Lecture 3. The Polynomial Multiplication
Problem

A More General Divide-and-Conquer Approach

Divide: Divide a given problem into subproblems (ide-
ally of approximately equal size).
No longer only TWO subproblems

Conqguer: Solve each subproblem (directly or
recursively), and

Combine: Combine the solutions of the subproblems
into a global solution.



The Polynomial Multiplication Problem
another divide-and-conquer algorithm

Problem:
Given two polynomials of degree n

A(x) ag+ a1z + -+ apz”
B(x) = bg+biz+---4 bpz™,

compute the product A(z)B(x).

Example:
A(z) = 14 2z+ 327
B(z) = 34 2z+4 227

A(x)B(z) = 3+ 8x+ 1522 4+ 1023 + 62

Question: How can we efficiently calculate the coef-
ficients of A(x)B(x)7

Assume that the coefficients a; and b; are stored in
arrays A[O...n] and B[O...n].

Cost of any algorithm is number of scalar multiplica-
tions and additions performed.



Convolutions

Let A(x) = >, a;zt and B(z) = >y b;xt.

Set C(x) = ZZigL c;xt = A(z)B(z).

Then
k
¢k =) aiby_;
i=0
forall0 < k < m + n.
Definition: The vector (cg,c1, - - -, Cpn4n)
Is the convolution of the vectors
(apg,ai,...,an) and (bg,b1,...,bm).

Calculating convolutions (and thus polynomial multi-
plication) is a major problem in digital signal process-
Ing.



The Direct (Brute Force) Approach

Let A(x) = Y1 ya;x’ and B(z) = 0 b;xt.

Set C(x) = Zk 0 c;xt = A(z)B(x) with

k

cp = > abi_;
i=0

forall 0 < k < 2n.

The direct approach is to compute all ¢, using the for-
mula above. The total number of multiplications and
additions needed are ©(n?) and ©(n?) respectively.
Hence the complexity is ©(n?2).

Questions: Can we do better?
Can we apply the divide-and-conquer approach to de-
velop an algorithm?



The Divide-and-Conquer Approach

The Divide Step: Define
__ |Z]-1
Ao(z) = aO+a1$+"'+aL%J_1CL’ 2 3

Ar@) = agytapg et a2

Then A(z) = Ag(z) + A1 (z)z2).

Similarly we define Bg(x) and B1(x) such that
B(z) = Bo(z) + Byi(z)z'2).
Then

A(z)B(z) = Ag(z)Bo(x) +nAo(:c)Bl(x)xL%J - i
141(55)30(513)55'L7J + A1(z)B1 (:c)xQL?J,

Remark: The original problem of size n is divided into
4 problems of input size 7.



Example:

A(z) = 2452+ 32°+ 23— 2*
B(z) = 14 2z+4 224+ 32+ 62°
A(z)B(z) = 24 9z +4 1722 4+ 232> + 34z* + 392°

+192°% 4+ 32" — 628

Ao(z) =2+ 5z, Ai(z) =3 +z— 27
A(x) = Ao(z) + A1 (x)x?

Bo(z) = 1422, Bi(z) =2+ 3z + 622,
B(xz) = Bo(x) + Bi(x)x?

Ao(z)Bo(z) = 249z + 10z°

Ai1(z2)Bi(z) = 64+ 11z 4 1922 + 32> — 62
Ao(z2)Bi(z) = 44+ 16z 4 2722 4+ 302°
A1(z)Bo(z) = 34 7z+ 2% — 223

Ao(z)Bi(z) 4+ A1 (2)Bo(z) 7 + 23z + 2822 + 2823

Ao(z)Bo(z) 4+ (Ao(z)Bi(z) + A1(x)Bo(z))x? 4+ A1 (x)Bi(z)z?
=24+9x 4+ 1722 + 2323 + 342* + 3925 4+ 192° 4+ 327 — 628



The Divide-and-Conquer Approach

The Conquer Step: Solve the four subproblems, i.e.,
computing

Ag(z)Bo(x), Ao(z)Bi(z),
A1(z)Bo(x), A1(z)B1(x)

by recursively calling the algorithm 4 times.



The Divide-and-Conquer Approach

The Combining Step: Adding the following four poly-
nomials

Ao () Bo(x)
+Ao(z) By (z)z2]
+41(z) Bo(z)x!2!
+A41(z) By ()22,

takes ©(n) operations. Why?



The First Divide-and-Conquer Algorithm

PolyMultil(A(x), B(x))

{
Ao(z) =ap+a1x+--- + aL%J_leTJ_l;
Ar(e) =apg tapg o+ ana" 2],

Bo(a) = bo +brz+ -+ +byay ;227
Bi(e) = bgy+bjg gz o+ bua" 12
U(x) = PolyMultil(Ag(xz), Bo(x));

V(z) = PolyMultil(Ag(x), B1(x));

W (x) = PolyMultil(Aq(x), Bo(x));
Z(x) = PolyMultil(A1(z), B1(x));

return (U(x) + V() + W()]z3) + Z(x)xQL%J> ;



Running Time of the Algorithm

Assume n is a power of 2, n = 2", By substitution (expansion),

T(n) = 4T(E)-I—cn
_ 4[4T( )—l—c ]+cn
— 42T(—>—|—(1—|—2)cn
= 42 [47 (35) +cog] + (1 +2)en
_ 43T(§) + (1424 22¢n

1—1
— 4iT (g) +3Y 2%cn  (induction)

7=0

— 4hT( )+Zzﬂcn

= n?T(1)+ cn(n —1)
h—1
(sincen =2"and » 2/ =2"—1=n—1)
j=0
= O(n?).

The same order as the brute force approach!
10



Comments on the Divide-and-Conquer Algorithm

Comments: The divide-and-conquer approach makes
no essential improvement over the brute force approach!

Question: Why does this happen.

Question: Can you improve this divide-and-conquer
algorithm?

11



Problem: Given 4 numbers
AO7 A17 BO: Bl

how many multiplications are needed to calculate the
three values

AgBg, AgB1 + A1Bg, A1B17

This can obviously be done using 4 multiplications but
there is a way of doing this using only the following 3:

Y = (Ao+ A1)(Bo+ B1)

Z A1B1q

U and Z are what we originally wanted and

AoB1 +A1Bgp=Y - U — Z.

12



Improving the Divide-and-Conquer Algorithm

Define

Y(z) = (Ao(z) + A1(z)) x (Bo(z) + Bi(x))
U(z) = Ag(z)Bo(x)

Z(z) = Ai(z)Bi(z)

Then

Y(z)-U(z)—Z(z) = Ao(z)B1(z)+A1(z)Bo(x).
Hence A(x)B(x) is equal to

U(z) + [Y(2) — Uz) — Z(2)]22) + 2(2) x 2212

Conclusion: You need to call the multiplication pro-
cedure 3, rather than 4 times.

13



The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))
{
Ao(IE) =ao+aix+ -+ CLI_%J_liBl‘%J_l;

Al(x) = O’L%J +0’|_%J+1m+ _|_anxn—|_%J’

Bo(z) =bo 4+ b1z + -+ bL%J_le%J—l;

Y (z) = PolyMulti2(Ag(x) + A1(x), Bo(x) + B1(x))
U(xz) = PolyMulti2(Ag(z), Bo(x));
Z(x) = PolyMulti2(A1(x), B1(x));

return (U(2) + [Y (2) - U(z) — Z()]218) + Z(2)2?13)) ;

14



Running Time of the Modified Algorithm

Assume n = 2. Let Ig 2 denote log, z.
By the substitution method,

T(n) = T(ﬁ) +cn
= 3[3T< )—I—c }-I—cn
= 32T(%)—|—(1+—)cn
= 32 [3T< )+c—] + <1—|—g>cn
= 3°T (23) + (1 -|-§+ BF) cn
E h—1 3 J
= 3t (Qh) + Z::O [51 cn.
We have
(2Ig3)h _ 2hlg3 (Qh)lg3 _nlg3 1585,

and

h—1 J h h
Z S CTE0 =2. 3——2_2n'93 1_ 9o,
| 2 3/2—1 2h

Hence
T(n) = O(n'9I3T(1) + 2¢nl93) = O(n'93).
15



Comments

e The divide-and-conquer approach doesn’t always
give you the best solution.
Our original D-A-C algorithm was just as bad as
brute force.

e There is actually an O(nlogn) solution to the
polynomial multiplication problem.
It involves using the Fast Fourier Transform algo-
rithm as a subroutine.
The FFT is another classic D-A-C algorithm (Chapt
30 in CLRS gives detalls).

e The idea of using 3 multiplications instead of 4 is
used in large-integer multiplications.
A similar idea is the basis of the classic Strassen
matrix multiplication algorithm (CLRS, Chapter 28).

16



