
1

COMP2012H

Overloading, Construction & Initialization

2

Introduction

•  Our next major topic will be how to initialize new objects using
constructors. Before doing so we take a short break to introduce another
concept that we will need in that discussion, that of function overloading.
This is a technique that allows the same function name to have many
“meanings”.

•  In ordinary life, you actually use overloading all the time. E.g., 1 + 2 is not
the same thing as 1.0 + 2.0 in C++; the + operator is overloaded.

•  As another example suppose you want to write one function to compute the
average of two numbers and another to compute the average of three
numbers:

double avg(double n1, double n2) {
 return ((n1 + n2) / 2.0);
}
double avg3(double n1, double n2, double n3) {
 return ((n1 + n2 + n3) / 3.0);
}

•  In C++, you can use the same name for both functions!

3

Introduction

•  This is legal in C++ (but not in C):

double avg(double n1, double n2) {
 return ((n1 + n2) / 2.0);
}
double avg(double n1, double n2, double n3) {
 return ((n1 + n2 + n3) / 3.0);
}

4

Function Overloading

•  Overloading allows programmers to use the same name for
functions that do similar things but with different input arguments.

•  In general, both ordinary function names and member function
names can be overloaded in C++.

 class Word {
 public:
 set(int k) { frequency = k; }
 set(const char* s) { str = new char[strlen(s)+1]; strcpy(str,s); }
 set(char c) { str = new char[2]; str[0] = c; str[1] = ‘\0’; }
 private:
 int frequency;
 char* str;
 };

5

Function Overloading..

•  But to speak good C++, don’t abuse overloading. Make sure that
your overloaded functions really do similar things.

 class Word {
 …
 set(int k) { frequency = k; }
 set(const char* s) { str = new char[strlen(s)+1]; strcpy(str,s); }
 set(char c) { str = new char[2]; str[0] = c; str[1] = ‘\0’; }
 set() { cout << str; } // bad overloading! obscures understanding
 } ;

•  Actually, operators (which are also functions!) are often overloaded.
 E.g., what is the type of the operands for “+“?

6

Function Overloading

•  As we’ll see, constructors are often overloaded.

 class Word {
 public:
 Word() { };
 Word(const char* s, int k = 1);
 Word(const Word& w);
 private:
 int frequency;
 char* str;
 };

7

Default Arguments

If a function shows some default behaviors most of the time, and some
exceptional behaviors only once in awhile, specifying default arguments is a
better option than using overloading.

 class Word {
 …
 public:
 Word(const char* s, int k = 1) {
 frequency = k;
 str = new char[strlen(s) + 1]; strcpy(str, s);
 }
 };

 int main(){
 Word movie(“Brokeback Mountain“);
 Word director(“Ang Lee“, 20);
 }

In fact, this is also a kind of overloading. (Why?)

8

Default Arguments..
•  There may be more than one default argument.
 void download(char prog, char os = LINUX, char format = ZIP);
•  All arguments without default values must be declared to the left of

default arguments. Thus, the following is an error:
 void download(char os = LINUX, char prog, char format = ZIP); // error
 int main() { download(LINUX, ‘x’); } // can’t tell how to interpret this!
•  An argument can have its default initializer specified only once in a

file, usually in the public header file, and not in the function
definition. Thus, the following is an error:

// word.hpp

class Word {

public:

 Word(const char* s, int k = 1);

 …

}

// word.cpp

#include “word.hpp”

Word::word(const char* s, int k = 1)

{

 …

}

9

Default Arguments..
•  There may be more than one default argument.
 void download(char prog, char os = LINUX, char format = ZIP);
•  All arguments without default values must be declared to the left of

default arguments. Thus, the following is an error:
 void download(char os = LINUX, char prog, char format = ZIP); // error
 int main() { download(LINUX, ‘x’); } // can’t tell how to interpret this!
•  An argument can have its default initializer specified only once in a

file, usually in the public header file, and not in the function
definition. Thus, the following is okay:

// word.hpp

class Word {

public:

 Word(const char* s, int k = 1);

 …

}

// word.cpp

#include “word.hpp”

Word::word(const char* s, int k) // ok

{

 …

}

10

Summary: Overloading

•  If you have two or more function definitions for the same
function name that is called overloading.

•  When you overload a function name the different
definitions must have different numbers of formal
parameters, or some formal parameters of different types.

•  The compiler checks each function call and matches it
with the particular function definition whose number and
type of formal parameters matches.

•  The use of the same name to mean different things is
called polymorphism (Greek for “many forms”).
–  Technically, the kind of polymorphism we’ve just seen is called

ad hoc polymorphism.
–  We’ll see another kind of polymorphism when we discuss

templates.

11

Class Object Initialization

•  If ALL data members of the class are public, they can be
initialized when the are created as follows:

 class Word {
 public:
 int frequency;
 char* str;

};

 int main() { Word movie = {1, “Brokeback Mountain”}; }

12

Class Object Initialization …

•  What happens if some of data members are private?

 class Word {
 public:
 int frequency;
 private:
 char* str;
 };

 int main() { Word movie = {1, “Brokeback Mountain“}; }

Error: a.cc:8: ‘movie’ must be initialized by

constructor, not by ‘{ … }’

13

C++ Constructors

•  C++ supports a more general mechanism for user-
defined initialization of class objects through constructor
member functions:
–  Word movie;
–  Word director = “Ang Lee”;
–  Word movie = Word(“Brokeback Mountain”);
–  Word *p = new Word(“action”, 1);

•  Syntactically, a constructor of a class is a special
member function having the same name as the class.

•  A constructor is called whenever an object is created,
even when the object is only created temporarily, e.g., as
a local variable.

•  A constructor must NOT specify a return type or explicitly
returns a value—NOT even the void type.

14

Default Constructor
class Word {
public:
 Word() { frequency = 0; str = 0; }
private:
 int frequency;
 char* str;
};

int main(int argc, char* argv[])
{
 Word movie;
}

•  A default constructor is a constructor that is called with NO

argument: X::X() for class X.
•  It is used to initialize an object with user-defined default values.

15

Compiler Generates a Default Constructor

struct Word {
 int frequency;
 char* str;
};

int main(int argc, char* argv[])
{
 Word movie; // which constructor called?
}

•  If there are NO user-defined constructors, the compiler will generate

the default constructor: X::X() for class X for you.
•  Word() { } only creates a record with space for an int quantity and a

char* quantity. Their initial values CANNOT be trusted.

16

Compiler Generates a Default Constructor

class Word { // identical meaning to the previous struct
public:
 int frequency;
 char* str;
};

int main(int argc, char* argv[])
{
 Word movie; // which constructor called?
}

•  If there are NO user-defined constructors, the compiler will generate

the default constructor: X::X() for class X for you.
•  Word() { } only creates a record with space for an int quantity and a

char* quantity. Their initial values CANNOT be trusted.

17

Default Constructor: Bug
•  BUT: only when there are NO user-defined constructors, will the

compiler automatically supply the default constructor.

 class Word {
 …
 public:
 Word(const char* s, int k = 0);
 };

 int main()
 {
 Word movie; // which constructor?
 Word song(“Brokeback Mountain“); // which constructor?
 }

a.cc: 16: no matching function for call to ‘Word::Word()’
a.cc: 12: candidates are: Word::Word(const Word &)
a.cc: 7: Word::Word(const char*, int)

18

Caution: Weird C++ Syntax

•  The default constructor is a function with no parameters
so you might think that it should actually be called using

Word movie();

 the same way as any other function without parameters.
This in not correct. A default constructor should be called
as

Word movie;

 without using the ().

19

Type Conversion Constructor
class Word {
 …
public:
 Word(const char* s) {
 frequency = 1;
 str = new char [strlen(s) + 1]; strcpy(str, s);
 }
};

int main()
{
 Word* p = new Word(“action”);
 Word movie(“Brokeback Mountain”);
 Word director = “Ang Lee”;
}

•  A constructor accepting a single argument specifies a conversion from its

argument type to the type of its class: Word(const char*) converts from
type const char* to type Word.

20

Type Conversion Constructor..
class Word {
 …
public:
 Word(const char* s, int k =1) {
 frequency = k;
 str = new char [strlen(s) + 1]; strcpy(str,s);
 }
};

int main()
{
 Word* p = new Word(“action”);
 Word movie(“Brokeback Mountain”);
 Word director = “Ang Lee”;
}

•  Notice that if all but ONE argument of a constructor have default values, it is

still considered a conversion constructor.

21

Copy Constructor: Example

class Word {
public:
 Word(const char* s, int k = 1);
 Word(const Word& w) {
 frequency = w.frequency;
 str = new char[strlen(w.str) + 1];
 strcpy(str, w.str);
 }
};

int main()
{
 Word movie(“Brokeback Mountain”); // which constructor?
 Word song(movie); // which constructor?
}

22

Copy Constructor

•  A copy constructor has only ONE argument of the same
class

•  Syntax: X(const X&) for the class X.
•  It is called upon:

–  parameter passing to a function (call-by-value)
–  initialization assignment: Word x(“Oscars”); Word y = x;
–  value returned by a function:

 Word Word::to_upper_case()
 {
 Word x(*this);
 for (char* p = x.str; *p != '\0'; ++p)
 *p += 'A' - 'a';
 return x;
 }

23

Default Copy Constructor

 For a class X, if no copy constructor is defined by the user, the compiler will
automatically supply: X(const X&)

 class Word {
 public:
 Word(const char* s, int k = 0);
 };

 int main() {
 Word movie(“Brokeback Mountain”); // which constructor?
 Word song(movie); // which constructor?
 Word song = movie; // which constructor?
 }

 => CAUTION: the compiler-generated default copy constructor does

memberwise copy! i.e.,

 song.frequency = movie.frequency;
 song.str = movie.str;

24

Default Copy Constructor
Beware: performs a memberwise copy !

Default song(movie)

movie:

song:

frequency = 1

str = 0x24ff

frequency = 1

str = 0x24ff

“Brokeback
Mountain”

Desirable song(movie)

movie:

song:

frequency = 1

str = 0x24ff

frequency = 1

str = 0x53a7

“Brokeback
Mountain”

“Brokeback
Mountain”

25

Constructor: Quiz

 Quiz: How is class initialization done in the following
statements?

•  Word vowel(“a”);

•  Word article = vowel;

•  Word movie = “Brokeback Mountain”;

26

Member Initialization List

 Most of the class members may be initialized inside the
body of constructor or through member initialization list
as follows:

 class Word {
 int frequency;
 char* str;
 public:
 Word(const char* s, int k = 1) : frequency(k) {
 str = new char [strlen(s) + 1]; strcpy(str, s);
 }
 };

27

Member Initialization List ..

 Member initialization list also works for data members which are
user-defined class objects.

 class WordPair {
 const Word w1;
 Word w2;
 public:
 WordPair(const char* s1, const char* s2) :
 w1(s1),
 w2(s2)
 {
 }
 };

 But make sure that the corresponding member constructors exist!

28

Member Initialization List ..

 Member initialization list also works for data members which are
user-defined class objects.

 class WordPair {
 const Word w1;
 Word w2;
 public:
 WordPair(const char* s1, const char* s2) :
 w2(s2)
 {
 w1 = s1; // quiz: what’s the difference here?
 }
 };

 But make sure that the corresponding member constructors exist!

29

Initialization of const or & Members

 const or reference members can ONLY be initialized
via the member initialization list. (Why?)

 class Word2 {
 const char language;
 const Word2& w2;
 int frequency;
 char* str;
 public:
 Word2(const char* s1, const Word2& w, int k = 1) :
 language(‘E’), w2(w), frequency(k) {
 str = new char [strlen(s) + 1]; strcpy(str, s);
 }
 };

30

Initialization of const or & Members

 const or reference members can ONLY be initialized
via the member initialization list. (Why?)

 class Word2 {
 const char language;
 const Word2& w2;
 int frequency;
 char* str;
 public:
 Word2(const char* s1, const Word2& w, int k = 1) :
 language(‘E’), w2(w), frequency(k) {
 str = new char [strlen(s) + 1]; strcpy(str, s);
 language = ‘E’; // compile-time error
 w2 = ?????
 }
 };

31

Default Memberwise Assignment

Word x(“Brokeback Mountain”, 1); // Word(const char*, int) constructor
Word y; // Word() constructor
y = x; // default memberwise assignment

⇒  y.frequency = x.frequency;
 y.str = x.str;

•  If an assignment operator function is NOT supplied (through
operator overloading), the compiler will provide the default
assignment function – memberwise assignment

•  c.f. the case of copy constructor: if you DON’T write your
own copy constructor, the compiler will provide the default
copy constructor—which does memberwise copy;

•  Memberwise assignment/copy does NOT work whenever
memory allocation is required for the class members.

32

Default Memberwise Assignment ..

Default x = y

x:

y:

frequency = 1

str = 0x24ff

frequency = 1

str = 0x24ff

“Brokeback
Mountain”

Desirable x = y

x:

y:

frequency = 1

str = 0x24ff

frequency = 1

str = 0x53a7

“Brokeback
Mountain”

“Brokeback
Mountain”

33

Member Class Initialization
 Class members should be initialized through member initialization list which

calls the appropriate constructors than by assignments.

class WordPair
{
 Word word1;
 Word word2;
 WordPair(const char* x, const char* y) : word1(x), word2(y) { }
};

⇒  word1/word2 are initialized using the type conversion constructor,

Word(const char*).

 WordPair(const char* x, const char* y) { word1 = x; word2 = y; }

⇒  error-prone because word1/word2 are initialized by assignment. If there is

no user-defined assignment operator function, the default memberwise
assignment may NOT do what is required.

