Lecture 2: Maximum Contiguous
Subarray Problem

Overview

e Reference: Chapter 8 in Programming Pearls, (2nd
ed) by Jon Bentley.
e Clean way to illustrate basic algorithm design
— A ©(n3) brute force algorithm
— A ©(n?) algorithm that reuses data.
— A ©(nlogn) divide-and-conquer algorithm
e Cost of algorithm will be number of primitive op-

erations, e.g., comparisons and arithmetic opera-
tions, that it uses.



MCS Example

ACME CORP — PROFIT HISTORY
Year 112 (3] 4|56 78] 9
ProftM$ | -3 |2 |1 |-4|5[2|-1|3|-1

Betweeen years 5 and 8 ACME earned
542 —1+4 3 = 9 Million Dollars

This is the MAXIMUM amount that ACME earned in
any contiguous span of years.

Examples:

Between years 1 and 9 ACME earned
—-34+24+1-4+4+54+2-143-1=4M$
and between years 2 and 6
24+1—-4+4542=6M8$.

The Maximum Contiguous Subarray Problem is to
find the span of years in which ACME earned the most,
e.g., (5,8).



Formal Definition

Input: An array of reals A[1... N].

The value of subarray A[:...j] is

J
V(i) = A).

The Maximum Contiguous subarray problem is to
find z < 7 such that

v(i', 3", V(i) <V (i,3).

Output: V' (3, 5) s.t. V(7. j), V(,5") < V(,J).

Note: Can modify the problem so it returns indices

(2,7)-



©(n3) Solution: Brute Force

ldea: Calculate the value of V (4, 5) for each pairi < j
and return the maximum value.

VMAX=A[1l];
for (i=1 to N) {
for (j=1 to N) {
// calculate V(1i, 3J)
V=0;
for (x= 1 to 3j)
V=V+A [x] ;
i1f (V > VMAX)
VMAX=V;
}

}
return VMAX;



®(n?) solution: Reuse data

ldea: We don’t need to calculate each V' (4,5) from
“scratch” but can exploit the fact that

J
V(i,5) = Y Ale] = V(i,j - 1) + Aljl.

r—1

VMAX=A[1];
for (i=1 to N) {
V=0;
for (j=1 to N) {
// calculate V(1i, 3J)
V=V+A[7];
1f (V > VMAX)
VMAX=V;
}

}
return VMAX;



@(nlogn) solution: Divide-and-Conquer

ldea: Set M = [(IV +1)/2].

Let A7 and A5 be the MCS that MUST contain A[M]
and A[M + 1] respectively. Note that the MCS must
be one of

e S1:The MCSin A[1... M],
e S>:The MCSin A[M +1...N],

e A:Where A= A1 U A».

s1 | . s2

A1l A_2

A _1=MCSon left containing A[M] A_2=MCSonright containing A[M+1]
A=A 1U A 2



Example

(1[~>]4]2]-7]3 ]6 [A]J2]-4[]7/[-10]2 |6 |1 ]-3]

(1 [~>]4]2[-7]3 ]6 -1 ]2 ]4]7[-10]2[]6[]1]-3]

S1 =[3,6] and S» = [2,6, 1].
A1 =[3,6,—1] and Ay = [2, -4, 7];
A= A]_ U A2 — [376, _1727 _47 7]

Since Value(S1) = 9, Value(S>) = 9
and Value(A) = 13
the solution to the problem is A.



Finding A : The conquer stage

[ M IM+1 j

Aqisin the form Afi...M] :
there are only M — ¢ 4+ 1 such sequences, so, A; can be found
in O(M — 1) time.

MAX=A [M] ;
SUM=A [M] ;
for (k=M-1 down to 1)
{
SUM+=A [k] ;
i1f (SUM > MAX) MAX=SUM;
}
A 1=MAX;

Similarly, A5 is in the form A[M + 1...7] :
there are only 5§ — M such sequences, so, A, the maximum val-
ued such one, can be found in O(5 — M) time.

A = A1 U A, can therefore be found in O(j5 — <) time, which is

linear to the input size.



The Full Divide-and-Conqguer Algorithm

[l Input: Ali...j] withs < j
/l Output : the MCS of A[i. .. j]

MCS(A,1,5)

1. Ifi == jreturn A[:]

2. Else

3. Find MCS(A, i, |“32));

4. Find MCS(A, [“F2] + 1, 5);
5. Find MCS that contains

both A |[“52]] and A |52 + 1];
Return Maximum of the three sequences found

o



A full example

6 -4 !7 -

/ / MCS={1}
| MCS={7}

6 1 -4 -4 :

MSC={6} MCS={-4} MCS={-4}
&:{ 6, -4/ A=({-4, 0/

MCS={6} MCS= 0}
\ A={6, -4, T} \ A={0, 1}
MCS={6, -4, 7} MCS={1}

w—é 7, -V
MCS={6, -4, 7}

10



Analysis of the DC Algorithm

Let T'(m) (where m is the problem size) be time needed
to run
MSC(A,i,7),(j—i+1=m)
Step (1) requires O(1) time.
Steps (3) and (4) each require T'(m/2) time.
Step (5) requires O(m) time.
Step (6) requires O(1) time

Then T (1) = O(1) and
forn>1,T(n) =2T(n/2) + O(n)
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Analysis of the DC Algorithm

To simplify the analysis, we assume that n is a power
of 2.

T(n) < 2T(5) + cn. Repeating this recurrence

gives
T (E) +cn

2 [2T( )-I-C ]—l—cn

T(n)

IN A

z?r(Q )4—2cn

IA

QQPT< >+c—l+2mz

23T (2 > + 3cn

I

.2hT (2 > + hcn

Set h = log, n, so that 2 = n. With this substitu-
tion, we have

T(n) <nT(1) 4+ (logorn)en = O(nlogsn).
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Review

In this lecture we saw 3 different algorithms for solv-
Ing the maximum contiguous subarray problem. They
were

e A ©(n3) brute force algorithm

e A ©(n?) algorithm that reuses data.

e A ©(nlogn) divide-and-conquer algorithm
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