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{ result type NN procedure name‘) ’ formal parameten

\
~
~ 1 !
~
~ 1

A \ 14
double BM_Log (double x)

{
if (x <= 0)

cout << "Error\n"; «777«j@bcedureb6§y

return -1;

}

else

return log(x);

A call of the procedure will be something like:

BM_Log(2.5); /* 2.5 is the actual parameter */

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)



Procedure

e function (function procedure):
e returns a result to the caller
e extends the built-in operators (+, —, x, /). e.g. sin(x)

@ procedure (proper procedure):
e does not return a result
o extends the built-in actions/statements. e.g. free(x)

@ But they are both called “functions” in C.

@ And, unfortunately, functions are called “procedures” in
Scheme.

@ Procedures/functions are called using prefix notation.
i.e. <procedure-name> ( <formal-parameter-list> )
(c.f. Built-in binary operations are in infix notation.)

@ The parentheses “(" and “)" are redundant.
@ The use of a procedure = a call of the procedure.

@ The execution of a procedure body = an activation of the
procedure.
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Procedure: Benefits

@ Modular Design: program — set of subprograms
o better organization = easier to read/maintain
o easier to develop (“divide-and-conquer”)
@ Procedure Abstraction: during the design phase, it abstracts
away from how it works, and let’s think in terms of what it
does.

@ Implementation Hiding: allows programmers to modify the
underlying algorithm without affecting the high-level design.

o Libraries: allow procedures of well-designed interface to be
shared (reusable codes)
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Recursion

int factorial(int x)

{
if (x < 0)
exit(-1);
else if (x <= 1)
return 1;
else
return x*factorial(x-1);
}

@ A recursive procedure can have multiple activations in

progress at the same time.
e.g F(4) = 4xF(3) = 4x(3xF(2)) = 4%(3%(2xF(1)))
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Recursion: Example 1

boolean Even(int x) boolean 0dd(int x)
{ {
if (x == 0) if (x == 0)
return TRUE; return FALSE;
else else
return 0dd(x-1); return Even(x-1);
} }

@ In this example, two recursive procedures run in “parallel”,
calling each other.
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Activation Tree: Example 2

int main() M
{ / \
AO; BO; / N\
} A B
/ \
void B() / N\
{ C D
cO; DO; I
} |
E
void D(Q)
{
EQ;
}

e if P() calls Q(), then Q is a child of P.
o if P() calls Q() and then R(), then Q appears to the left of R.
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Activation Records

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)



Activation Records: Memory Layout

frame
pointer
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Activation Records

When a procedure is activated, temporary memory called
activation record (AR) is allocated to run the procedure.

AR of procedure P() usually contains memory for:
e returned result (if P() is a proper function)
@ actual parameters

e control link (dynamic link) — points to the AR of P’s caller.
e.g. if F() calls P(), then the control link in P's AR points to
F's AR.
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Activation Records ..

@ access link (static link) — points to the most recent AR of
the innermost enclosing procedure in which P() is defined.
o used to implement the lexical scope rule.
Pascal has access links.
C does not need access links as C does not allow nested
procedures. Thus, all variables are either local or global.
C-++, however, does have nested scopes.
Scheme also uses lexical scope, so needs access links.
Lisp uses the dynamic scope rule, so doesn't need access links.

@ saved machine status: e.g.

o registers values just before P()’s activation

@ return program counter so as to resume caller's execution
when P() is done

@ local variables

@ temporary storage
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Where to Put Activation Records?

The figure shows the memory layout of a C program during its
execution.

Activations can be managed in the

@ stack: traditional method for

_ ) program codes
imperative language

@ heap: if the activation of (global)
. static data
a procedure or function may be
returned as a result, stored in a stack
variable and used in an outer scope ‘

then its activation record must be stored
in a heap so that its variables still

exist when it is used. f
(e.g. functional programming languages)
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Stack Discipline

A language that uses a stack to manage activation records is said
to obey a stack discipline — last-in/first-out.

m| [wm] [m] [wm] [m] [wm]
] Al ] |e] |8 [8]
LA = b
(m] [wm] [wm] [m] [m] [ ]
s [8| [8] [8] | ]
| [o| [o] [ ]
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@ Thus, AR is also called a stack frame.

o Advantage: efficient

o Disadvantage: doesn't allow function activations to be stored
or passed around dynamically
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Activation of a C Function (no access links)

When a procedure Q() is called in the body of procedure P(), P
and Q share responsibility in filling Q's AR:

@ P evaluates the actual parameters and put their values in
Q's AR.

@ P stores information in Q's AR so that when @ is done, P
may continue execution from where it is left.

@ P set Q's control link to point to its AR.

o @ allocates space for its locals, and some temporary storage.

@ The body of the procedure is executed.

@ Control returns to the caller P, and Q's AR, which is no

longer needed, is popped out of the stack. The frame pointer
is also reset from the control link.
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Tail-Recursion Elimination

Tail-recursive procedure: when the last executable statement in its
body is the recursive call.

@ Recursion simplifies programming, but naive implementation
pays a price of worse efficiency since procedure call involves a
lot of overhead.

@ This problem can be eliminated by replacing any tail-recursive
call with a loop.

@ Scheme actually requires elimination of tail-recursion in its
language specification.
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Tail-Recursion Elimination: Example 3

int bsearch(int* a, int x, int lo, int hi)
{
if (lo > hi) return NOT_FOUND;
int k = (lo + hi) / 2;
if (x == alkl]) {
return k;
} else if (x < alk]) {
return bsearch(a, x, lo, k-1);
} else if (x > alk]) {
return bsearch(a, x, k+1, hi);
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Tail-Recursion Elimination: Example 3 ..

int bsearch(int* a, int x, int lo, int hi)
{
while (1) {
if (lo > hi) return NOT_FOUND;
int k = (1o + hi) / 2;
if (x == a[k]) {
return k;
} else if (x < alk]) {
// a = a;
// x = x;
// lo = lo;
hi = k-1;
} else if (x > alk]) {
// a = a;
// x = x;
lo = k+1;
// hi = hi;
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Activation of a Scheme Function (access links): Example 4

(define M (lambda (j k)
(define P (lambda (x y z)
(define Q (lambda ()

(define R (lambda ()

(P jkz))) ; end R

(x (R) y))) ; end Q

(+ (@ x))) ; end P

(P jk 2))) ; end M
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Activation of a Scheme Function (access links): Example 4

access
links

control
links

NV VAV
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Parameter Passing
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Parameter-Passing: Running Example

int al]l = {1, 2, 3, 4};

void Swap(int ... x, int ... y)
{

int temp = Xx;

X =Y;

y = temp;

al1] = 0; // nonlocal al]
}
int main()
{

int j = 1; Swap(j, aljl);
}

@ Result depends on the relation between the actuals and
formals.
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I-Value and r-Value of Variables

What does it mean by:

Xx =x + 1;

@ variable x is assigned the sum of 1 and the value of x
@ location(x) «— value(x) + 1
o |-value(x) «— r-value(x) + 1

@ the meaning of the variable “x” is overloaded
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Macro Expansion, Inline Function

@ A macro preprocessor in C/C++ supports language
extensions:
#define BUFFER_SIZE 1024
#define BIGGER(a,b) ((a)>(b) 7 (a) : (b))

@ C++'s inline functions are better macros allowing
type-checking:
inline int Bigger(int a, int b)
{ return (a >b) 2 a : b; }

However, it is just a recommendation to the compiler to
expand the procedure before compilation; the compiler might
not do so!

@ Macro expansion is more efficient: no overhead in procedure
calls.

@ Macro expansion cannot handle recursion
= should be used only on simple codes
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Scope Rules for Variable Names

Scope rules of a language determine which declaration of a name

X" applies to an occurrence of “x” in a program.

@ static/lexical scope rules: the binding of name occurrences to
declarations is done statically, at compile time.

@ dynamic scope rules: the binding of name occurrences to
declarations is done dynamically, at run time.

@ Most languages use lexical scope rule.

@ Dynamic scope are used for macros and inline functions.
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Scope of Names: Example 5

int main()

{
int j; // apply to S1,S5,S6
int k; // apply to S1,52,83,54,56
S1;

for (...)

int j; // apply to S2,S4

int j; // apply to S3

}

while (...)

{
int k; // apply to S5
S5;
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Lexical Scope Rule

Renaming Principle of Local Variables:
Consistent renaming of local names in the source text does not
change the meaning of a program.

@ Under lexical scope rule, we can always rename local variables
until each name has only one declaration in the entire
program.

@ Most-closely-nested rule: an occurrence of a name is in the
scope of the innermost enclosing declaration of the name.
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Dynamic Scope Rule: Example 6

program dynamic_scope(input, output);
var x : real;
procedure show;
begin write(x) end;
procedure tricky;
var x : real;
begin x = 1.2; show end;

begin x := 5.6; show; tricky; end.

@ What is the output if lexical scope rule is used?

@ What is the output if dynamic scope rule is used?

@ Dynamic scope rule may be implemented by macros.
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Call-by-Reference (CBR): Running Example

// Using C++ syntax
// Declare as: void Swap(int& x, int& y)
// Call as: Swap(j, aljl);

x and j refer to the same object; // int& x = j;
y and a[j] refer to the same object; // int& y = aljl;

temp <- x; X <- y; y <- temp;
al1] <- 0;

0=

ea={, , , }

@ x is called an alias of j, and y an alias of a[j]
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Call-by-Value (CBV): Example 7

int square(int x) { return x*x; }
int main()

{

int y = 8; y = square(y+y);
}
Under CBV,

u <= y+y // done before calling square()
x <- r-value(u) // int x = u;

result <- x*x

return result
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CBV: Running Example

// Using C syntax
// Declare as: void Swap(int x, int y)
// Call as: Swap(j, aljl);

X <= j; // int x = j;
y <= aljl; // int y = aljl;
temp <- x; x <- y; y <- temp;
al1] <- 0;

0=

ea={, , , }

@ Actually NO swapping has happened.
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CBV: To Simulate CBR

int all = {1, 2, 3, 4};
void Swap(int* x, int* y)

{
int temp = *x;
*xx = *y;
*xy = temp;
al1] = 0; // nonlocal al]
}
int main()
{
int j = 1; Swap(&j, &aljl);
}
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CBV: To Simulate CBR ..

// Using C syntax
// Declare as: void Swap(int* x, int* y)
// Call as: Swap(&j, &aljl);

x <= l-value(j); // intx x = &j;
y <- 1l-value(aljl); // int*x y = &aljl;
temp <- r-value(object that x points to);
1-value(object that x points to)

<- r-value(object that y points to);
1-value(object that y points to) <- temp;
al1] <- 0;

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)



Call-by-Value-Result: Running Example

// C, C++ don’t use this; but assuming C++ syntax
// Call as: Swap(j, aljl);

x <= r-value(j); // Copy in the values
y <= r-value(aljl);

temp <- x; X <- y; y <- temp; // Execute procedure
al1] <- 0;

1-value(j) <- x; // Copy out the results
1-value(aljl) <- y;
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CBVR

@ CBVR = CBR if the called procedure does not use any
nonlocal variables.

@ CBVR may differ from CBR if the called procedure has more
than one way of accessing a location in the caller.

var i : integer;
var j : integer;

procedure foo(x, y); begin i := y end
begin
i:=2; j :=3; foo(i,j);
end
o if CBR: i= V)=
e if CBVR: i = =
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Call-by-Name (CBN): Running Example

// C, C++ don’t use this; but assuming C++ syntax
// Call as: Swap(j, aljl);

// textually substitute j for x, al[j] for y
int temp = j;

j = aljl;
aljl = temp;
al[1] = 0;

0 j=

ea={, , , }

@ CBN is NOT the same as macro expansion
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CBN: Example 8

program TRY;
int n; n = 10;
procedure P(x);
begin int i; i =1 + n; x = x + n; end;

begin
int i, n; int A[10];
i=3; n-=25;
P(A[i]);

end;

@ CBN does more than just textual substitution.
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CBN: Example 8 ..

e if we simply substitute A[/] for x in P(x)
i =1+ n; A[i] = A[i] + n;

= conflict between the actuals (A[/]) and locals (/)
= renaming locals in the procedure body of P(x)
=intj; j=j+ n; Ali] = A[i] + n;

o if we simply do macro expansion in the main program

i=3; n=05;
j =3 +mn; A[i] = A[i] + n;

= conflict between n of main program and n of P(x)
= renaming locals in the caller of P(x)
=inti,mi=3;m=5j=j+n Ali] = A[i] + n;
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Summary on Parameter Passing

’ Method ‘ What is Passed ‘ Language ‘ Remarks

CBV value C, CH++ simple, passed parame-
ters will not change
CBR address FORTRAN, | be careful: passed para-
C++ meters may change
CBVR | value + address | FORTRAN, | can be better than
Ada CBR, but more expen-
sive
CBN text Algol complicated; not used
anymore

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP151 (Spring 2007)



