
COMP 2012H Binary Trees 1

COMP2012H
Spring 2014
Dekai Wu

Binary Tree Terminology

• A node that has one or two children is called
an internal node.

• The two children of a node are siblings of
each other. For example, left(x) is the left
sibling of right(x) and right(x) is the right
sibling of left(x).

• A node usually contains a data field as well
to store some value.

• Subtree:

pick any node x, then x and its de-
scendants form a subtree, which we
call the subtree rooted at x.

at x
subtree rooted

x

COMP 2012H Binary Trees 2

Expression Trees

• Binary trees that represent arithmetic ex-
pressions

• One application of expression trees is in the
generation of optimal computer code to eval-
uate an expression

a b c d

� /

+

(a) (a � b) + (c / d) a b

+ c

+ d

+

(b) ((a + b) + c) + d)

a x y b c a

< + + �

+ �

/

(c) ((<a) + (x + y)) / ((+b) � (c � a))

Figure 8.5 Expression trees

COMP 2012H Binary Trees 3

Formation of Expression Tree

1. Start from a postfix expression

• If the input is in infix, convert it to post-
fix first using stack

2. Initialize a stack whose data is pointer to
character

3. Push operand into the stack (i.e., make the
pointer pointing to the operand)

4. When an operator is encountered:

(a) Create a binary node with the operator

(b) pop once to become the right child of the
operator

(c) pop another time to become the left child
of the operator

(d) push the operator into the stack

5. Repeat Step 3 until the postfix expression is
completely scanned.

COMP 2012H Binary Trees 4

Full Binary Tree

Every internal node has exactly two chil-
dren.

full binary tree not a full binary tree

COMP 2012H Binary Trees 5

Perfect Binary Tree

Every level is full.

not a perfect binary treeperfect binary tree

COMP 2012H Binary Trees 6

Complete Binary Tree

Each level is full except possibly the bot-
tommost level. If the bottommost level
is not full, then the nodes must be packed
to the left.

not a complete binary tree

not a complete binary treenot a complete binary tree

complete binary tree

COMP 2012H Binary Trees 7

Height of a Binary Tree

• The number of edges on the longest path
from the root to a leaf.

• A binary tree of height k has

– at least k+1 elements (linear chain), and

– at most 2k+1− 1 elements (perfect tree):

∗ 1st level: 1 node (root)

∗ 2nd level: 2 nodes
∗ 3rd level: 2 · 2 = 22 nodes
∗ 4th level: 2 · 22 = 23 nodes
∗ kth level: 2k−1 nodes

∗ (k+1)th level (bottom-most level): 2k

nodes

∗ N = 1 + 2 + . . . 2k = 2k+1 − 1.

height = 4

COMP 2012H Binary Trees 8

Height of a Binary Tree (Cont.)

Claim: A complete binary tree of m nodes
has hm = #log2m$ height.
Proof. By induction on m.
Basis step: m = 1, h1 = 0 = #log2m$.

Therefore the statement is true for m = 1.
Induction step: Assume the statement is true

for m = n, i.e., its height is hn = #log2 n$. We
need to consider two cases: n = 2k − 1 and
otherwise.
Case (1): If n = 2k − 1, for some k, then the

tree looks like

k-1
2k-1

83

42

21

10

no. of nodesheight

2
k

- 1

which obviously has height hn = k − 1.
So a tree of n + 1 nodes must increase its

height by 1, i.e., equal to

hn+1 = hn+1 = (k−1)+1 = k = #log2(n+1)$.

COMP 2012H Binary Trees 9

Height of a Binary Tree (Cont.)

Case (2): We have n %= 2k − 1. Suppose
2k− 1 < n < 2k+1− 1, then the tree has height
hn = k and it looks like

A complete binary tree with n + 1 nodes is
obtained by packing one more node at the bot-
tommost level. So the height is still hn+1 = k =
#log2(n + 1)$.
Therefore, by MI, the statement is true for all

m.

COMP 2012H Binary Trees 10

Programming Height of a Binary Tree

Height = max{hl, hr} + 1.
This includes the Null node (i.e., a null node

is at height 0), and a single node is at height
1. This is one more than our previous defini-
tion. If you want to revert back to the previous
definition, simply get the value and minus it by
1.

template <class T>

int BinaryTree<T>::Height(BinaryTreeNode<T> *t) const

{// Return height of tree *t.

if (!t) return 0; // empty tree

int hl = Height(t->LeftChild); // height of left

int hr = Height(t->RightChild); // height of right

if (hl > hr) return ++hl;

else return ++hr;

}

COMP 2012H Binary Trees 11

Formula-Based Tree Representation

• Missing elements are represented by white
circles and boxes.

• The number i on top of a circle is the posi-
tion of the element, not its array index

– The parent of node i is given by #i/2$.
• Application: efficiently represent a complete
binary tree as an array for sorting (heapsort)

C

B

A
1

2 3

4 5 6 7
A B C

D E

B C

A
1

2 3

4 5 6 7
A B C D E

Figure 8.8 Incomplete binary trees

COMP 2012H Binary Trees 12

Large Storage Requirement for
Arbitrary Binary Tree

• An arbitrary binary tree that has n elements
may require an array of size up to 2n− 1 for
its representation

• The case when each element is the right
child of its parent, i.e., the right-skewed bi-
nary tree

A

B

C

D

(a) Right-skewed tree

A B C D

(b) Array representation

Figure 8.9 Right-skewed binary tree

COMP 2012H Binary Trees 13

Linked Representation

• More efficient to represent an arbitrary bi-
nary tree

• Use links or pointers (LeftChild and RightChild)

• A variable t is used to keep track of the root
of the tree

0 A

0 B

0 C 0

t

(a)

A

0 C

0 E 0

t

0 B

0 D 0

(b)

Figure 8.10 Linked representations

COMP 2012H Binary Trees 14

Tree Traversals and Search Trees

Please go back to the slides

