gray region

indicates the space inside the field of view.



reference viewpoint c.1 Since all partition planes (lines in
2D) are constrained to intersect at the reference viewpoint,
we can always determine the drawing order by checking on
which side of the 2D partition lines the positive epipole
resides. Those convex polygons (projections of objects on
the image plane) on the opposite side of the positive epipole
should be drawn first as these objects can never occlude
objects on the same side as the positive epipole.

On the other hand, as shown in Fig. 7b, when the desired
viewpoint e is “behind” the reference viewpoint c (in the case
of the negative epipole), thedesiredviewpointe is actually on
the other side of the partition plane (the thick blue line)
because all partition planes must pass through the reference
viewpoint c. Hence, the drawing order is reversed. The
rationale here is that, by projecting everything (including the
viewpoints and the partitioning lines/planes) onto the image
plane, we can effectively compute the visibility order of
image space triangles in the 2D image space.

4.3 Comparison with Related BSP Algorithms

Our BSPI method is inspired by McMillan and Bishop’s
occlusion-compatible drawing order [39], which also makes
use of epipolar geometry. In another classic work [4],
drawing orders and grid splitting are used to ensure
visibility correctness. Table 1 presents a comparison
between the properties of the occlusion-compatible drawing
algorithm and the BSPI.

5 THE BSPI RENDERING SYSTEM

Now that we have outlined the theory behind the BSPI
method, we next describe the four stages of the BSPI system
implementation. The system flowchart in Fig. 3 provides an
overview, and we use the ANGEL image in that figure as the
running example to facilitate discussion.

5.1 Preprocessing (Depth Estimation and
Noise Filtering)

If depth information is unavailable, we perform a pre-
processing step to estimate the scene depth. Note that depth
is used in preprocessing only and no depth sorting is
needed in subsequent novel-view rendering. We consider
two common cases for which we have images but no initial
depth information: 1) a stereo pair and 2) an image
sequence. Computer vision algorithms for stereo and

motion-sequence data can be applied to estimate the
corresponding depth maps. Alternatively, if a noisy initial
depth map is available (see, e.g., ANGEL’s noisy depth data,
Fig. 3b), it can be cleaned up by rejecting outliers and
inferring missing details (see, e.g., ANGEL’s refined depth
map, Fig. 3b).

In this work, tensor voting [40] is used to estimate the
depth or disparity maps from stereo or motion data, and to
clean up noisy depth maps. We will not repeat here the
details of customizing general voting frameworks to infer
depth maps from stereo and motion data, but refer
interested readers to [32] for depth from stereo and [25]
for depth from motion. We will, however, supply an
intuitive illustration of the generic methodology that is
used to infer missing details and reject outliers. Additional
information on tensor voting can be found in [40]. Detailed
pseudocode for the methods we employ is provided in the
Appendix; the core C++ implementations of the pseudo-
code segments (about 200 lines of code) are available in the
library TVlib (see Section 7). The tensor voting algorithm can
be implemented efficiently and it runs in OðnkÞ time, where
n is the number of points (pixels) and k is the size of
neighborhood or the scale of the analysis.

Tensor voting is a computational framework for feature
extraction and segmentation. Tensors are used for data
representation and they “communicate” with each other via
a voting algorithm. In essence, we want to answer the
following question: Given a point P with a finite neighbor-
hood, what is the most likely normal direction at P , if there
is any? Consider an analogy in particle physics, two
particles vibrate and each particle emits a waveform to
communicate with the other particle. Their vibrations
reinforce each other if the particles are vibrating at
compatible frequencies, resulting in a maximum (or reso-
nance). The ball voting field, described in the Appendix, is
used to mimic this communication process.

Fig. 8a shows a scenario with an outlier E and a missing
data point. Suppose points A, B, C, D, F , G, H, and I all lie
on an underlying smooth curve. Inspired by the particle
physics analogy, we want the tangent directions at each
point to be compatible to produce a smooth curve; for
example, the tangent directions at all points on a straight
line should be equal.

How do we find the compatible tangent direction, say �,
at a particular point C? In tensor voting, all points
communicate with each other by the ball voting field,
which suggests desirable tangent directions. After C has
collected a set of suggested tangent directions, principal
component analysis is performed to determine an optimal �.
The collected votes can be understood as a histogram: In
Fig. 8b, a maximum occurs at � after vote collection for the
point C (the situation is, of course, oversimplified in this
illustration; in practice, we see a distribution of angles such
as that suggested by the dotted curve).

To detect outliers, we look for atypical tensor voting
histograms like that shown in Fig. 8c. Since E receives a set
of incompatible directions from the other eight points, no
salient maximum can be found in the histogram.

At x ¼ 6, there is a missing data point in Fig. 8a. All the
eight points cast directional votes to the set of locations
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1. Whether the epipole is positive or negative depends on whether the
projection is formed by intersection of positive epipolar ray (the vector from
the reference viewpoint toward the desired viewpoint) or negative epipolar
ray (the vector from the desired viewpoint toward the reference viewpoint)
with the reference image plane.

Fig. 7. Positive and negative epipoles defined relative to the reference

viewpoint (center of projection) and the desired viewpoint.



fðx; dÞjd 2 ½0; D� is the set of quantized depthsg. By the con-

tinuity constraint imposed by the ball voting field, ð6; 17Þ is
the solution. A salient maximum should be found in its

corresponding histogram after tensor voting. Consequently,

we not only reject outliers, but can also fill in missing details

and infer probable tangent (or normal) directions.

5.2 Feature Extraction

Once a (cleaned) depth map is available, we perform

feature extraction on the depth map so that illumination,

colors, and textures are no longer problematic. The output

feature curves indicate the loci of the depth discontinuities

(see ANGEL’s depth discontinuities, Fig. 3), along which we

may choose to place the partition lines of the BSPI.
Next, we illustrate the use of tensor voting to localize

feature curves (for details see [60]). We use the RENAULT

example in Fig. 9 to illustrate an underlying depth surface

that is piecewise smooth but not closed. Our goal is to label

the depth discontinuity curves automatically (drawn in bright

red in Fig. 9).
Consider a finite neighborhood around a point

P ¼ ðx; y; dÞ, where ðx; yÞ are the image coordinates and d

is the depth. Note that the normal direction at P , and thus

its tangent plane, is available after preprocessing. We collect

the points within P ’s neighborhood such that they lie on a

smooth surface. This collection is projected onto P ’s tangent

plane. To check if a neighboring point is smoothly

connected to P , we arrange for the points to communicate

with one another using the stick voting field (defined in the

Appendix).
Finally, we consider the vote distribution of the projected

points. If the distribution is uneven, we label the point as a

boundary point (Fig. 10).

5.3 BSPI Generation

Since we apply tensor voting in the 3D x-y-d volume in

order to enforce surface smoothness, we perform the

following steps before building a BSPI in the 2D image

domain (see, e.g., ANGEL’s BSPI, Fig. 3):

1, Project and quantize the discontinuity curves
obtained in Section 5.2 onto the 2D image domain.
Let the projected set be X ¼ fðx; yÞg as illustrated in
Fig. 11a.

2, Apply tensor voting to X and collect directions at

every pixel in the image domain. This process

generates our dense 2D CMap map. Each pixel in

a CMap has an associated tuple ðsp; t̂tpÞ, where sp is a

scalar indicating the saliency or confidence level for

the presence of a salient curve and t̂tp is a unit vector

indicating the 2D tangent direction if a curve exists

(see Fig. 11b).

Before calling the recursive procedure BSPI whose

pseudocode is given below, we initialize the structure

bsptree to be empty, and set the structure polygon to be the

rectangular 2D image domain.

BSPI (polygon, bsptree, CMap) {

Pick a candidate set Y :

Y ¼ fp ¼ ðsp; t̂tpÞjsp � some saliency value and

p 2 polygong
if (Y ¼ ;) return
Compute scorep for all p 2 Y (score is defined below)

Partition polygon into P1 [ P2 [ f‘g at pixel q 2 Y ,

such that scoreq is maximum.

‘ is the partition line, whose gradient is given by t̂tq.

bsptree bsptree [ f‘g
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TABLE 1
Comparison between the Occlusion-Compatible Drawing Algorithm and the BSPI



Inhibit pixels in CMap close to ‘

BSPI (P1, bsptree, CMap)

BSPI (P2, bsptree, CMap)

}

Therefore, Y is the set of pixels with high curve

saliencies sp. In other words, partition lines should pass

through these pixels in order to respect the depth disconti-

nuities. In each recursive step, each p 2 Y generates a

candidate partition line ‘p. We quantize ‘p in the image

domain and set R ¼ I � Y , where I is the set of all image

pixels. R is therefore the set of region pixels and

corresponds to smooth depth surfaces. We penalize ‘p if it

trespasses on the interior of an object, i.e., if ‘p \R 6¼ ;.
Therefore, scorep is defined as

scorep ¼ �
X

e2E
dp;ee� �

X

r2R
r;

where �; � > 0. dp;e is the inner product of ‘p and t̂te,

indicating their orientation consistency.
When we have computed ‘ that gives the maximum

score, an envelop of pixels surrounding the quantized ‘ is

inhibited in order to avoid producing elongated partitions

in later recursions. Convex polygons at leaf nodes are then

triangulated to support the rendering operation.
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Fig. 8. (a) Rejecting outliers and inferring missing details by tensor voting. (b) Histogram for point C after tensor voting: � is the compatible tangent

direction at point C producing a smooth curve. (c) Histogram for point E after tensor voting: No maximum is produced since E is an outlier.

Fig. 9. Two views of the depth surface of the RENAULT model. The bright red curves are depth discontinuity and boundary curves.

Fig. 10. Automatic depth discontinuity detection by tensor voting:

uneven distribution of surfel votes.



5.4 BSPI Rendering

Rendering a BSPI consists of two steps: visibility sorting
and warping. Visibility sorting begins at the root node of
the BSPI and the order of subtree traversal depends on the
location of the novel view, as discussed in Section 4. Note
that, since the BSPI is a static data structure, no write-back
to memory is needed when resolving visibility as is the case
for depth buffering. In contrast, straightforward compar-
ison at internal nodes is sufficient to produce the correct
warping order. Two novel views of the rendered result and
the underlying drawing orders of triangles of ANGEL are
shown in Fig. 3, using a color code to be explained below.

During the BSP tree traversal, whenever we visit a leaf
node, we warp and draw the polygon that corresponds to
the current leaf node. Warping can be done either using the
2D warping equation [36] or by reprojecting vertices onto
the image planes of the novel view (Fig. 12). Consequently,
we can draw the warped polygons with the reference
images texture-mapped onto them. Finally, we apply a
standard feathering technique that adjusts the alpha value
at pixels along edge discontinuities to avoid undesirable
artifacts and enhance the image quality.

6 RESULTS

To demonstrate the effectiveness and efficiency of the
proposed method, we create BSPIs from three different
kinds of real images: single-view range images with
corresponding color images (Fig. 16), stereo image pairs
without depth (Fig. 17), and motion sequences without

depth (Fig. 18 and Fig. 19). Readers are encouraged to visit
the Web page listed in Section 7 for the video that explains
our algorithm with running examples and animations.

Fig. 16a shows the single-view image of a human FACE

with its given depth in Fig. 16b (captured by a laser range
finder). Although the captured depth data is quite accurate,
holes exist due to the scanner’s inability to capture surfaces
with particular reflectivities. Tensor voting is applied to fill
these gaps and remove noise. The resulting BSPI is shown
in Fig. 16c. To illustrate the order of partition steps, we
color-code the partition lines. Partition lines generated in
earlier iterations are coded in red (brighter), while those in
later iterations are in blue (darker). As shown in Fig. 16c, the
first few partitions are done at the silhouette of the face,
where higher depth discontinuities are located. Fig. 16d and
Fig. 16e show the rendered novel views. Their correspond-
ing drawing orders are illustrated in Fig. 16f and Fig. 16g by
color-coded triangles. Triangles that are to be drawn earlier
are darker, while those drawn at a later stage are brighter.
Hence, foreground triangles are brighter than those in the
background. Note how the nose occludes the other parts of
the face in the rendered images. The average frame rate for
the rendering shown under the figures is measured on a PC
with a Pentium III 750MHz processor and 128MB RAM
without any graphics accelerator installed. Thus, our
method offers real-time rendering on ordinary PCs. It is
worth noting that, due to the hierarchical nature of the BSPI,
we can naturally introduce level-of-detail control to further
speed up the rendering. Another example of a range image
is the angel sculpture ANGEL shown in Fig. 3b.

Fig. 17 shows an input stereo image pair for the
RENAULT piece, a manufacturing part. No depth is given.
Disparity is recovered from the stereo pair. The recovered
depth may not be Euclidean, but can be used for generating
novel views from different viewpoints. As before, we color-
code the partition lines (Fig. 17c) and the triangles (Fig. 17f
and Fig. 17g) to show the partition process and drawing
orders, respectively.

Fig. 18 demonstrates the use of multiple BSPIs to handle
occlusion inherent in motion data, the FLOWER GARDEN

sequence in our case. A portion of the flower garden scene
is occluded by a tree trunk in the reference frames. The
initial depth map is obtained from three frames [25]. First, a
layered and textured description involving the foreground
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Fig. 11. (a) Projecting the discontinuity curves. (b) CMap is produced after tensor voting. Here, scorep > scoreq since ‘q \R 6¼ ;. Here, ‘p is chosen

as the partition line.

Fig. 12. Reprojecting vertices of polygons to synthesize novel views.



and the background is obtained by tensor voting. Texture
synthesis in the presence of occlusion is detailed in [30].
Note that this texture synthesis preprocessing step is also
automatic. Two BSPIs, which we call layered BSPIs, are
obtained. During rendering, the background BSPI is
traversed first, followed by the foreground BSPI. Our
system can be readily scaled up to handle additional
layered BSPIs. Since the drawing order has been resolved
by the layered descriptions, rendering multiple BSPIs does
not need any depth sorting. Note that our method alleviates
the problem of “disocclusion,” when a previously occluded
part of the scene becomes visible at a novel viewpoint. No
gaping hole is observed in our result. The same example has
been used by many researchers (layered representation in
[62] and sprites in [5], among others). To synthesize a novel
view, the depth layers or sprites are rendered at a given
viewpoint. No depth sorting is required in the BSPI
rendering approach.

Note that, using tensor voting, constructing a BSPI from
the raw depth or disparity data takes only a few minutes.
This varies according to the noisiness and complexity of the
data set. Like the BSPI warping, all the processing is done in
2D, with the exception of the feature curve inference. The
latter is performed in disparity space in order to enforce the
local smoothness constraint. Still, this can be done very
efficiently since we do not fit any pseudo-object or disparity
surface for curve inference. The preprocessing step is
performed only once, including the BSPI generation. Once
the BSPI is generated, it can be used by the BSPI warper to
yield novel views efficiently.

Table 2 tabulates some sample preprocessing times of the
resultswepresented.All preprocessing timesweremeasured
on an IBM ThinkPad PIII 850 MHz with 512M RAM. The
mean preprocessing rate for depth estimation and noise
filtering (Section 5.1) is 10,000 points per minute. Proces-

sing times for feature extraction (Section 5.2) and BSPI
generation (Section 5.3) are shown. These typical times
show that our automatic preprocessing, which is run once,
takes only a few minutes. The height of the BSP tree
generated is also reported in the table.

7 WEB AVAILABILITY

Interested readers are encouraged to visit the following
Web site for an accompanying video explaining the BSPI
algorithm with running examples presented in this paper:
http://www.cse.cuhk.edu.hk/~ttwong/papers/bspi/
bspi.html. For the detailed implementation of tensor voting,
readers can obtain the core library of C++ code from http://
www.cs.ust.hk/~cktang/TVlib.zip.

8 CONCLUSION

In this paper, we present the BSPI—a novel IBMR approach
to represent and render range images, stereo image pairs,
and motion data. No intermediate pseudo-objects need to
be constructed for the rendering. The BSPI representation
implicitly embeds a projection-equivalent 3D BSP tree into
the 2D image plane and thus actually supports a version of
the general 3D BSP visibility algorithm. We utilize epipolar
geometry to perform visibility sorting completely in
2D image space rather than 3D object space. Our results
demonstrate the efficiency and robustness of the method.
The BSP representation of images also facilitates efficient
image-based data compression [49] and image retrieval [47].
To handle noise in the input data, we extend the tensor
voting algorithm for the data cleanup process and incorpo-
rate the results into the recursive BSP partitioning process.
This technique enhances the noise tolerance in the BSPI
partitioning stage. To handle disocclusion, we combine
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TABLE 2
Sample Preprocessing Times for BSPI Generation

Fig. 13. Ellipse: a second order symmetric tensor in 2D. Fig. 14. The design rationale of the stick voting field.



multiple BSPIs from the same reference viewpoint, giving a

layered representation of the scene. We also obtain this

representation using tensor voting in the automatic pre-

processing step.

In the future, we plan to extend the layering method to

combine multiple BSPI’s from multiple viewpoints. Layer-

ing techniques similar to the Layered Depth Image (LDI)

method [53] can be exploited to combine multiple BSPIs

corresponding to different viewpoints. This is useful for fast

object surface reconstruction using data from single-view

laser range scanners. Currently, we assume surfaces are

Lambertian; view-dependent texture mapping could be

used to remove this limitation. In addition, it would be

beneficial to apply the BSPI partitioning method directly to

the optic-flow field, thus avoiding the loss of information

when converting to depth.
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Fig. 15. The directions and strengths of the stick and ball voting fields.

Fig. 16. Results on FACE. Average frame rate: 20.844 fps and triangle
count: 2,703. Input image and initial depth map courtesy of the Signal
Analysis and Machine Perception Laboratory, The Ohio State Uni-
versity. (a) Reference image, (b) recovered depth, (c) BSPI, (d) novel
view, (e) novel view, (f) drawing order, (g) drawing order.

Fig. 17. Results on RENAULT. Average frame rate: 52.098 fps and

triangle count: 1,450. Input images and initial depth map courtesy of Lee

and Medioni. (a) Stereo pair, (b) recovered depth, (c) BSPI, (d) novel

view, (e) novel view, (f) drawing order, (g) drawing order.



APPENDIX A

TENSOR REPRESENTATION

A tensor encapsulates both direction certainty and uncer-

tainty. Consider a point in 2D space. It belongs to a curve

(absolute certainty in a single direction), is a point junction

(absolute uncertainty in all directions), or is an outlier. The

2D stick and ball tensors are used, respectively, to encode

the two extreme cases. The whole continuum can therefore

be described as an ellipse or, equivalently, as a second order

symmetric tensor in 2D: Mathematically, it is a 2� 2

eigensystem, with two unit eigenvectors êe1 and êe2 and

two eigenvalues �1 � �2 (see Fig. 13).

The eigenvectors represent the tangent direction and

the eigenvalues indicate the magnitudes of orientation

(un)certainties since the latter encode the size of the

ellipse. The equation of a second order symmetric tensor

is ð�1 � �2ÞSþ �2B, where S ¼ êe1êe
T
1 defines a stick tensor

and B ¼ êe1êe
T
1 þ êe2êe

T
2 defines a ball tensor. If normal or

tangent information is unavailable initially, we encode the

input points as ball tensors. Take the 2D case as an example.

Then, each point ðx; yÞT is associated with an eigensystem

with �1 ¼ �2 ¼ 1, êe1 ¼ ½1 0�T , êe2 ¼ ½0 1�T . After encoding,

the input points communicate with one another via the ball

voting field.

APPENDIX B

THE STICK AND BALL VOTING FIELDS

We want to answer the following question: For a given point

P in space and normal ~NN at the origin, what is the most likely

normal at P if there is a smooth surface interpolating O (the

origin) to P , and perpendicular to ~NN? Fig. 14 illustrates the

situation in 3D. We claim that the osculating circle

connecting O and P is the most likely curve since it keeps

the curvature constant along the hypothesized circular arc.

See [40] for detailed mathematical derivation. The most

likely normal direction at P is thus given by the normal to

the osculating circle at P . The length of the normal vector at

P , which represents the surface saliency of the vote, is

inversely proportional to the arc length OP and also to the

curvature of the underlying circular arc. In spherical

coordinates, the decay of the field takes the following form:

DF ðr; ’; �Þ ¼ e�
r2þc’2

�2

� �
; ð1Þ

where r is the arc length OP , ’ is the curvature, and � is the

size of neighborhood or scale of analysis. The set of normals

at all Ps in the 2D space constitutes the stick voting field VS .
The ball voting field VB is obtained by rotating and

integrating vote contributions of the 2D stick voting fields

since all directions are equally likely: VB ¼
R �
0 VSd�. Fig. 15

shows the shapes, directions, and strengths of the stick and

the ball voting fields in 2D.
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Fig. 18. Results on FLOWER GARDEN. Layered BSPIs are used to address “disocclusion.” Average frame rate: 33.459 fps and triangle count: 744.

Input images and initial velocity map courtesy of Gaucher and Medioni. (a) Image sequence, (b) recovered background depth, (c) recovered

foreground depth, (e) background BSPI, (f) foreground BSPI.



APPENDIX C

ALGORITHMS OF 2D TENSOR VOTING

This section describes the general tensor voting algorithm

[57]. The voter makes use of GENTENSORVOTE (shown in

Fig. 20) to cast a tensor vote to vote receiver (votee). Normal

direction votes generated by GENNORMALVOTE (shown in

Fig. 21) are accumulated using COMBINE (also shown in
Fig. 21). A 2� 2 outTensor is the output. The votee thus
receives a set of outTensor from voters within its neighbor-
hood. All outTensors are summed up by tensor addition,
which is simply ordinary 2� 2 matrix addition. This
resulting matrix is equivalent to an ellipse.
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[24] T.A. Funkhouser and C.H. Séquin, “Adaptive Display Algorithm
for Interactive Frame Rates during Visualization of Complex
Virtual Environments,” SIGGRAPH ’93 Conf. Proc., J.T. Kajiya, ed.,
vol. 27, pp. 247-254, Aug. 1993.

[25] L. Gaucher and G. Medioni, “Accurate Motion Flow Estimation
with Discontinuities,” Proc. Seventh Int’l Conf. Computer Vision
(ICCV ’99), pp. 695-702, Sept. 1999.

[26] A.S. Glassner, “Space Subdivision for Fast Ray Tracing,” IEEE
Computer Graphics and Applications, vol. 4, no. 10, pp. 15-22, Oct.
1984.

[27] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The
Lumigraph,” Computer Graphics Proc., Ann. Conf. Series, SIG-
GRAPH ’96, pp. 43-54, Aug. 1996.

[28] N. Greene, “Hierarchical Polygon Tiling with Coverage Masks,”
SIGGRAPH ’96 Conf. Proc., pp. 65-74, Aug. 1996.

[29] N. Greene and M. Kass, “Hierarchical Z-Buffer Visibility,”
Computer Graphics Proc., Ann. Conf. Series, pp. 231-240, 1993.

[30] J. Jia and C.-K. Tang, “Texture Synthesis in the Presence of
Discontinuities from Noisy Data,” Proc. Eurographics Rendering
Workshop 2002, submitted.

[31] S. Laveau and O. Faugeras, “3-D Scene Representation as a
Collection of Images,” Proc. 12th Int’l Conf. Pattern Recognition
(ICPR ’94), pp. 689-691, Oct. 1994.

[32] M.-S. Lee and G. Medioni, “Inferring Segmented Surface Descrip-
tion from Stereo Data,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition (CVPR ’98), pp. 346-352, June 1998.

[33] J. Lengyel and J. Snyder, “Rendering with Coherent Layers,”
Computer Graphics Proc., Ann. Conf. Series, SIGGRAPH ’97, pp. 233-
242, Aug. 1997.

[34] M. Levoy and P. Hanrahan, “Light Field Rendering,” Computer
Graphics Proc., Ann. Conf. Series, SIGGRAPH ’96, pp. 31-42, Aug.
1996.

[35] M. Lhuillier and L. Quan, “Image Interpolation by Joint View
Triangulation,” Proc. Computer Vision and Pattern Recognition
(CVPR), 1999.

[36] W.R. Mark and G. Bishop, “Memory Access Patterns of Occlusion-
Compatible 3D Image Warping,” Proc. 1997 Siggraph/Eurographics
Workshop Graphics Hardware, pp. 35-44, Aug. 1997.

[37] M. McKenna, “Worst-Case Optimal Hidden-Surface Removal,”
ACM Trans. Graphics, vol. 6, no. 1, pp. 19-28, Jan. 1987.

[38] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-
Based Rendering System,” Computer Graphics Proc., Ann. Conf.
Series, SIGGRAPH ’95, pp. 39-46, Aug. 1995.

[39] L. McMillan, “An Image-Based Approach to Three-Dimensional
Computer Graphics,” PhD thesis, Dept. of Computer Science,
Univ. of North Carolina at Chapel Hill, Chapel Hill, 1997.

[40] G. Medioni, M.-S. Lee, and C.-K. Tang, A Computational Framework
for Feature Extraction and Segmentation. Amsterdam: Elseviers
Science, 2000.

[41] K. Mulmuley, “An Efficient Algorithm for Hidden Surface
Removal,” Computer Graphics (Proc. SIGGRAPH ’89), vol. 23,
no. 3, pp. 379-388, July 1989.

[42] B. Naylor, J. Amanatides, and W. Thibault, “Merging BSP Trees
Yields Polyhedral Set Operations,” SIGGRAPH ’90 Conf. Proc.,
vol. 24, pp. 115-124, Aug. 1990.

[43] B.F. Naylor, “Partitioning Tree Image Representation and Gen-
eration from 3D Geometric Models,” Proc. Graphics Interface ’92,
pp. 201-212, May 1992.

[44] B.F. Naylor, “Constructing Good Partitioning Trees,” Proc.
Graphics Interface ’93, pp. 181-191, May 1993.

[45] M.E. Newell, R.G. Newell, and T.L. Sancha, “A Solution to the
Hidden Surface Problem,” Proc. ACM Ann. Conf., vol. I, pp. 443-
450, 1972.

[46] M.S. Paterson and F.F. Yao, “Efficient Binary Space Partitions for
Hidden-Surface Removal and Solid Modeling,” Discrete &
Computational Geometry, vol. 5, pp. 485-503, 1990.

[47] G. Qiu and S. Sudirman, “Color Image Coding, Indexing and
Retrieval Using Binary Space Partitioning Tree,” Proc. IEEE Int’l
Conf. Image Processing, Oct. 2001.

[48] H.R. Rabiee, R.L. Kashyap, and H. Radha, “Multiresolution Image
Compression with BSP Trees and Multi-Level Block Truncation
Coding,” Proc. IEEE Second Int’l Conf. Image Processing, pp. 600-
603, 1995.

[49] H. Radha, M. Vetterli, and R. Leonardi, “Image Compression
Using Binary Space Partitioning Trees,” IEEE Trans. Image
Processing, vol. 5, no. 12, pp. 1610-1624, Dec. 1996.

[50] H. Rahda, R. Leonardi, M. Vetterli, and B.F. Naylor, “Binary Space
Partitioning Tree Representation of Images,” Visual Comm. and
Image Representation, vol. 2, no. 3, pp. 201-221, Sept. 1991.

[51] G. Schaufler and M. Priglinger, “Efficient Displacement Mapping
by Image Warping,” Proc. 10th Eurographics Workshop Rendering,
pp. 175-186, 1999.

[52] S. Sechrest and D.P. Greenberg, “A Visible Polygon Reconstruc-
tion Algorithm,” ACM Trans. Graphics, vol. 1, no. 1, pp. 25-42, Jan.
1982.

[53] J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layered Depth
Images,” SIGGRAPH ’98 Conf. Proc., Ann. Conf. Series, July 1998.

[54] J. Snyder and J. Lengyel, “Visibility Sorting and Compositing
without Splitting for Image Layer Decomposition,” Proc.
SIGGRAPH ’98, pp. 219-230, July 1998.

[55] K.R. Subramanian and B.F. Naylor, “Converting Discrete Images
to Partitioning Trees,” IEEE Trans. Visualization and Computer
Graphics, vol. 3, no. 3, pp. 273-288, July-Sept. 1997.

[56] O. Sudarsky and C. Gotsman, “Output-Sensitive Visibility
Algorithms for Dynamic Scenes with Applications to Virtual
Reality,” Computer Graphics Forum, vol. 15, no. 3, pp. 249-258, Aug.
1996.

[57] C.-K. Tang, G. Medioni, and M.-S. Lee, “N-Dimensional Tensor
Voting, and Application to Epipolar Geometry Estimation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 8,
pp. 829-844, Aug. 2001.

[58] S. Teller and P. Hanrahan, “Global Visibility Algorithms for
Illumination Computations,” Proc. SIGGRAPH ’93, pp. 239-246,
Aug. 1993.

70 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004
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