COMP 2012H Binary Trees 1

COMP2012H
Spring 2014
Dekai Wu

Binary Tree Terminology

e A node that has one or two children is called
an internal node.

e The two children of a node are siblings of
each other. For example, left(x) is the left
sibling of right(x) and right(x) is the right
sibling of left(x).

e A node usually contains a data field as well
to store some value.

e Subtree:

pick any node x, then z and its de-
scendants form a subtree, which we
call the subtree rooted at x.

subtree rooted
at x

COMP 2012H Binary Trees 2

Expression Trees

e Binary trees that represent arithmetic ex-
pressions

e One application of expression trees is in the
generation of optimal computer code to eval-
uate an expression

() (+)

() 0 (+) (&
@ ® @@ ®E
(@(a=b)+(c/d) 0 a

b)((a+b)+c)+d)

© ((=a) + (x +y) / ((+D) * (c * a))

Figure 8.5 Expression trees

COMP 2012H Binary Trees 3

Formation of Expression Tree

1. Start from a postfix expression

e [f the input is in infix, convert it to post-
fix first using stack

2. Initialize a stack whose data is pointer to
character

3. Push operand into the stack (i.e., make the
pointer pointing to the operand)

4. When an operator is encountered:

(a) Create a binary node with the operator

(b) pop once to become the right child of the
operator

(¢c) pop another time to become the left child
of the operator

(d) push the operator into the stack

5. Repeat Step 3 until the postfix expression is
completely scanned.

COMP 2012H Binary Trees 4

Full Binary Tree

Every internal node has exactly two chil-
dren.

full binary tree not a full binary tree

COMP 2012H Binary Trees
Perfect Binary Tree

Every level is full.

perfect binary tree not a perfect binary tree

COMP 2012H Binary Trees 6

Complete Binary Tree

Each level is full except possibly the bot-
tommost level. If the bottommost level
is not full, then the nodes must be packed

to the left.
not a complete binary tree not a complete binary tree

od HP

not a complete binary tree complete binary tree

COMP 2012H Binary Trees 7

Height of a Binary Tree

e The number of edges on the longest path
from the root to a leaf.

e A binary tree of height k£ has

— at least k+1 elements (linear chain), and
— at most 2871 — 1 elements (perfect tree):

 1st level: 1 node (root)

x 2nd level: 2 nodes

% 3rd level: 2 -2 = 2° nodes
% 4th level: 2 - 22 = 23 nodes
% kth level: 2871 nodes

% (k+1)th level (bottom-most level): 2
nodes

s N=1+2+ .. .28 =9kl 1

height =4

COMP 2012H Binary Trees 8

Height of a Binary Tree (Cont.)

Claim: A complete binary tree of m nodes
has h,, = |log, m| height.

Proof. By induction on m.

Basis step: m = 1, hy = 0 = [logym].
Therefore the statement is true for m = 1.

Induction step: Assume the statement is true
for m = n, i.e., its height is h,, = [log,n|. We
need to consider two cases: n = 2¥ — 1 and
otherwise.

Case (1): If n = 2% — 1, for some k, then the
tree looks like

height no. of nodes
0 1
1 2
2 4
3 8
k-1
k-1 2
k
2 -1

which obviously has height h,, = k — 1.
So a tree of n + 1 nodes must increase its
height by 1, i.e., equal to

hpi1 = hp+1 = (k—=1)+1 =k = |logy(n+1)].

COMP 2012H Binary Trees 9
Height of a Binary Tree (Cont.)

Case (2): We have n # 2¥ — 1. Suppose
" —1 < n < 2" —1 then the tree has height

h, = k and it looks like

A complete binary tree with n + 1 nodes is
obtained by packing one more node at the bot-
tommost level. So the height is still h,,,.1 =k =
llogy(n + 1))

Therefore, by MI, the statement is true for all
m.

COMP 2012H Binary Trees 10
Programming Height of a Binary Tree

Height = max{hl, hr} + 1.

This includes the Null node (i.e., a null node
is at height 0), and a single node is at height
1. This is one more than our previous defini-
tion. If you want to revert back to the previous

definition, simply get the value and minus it by
1.

template <class T>
int BinaryTree<T>::Height (BinaryTreeNode<T> *t) const
{// Return height of tree *t.
if (!t) return O; // empty tree
int hl = Height(t->LeftChild); // height of left
int hr = Height(t->RightChild); // height of right
if (hl > hr) return ++hl;
else return ++hr;

COMP 2012H Binary Trees 11

Formula-Based Tree Representation

e Missing elements are represented by white
circles and boxes.

e The number ¢ on top of a circle is the posi-
tion of the element, not its array index

— The parent of node i is given by |7/2].

e Application: efficiently represent a complete
binary tree as an array for sorting (heapsort)

Figure 8.8 Incomplete binary trees

COMP 2012H Binary Trees 12

Large Storage Requirement for
Arbitrary Binary Tree

e An arbitrary binary tree that has n elements
may require an array of size up to 2" — 1 for
1ts representation

e The case when each element is the right
child of its parent, i.e., the right-skewed bi-
nary tree

(a) Right-skewed tree

B C D

(b) Array representation

Figure 8.9 Right-skewed binary tree

COMP 2012H Binary Trees 13

Linked Representation

e More efficient to represent an arbitrary bi-
nary tree

e Use links or pointers (LeftChild and RightChild)

e A variable t is used to keep track of the root
of the tree

t t

A A

0 B 0 B 0 C
0/ C| O 0/ D 0 0 E 0
(2) (b)

Figure 8.10 Linked representations

COMP 2012H Binary Trees

Tree Traversals and Search Trees

Please go back to the slides

14

