
1

COMP2012H

Garbage Collection & Destructors

2

Memory Layout of a Running Program

void f()
{
 // x, y are local variables
 // on the runtime stack
 int x = 4;
 Word y(“Brokeback”);

 // p is another local variable
 // on the runtime stack.
 // But the array of 100 int
 // that p points to
 // is on the heap
 int* p = new int[100];
}

static data

 program code

(run-time)
stack

(run-time)
heap

[…, local variables,

 temporary variables

passed arguments]

[objects dynamically
allocated by “new”]

3

Memory Usage on Runtime Stack and Heap

•  Local variables are constructed (created) when they are
defined in a function/block on the run-time stack.

•  When the function/block terminates, the local variables
inside and the CBV arguments will be destructed (and
removed) from the run-time stack.

•  Both construction and destruction of variables are done
automatically by the compiler by calling the appropriate
constructors and destructors.

•  BUT, dynamically allocated memory remains after
function/block terminates, and it is the user’s
responsibility to return it back to the heap for recycling;
otherwise, it will stay until the program finishes.

4

Garbage and Memory Leaks
int main()
{

for (int j = 1; j <= 10000; ++j)
 {
 int* snoopy = new int[100];
 int* vampire = new int[100];
 snoopy = vampire; // Now snoopy becomes vampire
 ….. // Where is the old snoopy?
 }
}

•  Garbage is a piece of storage that was created (allocated) by a

program, where there are no more pointers/references to it.
•  A memory leak occurs when there is garbage.

Question: What happens if there is a huge piece of garbage, or
garbage is continuously created inside a big loop?!

5

Example: Before and After p = q

 .
 .
 .

0x36a4 p:

 .
 .
 .

0x8a48 q:

 .
 .
 .

 .
 .
 .

0x8a48 q:

0x8a48 p:

BEFORE

AFTER

6

delete: to prevent garbage
int main()
{
 Stack* p = new Stack(9); // A dynamically allocated stack object
 int* q = new int[100]; // A dynamically allocated array of integers
 …
 delete p; // delete an object
 delete [] q; // delete an array of objects
 p = NULL; // it is good practice to set a pointer to 0
 q = NULL; // when it is not pointing to anything
}

•  Explicitly deallocate the memory for a single object by calling delete

on a pointer to the object.
•  Explicitly deallocate the memory for an array of garbage objects by

calling delete [] on a pointer to the first object of the array.
•  Notice that delete ONLY puts the dynamically allocated memory back

to the heap, and the local variables (p and q above) stay behind on the
run-time stack until the function terminates.

7

Dangling References and Pointers

However, careless use of delete may cause dangling references.

int main()
{
 char* p;
 char* q = new char [128]; // dynamically allocate a char buffer
 …
 p = q; // p and q now points to the same char buffer
 delete [] q; q = 0; // delete the char buffer
 // Now p is a DANGLING POINTER !
 p[0] = ‘a’; // Error: possibly segmentation fault
 delete [] p; // Error: possibly segmentation fault
}

•  A dangling reference is created when memory pointed to by a pointer is

deleted but the user thinks that the address is still valid.
•  Dangling references are due to carelessness and pointer aliasing — where

an object is pointed to by more than one pointer.

8

Example: Dangling References

 .
 .
 .

0x8a48 p:

0x8a48 q:

BEFORE

 .
 .
 .

0x8a48 p:

0 q:

AFTER delete [] q; q = 0;

9

Other Solutions: Garbage, Dangling References

 Memory leaks and dangling references are due to
careless pointer manipulation, especially in situations
where there is pointer aliasing.

–  Some languages provide automatic garbage collection facility

which stops a program from running from time to time, checks
for garbage, and puts that memory back in the heap for
recycling.

•  e.g.: Lisp, Scheme, Java, C#, .NET …

–  Some languages do not have explicit pointers at all!
 (The large majority of program bugs are due to pointers.)

–  However, you pay a performance penalty for such solutions.

10

Destructors: Introduction

void Example()
{
 Word x(“bug”, 4);
 …
}
int main() { Example(); … }

•  On return from Example(), the local Word object x of Example()

is destroyed from the run-time stack of Example(). i.e. the memory
space of (int) x.frequency and (char*) x.str are released.

Quiz: How about the dynamically allocated memory for the string, “bug”

that x.str points to?

11

Destructors

C++ supports a more general mechanism for user-defined destruction
of class objects through destructor member functions.

 ~Word() { delete [] str;}

•  A destructor of a class X is a special member function with the name

X::~X().
•  A destructor takes no arguments, and has no return type – thus,

there can only be ONE destructor for a class.
•  The destructor of a class is invoked automatically whenever its

object goes out of scope – out of a function/block.
•  If not defined, the compiler will generate a default destructor of the

form X::~X(){ } which does nothing.

12

Example: Destructors

class Word {
 int frequency;
 char* str;
 public:
 Word(): frequency(0), str(0) { }
 Word(const char* s, int k = 0) { … }
 ~Word() { delete [] str; }
};

int main() {
 Word* p = new Word(“Brokeback Mountain”);
 Word* x = new Word [5];
 …
 delete p; // destroy a single object
 delete [] x; // destroy an array of objects
}

13

Bug: Default Assignment

void buggy(Word& x)
{
 Word bug(“bug”, 4);
 x = bug;
}

int main()
{
 Word movie(“Brokeback Mountain”); // which constructor?
 buggy(movie);
}

Quiz: What is movie.str after returning from the call buggy(movie)?

