COMP151: Object-Oriented Programming

Procedures and Functions:

Scope and Parameter Passing,
Activation Records

Prof. Dekai Wu

—
N
&

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

Spring 2007

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Elements of a Procedure

{ result type NN procedure name‘) ’ formal parameten

\
~
~ 1 !
~
~ 1

A \ 14
double BM_Log (double x)

{
if (x <= 0)

cout << "Error\n"; «777«j@bcedureb6§y

return -1;

}

else

return log(x);

A call of the procedure will be something like:

BM_Log(2.5); /* 2.5 is the actual parameter */

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Procedure

e function (function procedure):
e returns a result to the caller
e extends the built-in operators (+, —, x, /). e.g. sin(x)

@ procedure (proper procedure):
e does not return a result
o extends the built-in actions/statements. e.g. free(x)

@ But they are both called “functions” in C.

@ And, unfortunately, functions are called “procedures” in
Scheme.

@ Procedures/functions are called using prefix notation.
i.e. <procedure-name> (<formal-parameter-list>)
(c.f. Built-in binary operations are in infix notation.)

@ The parentheses “(" and “)" are redundant.
@ The use of a procedure = a call of the procedure.

@ The execution of a procedure body = an activation of the
procedure.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Procedure: Benefits

@ Modular Design: program — set of subprograms
o better organization = easier to read/maintain
o easier to develop (“divide-and-conquer”)
@ Procedure Abstraction: during the design phase, it abstracts
away from how it works, and let’s think in terms of what it
does.

@ Implementation Hiding: allows programmers to modify the
underlying algorithm without affecting the high-level design.

o Libraries: allow procedures of well-designed interface to be
shared (reusable codes)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Recursion

int factorial(int x)

{
if (x < 0)
exit(-1);
else if (x <= 1)
return 1;
else
return x*factorial(x-1);
}

@ A recursive procedure can have multiple activations in

progress at the same time.
e.g F(4) = 4xF(3) = 4x(3xF(2)) = 4%(3%(2xF(1)))

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Recursion: Example 1

boolean Even(int x) boolean 0dd(int x)
{ {
if (x == 0) if (x == 0)
return TRUE; return FALSE;
else else
return 0dd(x-1); return Even(x-1);
} }

@ In this example, two recursive procedures run in “parallel”,
calling each other.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Activation Tree: Example 2

int main() M
{ / \
AO; BO; / N\
} A B
/ \
void B() / N\
{ C D
cO; DO; I
} |
E
void D(Q)
{
EQ;
}

e if P() calls Q(), then Q is a child of P.
o if P() calls Q() and then R(), then Q appears to the left of R.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Part |

Activation Records

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Activation Records: Memory Layout

frame
pointer

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk)

result

actual parameter #2
actual parameter #1

control link
(to its caller's AR)

(optional)access link

saved machine status

local variables

temporary storage

| callee saves

cdler saves

cadllee saves

COMP151 (Spring 2007)

Activation Records

When a procedure is activated, temporary memory called
activation record (AR) is allocated to run the procedure.

AR of procedure P() usually contains memory for:
e returned result (if P() is a proper function)
@ actual parameters

e control link (dynamic link) — points to the AR of P’s caller.
e.g. if F() calls P(), then the control link in P's AR points to
F's AR.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Activation Records ..

@ access link (static link) — points to the most recent AR of
the innermost enclosing procedure in which P() is defined.
o used to implement the lexical scope rule.
Pascal has access links.
C does not need access links as C does not allow nested
procedures. Thus, all variables are either local or global.
C-++, however, does have nested scopes.
Scheme also uses lexical scope, so needs access links.
Lisp uses the dynamic scope rule, so doesn't need access links.

@ saved machine status: e.g.

o registers values just before P()’s activation

@ return program counter so as to resume caller's execution
when P() is done

@ local variables

@ temporary storage

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Where to Put Activation Records?

The figure shows the memory layout of a C program during its
execution.

Activations can be managed in the

@ stack: traditional method for

_) program codes
imperative language

@ heap: if the activation of (global)
. static data
a procedure or function may be
returned as a result, stored in a stack
variable and used in an outer scope ‘

then its activation record must be stored
in a heap so that its variables still

exist when it is used. f
(e.g. functional programming languages)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Stack Discipline

A language that uses a stack to manage activation records is said
to obey a stack discipline — last-in/first-out.

m| [wm] [m] [wm] [m] [wm]
] Al] |e] |8 [8]
LA = b
(m] [wm] [wm] [m] [m] []
s [8| [8] [8] |]
| [o| [o] []

e

@ Thus, AR is also called a stack frame.

o Advantage: efficient

o Disadvantage: doesn't allow function activations to be stored
or passed around dynamically

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Activation of a C Function (no access links)

When a procedure Q() is called in the body of procedure P(), P
and Q share responsibility in filling Q's AR:

@ P evaluates the actual parameters and put their values in
Q's AR.

@ P stores information in Q's AR so that when @ is done, P
may continue execution from where it is left.

@ P set Q's control link to point to its AR.

o @ allocates space for its locals, and some temporary storage.

@ The body of the procedure is executed.

@ Control returns to the caller P, and Q's AR, which is no

longer needed, is popped out of the stack. The frame pointer
is also reset from the control link.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Tail-Recursion Elimination

Tail-recursive procedure: when the last executable statement in its
body is the recursive call.

@ Recursion simplifies programming, but naive implementation
pays a price of worse efficiency since procedure call involves a
lot of overhead.

@ This problem can be eliminated by replacing any tail-recursive
call with a loop.

@ Scheme actually requires elimination of tail-recursion in its
language specification.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Tail-Recursion Elimination: Example 3

int bsearch(int* a, int x, int lo, int hi)
{
if (lo > hi) return NOT_FOUND;
int k = (lo + hi) / 2;
if (x == alkl]) {
return k;
} else if (x < alk]) {
return bsearch(a, x, lo, k-1);
} else if (x > alk]) {
return bsearch(a, x, k+1, hi);

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Tail-Recursion Elimination: Example 3 ..

int bsearch(int* a, int x, int lo, int hi)
{
while (1) {
if (lo > hi) return NOT_FOUND;
int k = (1o + hi) / 2;
if (x == a[k]) {
return k;
} else if (x < alk]) {
// a = a;
// x = x;
// lo = lo;
hi = k-1;
} else if (x > alk]) {
// a = a;
// x = x;
lo = k+1;
// hi = hi;

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Activation of a Scheme Function (access links): Example 4

(define M (lambda (j k)
(define P (lambda (x y z)
(define Q (lambda ()

(define R (lambda ()

(P jkz))) ; end R

(x (R) y))) ; end Q

(+ (@ x))) ; end P

(P jk 2))) ; end M

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Activation of a Scheme Function (access links): Example 4

access
links

control
links

NV VAV

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Part Il

Parameter Passing

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Parameter-Passing: Running Example

int al]l = {1, 2, 3, 4};

void Swap(int ... x, int ... y)
{

int temp = Xx;

X =Y;

y = temp;

al1] = 0; // nonlocal al]
}
int main()
{

int j = 1; Swap(j, aljl);
}

@ Result depends on the relation between the actuals and
formals.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

I-Value and r-Value of Variables

What does it mean by:

Xx =x + 1;

@ variable x is assigned the sum of 1 and the value of x
@ location(x) «— value(x) + 1
o |-value(x) «— r-value(x) + 1

@ the meaning of the variable “x” is overloaded

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Macro Expansion, Inline Function

@ A macro preprocessor in C/C++ supports language
extensions:
#define BUFFER_SIZE 1024
#define BIGGER(a,b) ((a)>(b) 7 (a) : (b))

@ C++'s inline functions are better macros allowing
type-checking:
inline int Bigger(int a, int b)
{ return (a >b) 2 a : b; }

However, it is just a recommendation to the compiler to
expand the procedure before compilation; the compiler might
not do so!

@ Macro expansion is more efficient: no overhead in procedure
calls.

@ Macro expansion cannot handle recursion
= should be used only on simple codes

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Scope Rules for Variable Names

Scope rules of a language determine which declaration of a name

X" applies to an occurrence of “x” in a program.

@ static/lexical scope rules: the binding of name occurrences to
declarations is done statically, at compile time.

@ dynamic scope rules: the binding of name occurrences to
declarations is done dynamically, at run time.

@ Most languages use lexical scope rule.

@ Dynamic scope are used for macros and inline functions.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Scope of Names: Example 5

int main()

{
int j; // apply to S1,S5,S6
int k; // apply to S1,52,83,54,56
S1;

for (...)

int j; // apply to S2,S4

int j; // apply to S3

}

while (...)

{
int k; // apply to S5
S5;

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Lexical Scope Rule

Renaming Principle of Local Variables:
Consistent renaming of local names in the source text does not
change the meaning of a program.

@ Under lexical scope rule, we can always rename local variables
until each name has only one declaration in the entire
program.

@ Most-closely-nested rule: an occurrence of a name is in the
scope of the innermost enclosing declaration of the name.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Dynamic Scope Rule: Example 6

program dynamic_scope(input, output);
var x : real;
procedure show;
begin write(x) end;
procedure tricky;
var x : real;
begin x = 1.2; show end;

begin x := 5.6; show; tricky; end.

@ What is the output if lexical scope rule is used?

@ What is the output if dynamic scope rule is used?

@ Dynamic scope rule may be implemented by macros.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Call-by-Reference (CBR): Running Example

// Using C++ syntax
// Declare as: void Swap(int& x, int& y)
// Call as: Swap(j, aljl);

x and j refer to the same object; // int& x = j;
y and a[j] refer to the same object; // int& y = aljl;

temp <- x; X <- y; y <- temp;
al1] <- 0;

0=

ea={, , , }

@ x is called an alias of j, and y an alias of a[j]

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Call-by-Value (CBV): Example 7

int square(int x) { return x*x; }
int main()

{

int y = 8; y = square(y+y);
}
Under CBV,

u <= y+y // done before calling square()
x <- r-value(u) // int x = u;

result <- x*x

return result

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

CBV: Running Example

// Using C syntax
// Declare as: void Swap(int x, int y)
// Call as: Swap(j, aljl);

X <= j; // int x = j;
y <= aljl; // int y = aljl;
temp <- x; x <- y; y <- temp;
al1] <- 0;

0=

ea={, , , }

@ Actually NO swapping has happened.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

CBV: To Simulate CBR

int all = {1, 2, 3, 4};
void Swap(int* x, int* y)

{
int temp = *x;
*xx = *y;
*xy = temp;
al1] = 0; // nonlocal al]
}
int main()
{
int j = 1; Swap(&j, &aljl);
}

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

CBV: To Simulate CBR ..

// Using C syntax
// Declare as: void Swap(int* x, int* y)
// Call as: Swap(&j, &aljl);

x <= l-value(j); // intx x = &j;
y <- 1l-value(aljl); // int*x y = &aljl;
temp <- r-value(object that x points to);
1-value(object that x points to)

<- r-value(object that y points to);
1-value(object that y points to) <- temp;
al1] <- 0;

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Call-by-Value-Result: Running Example

// C, C++ don’t use this; but assuming C++ syntax
// Call as: Swap(j, aljl);

x <= r-value(j); // Copy in the values
y <= r-value(aljl);

temp <- x; X <- y; y <- temp; // Execute procedure
al1] <- 0;

1-value(j) <- x; // Copy out the results
1-value(aljl) <- y;

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

CBVR

@ CBVR = CBR if the called procedure does not use any
nonlocal variables.

@ CBVR may differ from CBR if the called procedure has more
than one way of accessing a location in the caller.

var i : integer;
var j : integer;

procedure foo(x, y); begin i := y end
begin
i:=2; j :=3; foo(i,j);
end
o if CBR: i= V)=
e if CBVR: i = =

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Call-by-Name (CBN): Running Example

// C, C++ don’t use this; but assuming C++ syntax
// Call as: Swap(j, aljl);

// textually substitute j for x, al[j] for y
int temp = j;

j = aljl;
aljl = temp;
al[1] = 0;

0 j=

ea={, , , }

@ CBN is NOT the same as macro expansion

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

CBN: Example 8

program TRY;
int n; n = 10;
procedure P(x);
begin int i; i =1 + n; x = x + n; end;

begin
int i, n; int A[10];
i=3; n-=25;
P(A[i]);

end;

@ CBN does more than just textual substitution.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

CBN: Example 8 ..

e if we simply substitute A[/] for x in P(x)
i =1+ n; A[i] = A[i] + n;

= conflict between the actuals (A[/]) and locals (/)
= renaming locals in the procedure body of P(x)
=intj; j=j+ n; Ali] = A[i] + n;

o if we simply do macro expansion in the main program

i=3; n=05;
j =3 +mn; A[i] = A[i] + n;

= conflict between n of main program and n of P(x)
= renaming locals in the caller of P(x)
=inti,mi=3;m=5j=j+n Ali] = A[i] + n;

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

Summary on Parameter Passing

’ Method ‘ What is Passed ‘ Language ‘ Remarks

CBV value C, CH++ simple, passed parame-
ters will not change
CBR address FORTRAN, | be careful: passed para-
C++ meters may change
CBVR | value + address | FORTRAN, | can be better than
Ada CBR, but more expen-
sive
CBN text Algol complicated; not used
anymore

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)

