COMP2012H

Inheritance: Introduction

Example: University Admin Info

» Let's implement a system for maintaining
university administration information.

— Teacher and Student are two completely separate
classes. Their implementation uses separate code.

— However, they share many methods and members
that are implemented in the same way: handling
name, address, and department.

— Why do we implement the same function twice?

— This is not good software reuse!

Example: U. Admin Info — Student.hpp

#define accounting 0
#define business 1
#define engineering 2
#define mathematics 3
#define unknown 4
typedef int Department;
class Student
{
private:
string name;
string address;
Department dept;
Course™ enrolled;
int num_courses;
public:
Student(string n, string a, Department d) :
name(n), address(a), dept(d), enrolled(NULL), num_courses(0) { };
void set_name(const char® name);
void set_address(const char* adr);
void set_department(Department dept);
string get_name() const;
string get_address() const;
Department get_department() const;
bool enroll_course(const string&);
bool drop_course(const Course&);

Example: U. Admin Info — Student.hpp

enum Department { accounting, business, engineering, mathematics, unknown };
class Student

{

private:
string name;
string address;
Department dept;
Course* enrolled;
int num_courses;

public:
Student(string n, string a, Department d) :

name(n), address(a), dept(d), enrolled(NULL), num_courses(0) { };

void set name(const char* name);
void set_address(const char* adr);
void set_department(Department dept);
string get_name() const;
string get_address() const;
Department get_department() const;
bool enroll_course(const string&);
bool drop course(const Course&);

Example: U. Admin Info — Teacher.hpp

enum Rank { instructor, assistant_prof, associate_prof, professor, dean };
class Teacher
{
private:
string name;
string address;
Department dept;
Rank rank;
public:
Teacher(string n, string a, Department d, Rankr) :
name(n), address(a), dept(d), rank(r) { };
void set name(const char® name);
void set_address(const char* adr);
void set_department(Department dept);
void set_rank(Rank rank);
string get_name() const;
string get_address() const;
Department get_department() const;
Rank get_rank() const;

Things to Consider

 We want a way to say that Student and
Teacher both have the same members:
name, address, dept, but yet require them to
keep a separate copy of these members.

* We want to share the code for set name, etc.,
between Student and Teacher as well.

« We want this code to act like member functions
(to permit consistency of state of the objects), so
they cannot be written as global functions.

Solution 1: Re-use by Copying

« Copy the code from one class to the other class,
and change the class names.

— This is very error prone.
— It is also a maintenance nightmare.
— What if we find a bug in the code in one class?

— What if we want to improve the code? Perhaps by
iIntroducing a new class Address.

« “REUSE by COPYING” is a bad ideal!

Inheritance

Inheritance enables code reuse.

Inheritance is the ability to define a new class based on
an existing class with a hierarchy.

The derived class inherits the data members and
member methods) of the base class.

New members and methods can be added to the derived
class.
Since the new class only has to implement the behavior

that is different from the base class, we can reuse the
code for the base class.

“Inheritance” is the traditional term, but C++ calls it
“derivation” .

Solution 2: By Inheritance — Person.hpp

class Person

{

private:
string name;
string address;
Department dept;

public:

Person(string n, string a, Department d) :
name(n), address(a), dept(d) { };

void set_name(const char* name);
void set_address(const char* adr);
void set_department(Department dept);
string get_name() const;
string get_address() const;
Department get_department() const;

Solution 2: By Inheritance — Student.hpp

class Student : public Person

{

private:
Course™ enrolled;
int num_courses;

public:
Student(string n, string a, Department d) :
Person(n, a, d), enrolled(NULL), num_courses(0) { }

bool enroll_course(const string&);
bool drop course(const Course&);

Solution 2: By Inheritance — Teacher.hpp

class Teacher : public Person

{

private:
Rank rank;

public:
Teacher(string n, string a, Department d, Rankr) :
Person(n, a, d), rank(r) { }

void set_rank(Rank rank);
Rank get rank() const;

Inheritance

e Person is the base class of Student.

e Student is a derived class of Person.

 The effect is that Student inherits all data members and
methods from Person.

 The data members of Student are the data members of
Person (name, address, dept), plus the extra data
members declared in the definition of Student
(enrolled, num courses).

Example: Inherited Members

void some_func(Person& person, Student& student)

{

cout << person.get name() << endl;
cout << student.get name() << endl,;

student.set_department(engineering);

Department dept = person.get_department();
student.enroll_course("COMP151");

person.enroll_course("COMP001"); // Error!

)

“Is-a” Relationship

Inheritance implements the is-a relationship.

— Recall:
membership (composition) implements the has-a relationship.

Since Student inherits from Person,

— every object of type Student can be used like an object of
type Person

— all methods of Person can be called on a Student object

In other words, a Student object definitely is a Person
object under all circumstances.

In general: a derived class object can be treated like a
base class object under all circumstances.

Example: Derived Objects as Base Class Object

bool print_mailing_label(const Person& person)

{

string name = person.get_name();
string adr = person.get_address();

// code to print the label
}

« Since a Student is @ Person, we can print a mailing
label for a student like this:

Student student (“Tom” , “Sai Kung” ,
mathematics) ;

print mailing label (student);

Direct and Indirect Inheritance

Let's add a new class PG Student:

class PG_Student : public Student
{

private:
Topic research_topic;
public:
PG_Student(string n, string a, Department d) :
Student(n, a, d), research_topic(NONE) { }
void set_topic(const Topic& x) { research_topic = x; }

%

PG Student is directly derived from Student.

It is indirectly derived from Person.

So a PG Student object is a Person object.

Person is called an indirect base class for PG Student.

