
Lecture 2: Maximum Contiguous
Subarray Problem

Overview

� Reference: Chapter 8 in Programming Pearls, (2nd
ed) by Jon Bentley.

� Clean way to illustrate basic algorithm design

– A
� �������

brute force algorithm

– A
� ����	��

algorithm that reuses data.

– A
� ��� 
���
 ���

divide-and-conquer algorithm

� Cost of algorithm will be number of primitive op-
erations, e.g., comparisons and arithmetic opera-
tions, that it uses.
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MCS Example

ACME CORP – PROFIT HISTORY
Year 1 2 3 4 5 6 7 8 9
Profit M$ -3 2 1 -4 5 2 -1 3 -1

Betweeen years 5 and 8 ACME earned� � � � � � � � �
Million Dollars

This is the MAXIMUM amount that ACME earned in
any contiguous span of years.

Examples:
Between years 1 and 9 ACME earned� � � � � � � � � � � � � � � � � � � �

M$
and between years 2 and 6� � � � � � � � � � 	

M$.

The Maximum Contiguous Subarray Problem is to
find the span of years in which ACME earned the most,
e.g.,

� ��

� �
.
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Formal Definition

Input: An array of reals � � � ������� ���

The value of subarray � �
	 �����
��� is

� � 	 
�� � � �
��� � �

��� � �

The Maximum Contiguous subarray problem is to
find 	�� �

such that
� � 	�� 
�� � � 
 � � 	�� 
�� � � � � � 	 

� � �

Output:
� � 	 
�� � s.t.

� � 	 � 
�� � � 
 � � 	 � 

� � � � � � 	 
�� � �

Note: Can modify the problem so it returns indices� 	 

� � .
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� �������
Solution: Brute Force

Idea: Calculate the value of
� � 	 
�� � for each pair 	�� �

and return the maximum value.

VMAX=A[1];
for (i=1 to N) {
for (j=i to N) {
// calculate V(i, j)
V=0;
for (x= i to j)
V=V+A[x];

if (V > VMAX)
VMAX=V;

}
}
return VMAX;
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� ��� 	 �
solution: Reuse data

Idea: We don’t need to calculate each
� � 	 
�� � from

“scratch” but can exploit the fact that

� � 	 
�� � � �
��� � � � � � � � � 	 

� � � � � � � �����

VMAX=A[1];
for (i=1 to N) {
V=0;
for (j=i to N) {
// calculate V(i, j)
V=V+A[j];
if (V > VMAX)
VMAX=V;

}
}
return VMAX;
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� ��� 
���
 ���
solution: Divide-and-Conquer

Idea: Set � � � � � � � ��� ���
.

Let � � and � 	 be the MCS that MUST contain � ��� �
and � ��� � � �

respectively. Note that the MCS must
be one of

� � � 	 The MCS in � � � ����� � � 


� � 	 	 The MCS in � ��� � � ������� � 


� � 	 Where � � � ��
 � 	 �

A_1 = MCS on left containing A[M]

A= A_1 U  A_2

A_1 A_2

A_2 = MCS on right containing A[M+1]  

   

M+1M

S_1 S_2
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Example

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

� � � � � 
 	 � and � 	 � � � 
 	 
 �����
� � � � � 
 	 
 � � �

and � 	 � � ��
 � � 
�� ���
� � � � 
 � 	 � � ��
 	 
 � � 
 ��
 � � 
�� �

Since
� ���	��
 � � �

� � � 
 � �����

 � � 	 � � �

and
� ���	�

 � � � � � �

the solution to the problem is � �
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Finding � 	 The conquer stage

M+1

A_2

i

A_1

jM

���
is in the form

��� ������� � 	�

there are only � 
 ��� � such sequences, so,

� �
can be found

in ����� 
 ��� time.

MAX=A[M];
SUM=A[M];
for (k=M-1 down to i)
{
SUM+=A[k];
if (SUM > MAX) MAX=SUM;

}
A_1=MAX;

Similarly,
���

is in the form
��� � � � ����� � 	�
there are only � 
 � such sequences, so,

���
the maximum val-

ued such one, can be found in ��� � 
 � � time.

� � � ��� � �
can therefore be found in ��� � 
 ��� time, which is

linear to the input size.

8



The Full Divide-and-Conquer Algorithm

// Input : � �
	 �����
� � with 	 � �
// Output : the MCS of � � 	 ���������

� � � � � 
 	 

� �
1. If 	 � � �

return � �
	 �
2. Else
3. Find � � � � � 
 	 
 � � � �	 � �

;
4. Find � � � � � 
 � � � �	 � � � 
�� �

;
5. Find MCS that contains

both � � � � � �	 ���
and � � � � � �	 � � ���

;
6. Return Maximum of the three sequences found
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A full example

-4      0      1

6      -4

MSC={6}

A={6, -4}

MCS={6}

MCS={-4}

A={6, -4, 7}

MCS={7}

MCS={6, -4, 7}

-4        0

MCS={-4} MCS={0}

A={-4, 0}

MCS={0}

A={0, 1}

MCS={1}

MCS={1}

A={6, -4, 7, -4, 0, 1}

MCS={6, -4, 7}

6      -4      7

6      -4      7      -4      0       1
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Analysis of the DC Algorithm

Let � ��� �
(where

�
is the problem size) be time needed

to run
� � � � � 
 	 

� � , � � � 	 � � � � �

Step (1) requires � � � �
time.

Steps (3) and (4) each require � ��� � � �
time.

Step (5) requires � ��� �
time.

Step (6) requires � � � �
time

Then � � � � � � � � �
and

for
� � � 
 � ����� � � � ��� � � � � � ��� �
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Analysis of the DC Algorithm

To simplify the analysis, we assume that
�

is a power
of 2.

� ��� � � � � ���
	
� � � �

. Repeating this recurrence
gives

� ����� � � �
� �
��� � � �

� � � � �
� �
� 	 � � � �

��� � � �
� � 	 �

� �
� 	 � � �	� �

� � 	 � � �
� �
� � � � � �

� 	 � � �
� �
� � � �

� �
� � � � �	� �

� � � �
� ��� � � �

� � � � 
�� �
Set


 � 
���
 	 � , so that
� � � �

. With this substitu-
tion, we have

� ��� � � � � � � � � � 
���
 	 � � � � � � ��� 
���
 	 ��� �
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Review

In this lecture we saw 3 different algorithms for solv-
ing the maximum contiguous subarray problem. They
were

� A
� ��� ���

brute force algorithm

� A
� ��� 	��

algorithm that reuses data.

� A
� ��� 
 � 
 � �

divide-and-conquer algorithm
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