
Lecture 3: The Polynomial Multiplication
Problem

A More General Divide-and-Conquer Approach

Divide: Divide a given problem into subproblems (ide-
ally of approximately equal size).
No longer only TWO subproblems

Conquer: Solve each subproblem (directly or
recursively), and

Combine: Combine the solutions of the subproblems
into a global solution.
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The Polynomial Multiplication Problem
another divide-and-conquer algorithm

Problem:
Given two polynomials of degree �

� ����� � �
	 � �
��� � ������� ���
� �
� ����� � ��	 � ����� � ������� ���
� ���

compute the product
� ����� � �����

.

Example:
� ����� � � � ��� �  !�#"
� ����� �  � ��� � �!�#"

� ����� � ����� �  � $�� � �&%'� " � �&('�
) � *+��,

Question: How can we efficiently calculate the coef-
ficients of

� ����� � �����.-
Assume that the coefficients

�0/
and

��/
are stored in

arrays
� 12( 3�3�3 �54 and

� 12( 3�3�3 ��4 .
Cost of any algorithm is number of scalar multiplica-
tions and additions performed.
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Convolutions

Let
� ����� � � �/�� 	 ��/ � /

and
� ����� � � �/�� 	 ��/ � /

.

Set � ����� � � ��� �� � 	 � / � / � � ����� � �����
.

Then

� � � �
/�� 	 ��/ � �
	 /

for all
( � � � 
 � � .

Definition: The vector
� � 	 � � � � 3�3�3 � � � � � �

is the convolution of the vectors� �&	 � � � � 3�3�3 � � � �
and

� � 	 � ��� � 3�3�3 � � � �
.

Calculating convolutions (and thus polynomial multi-
plication) is a major problem in digital signal process-
ing.
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The Direct (Brute Force) Approach

Let
� ����� � � �/�� 	 ��/ � /

and
� ����� � � �/�� 	 ��/ � /

.

Set � ����� � � " �� � 	 � / � / � � ����� � �����
with

� � � �
/�� 	 � / � �
	 /

for all
( � � � � � .

The direct approach is to compute all � � using the for-
mula above. The total number of multiplications and
additions needed are �

� � " � and �
� � " � respectively.

Hence the complexity is �
� � " � .

Questions: Can we do better?
Can we apply the divide-and-conquer approach to de-
velop an algorithm?
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The Divide-and-Conquer Approach

The Divide Step: Define

� 	������ � �&	 � � ��� � ������� ��� � "�� 	 � �
� � "�� 	 � �

� �0����� � � � � "�� � � � � "�� � � � � ������� � � � � 	 � � "�� 3

Then
� ����� � � 	������ � � �0����� � � � "�� .

Similarly we define
� 	!�����

and
� � �����

such that

� ����� � � 	!����� � � � ����� � � � "�� 3
Then
� ����� � ����� � � 	+����� � 	#����� � � 	������ � � ����� � � � "�� �

� ������� � 	#����� � � � "�� � � � ����� � �&����� � " � � "�� 3

Remark: The original problem of size � is divided into
4 problems of input size

�
" .
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Example:�
����� � " � � � � ) ��� � �
	 	 ���


 ����� � � � " � � " � � � ) � 	 � � � ��
����� 
 ����� � " � � � � ��� ��� � " ) ��	 � ) , ��� � ) � ���� � � ��� � ) �
� 	 � ���

�
� ����� � " � � ���

�
� ����� � ) � � 	 � � ��
����� � �

� ����� �
�
� ������� �
 � ����� � � � " ��� 
 � ����� � " � ) � � � � � �


 ����� � 
 � ����� � 
 � ������� �
�
� ����� 
 � ����� � " � � � � ��	 � ��
� ����� 
 � ����� � � � � � � � � � �
� � ) ��	 	 � ����
� ����� 
 � ����� � , � � � � � " � � � � ) 	 � 	�
� ����� 
 � ����� � ) � � � � � � 	 " � 	�

� ����� 
 � ����� �
�
� ����� 
 � ����� � � � " ) � � "�� � � � "�� � 	

�
� ����� 
 � ����� � �

�
� ����� 
 � ����� �

�
� ����� 
 � ������� � � �

�
� ����� 
 � ����� � �� " � � � � �!� � � � " ) � 	 � ) , � � � ) � � � � � � � � � ) � � 	 � � �
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The Divide-and-Conquer Approach

The Conquer Step: Solve the four subproblems, i.e.,
computing

� 	������ � 	!����� � � 	������ � � ����� �
� �0����� � 	!����� � � �0����� � � �����

by recursively calling the algorithm 4 times.
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The Divide-and-Conquer Approach

The Combining Step: Adding the following four poly-
nomials

� 	 ����� � 	 �����
� � 	+����� � � ����� � � � "��
� � ������� � 	#����� � � � "��
� � ������� � � ����� � " � � "�� 3

takes �
� � � operations. Why?
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The First Divide-and-Conquer Algorithm

PolyMulti1
� � ����� � � �����.��

� 	 ����� � � 	 � � � � � ������� � � � "�� 	 � �
� � " � 	 ���

� �0����� � ��� � "�� � ��� � "�� � � � � ����� � � �
� � 	 � � "�� �
� 	#����� � ��	 � ����� � ������� ��� � "�� 	 � �

� � "�� 	 � �
� � ����� � ��� � "�� � ��� � "�� � � � � ������� ���
� � 	 � � "�� �
� ����� � � ���	��
 �
����� �
� � 	 ����� � � 	 �����.� �� ����� � � ���	��
 �
����� �
� � 	#����� � � � �����.� �� ����� � � ������
 ������� �
� � � ����� � � 	!�����.� �� ����� � � ���	��
 �
����� �
� � �0����� � � �0�����.� �
���������! " � ����� � 1 � ����� � � ����� 4 � �

�
"�� � � ����� � " � � "��$# �

%
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Running Time of the Algorithm

Assume
�

is a power of 2,
� � "�� . By substitution (expansion),

� � � � � , � � � "�� � � �
� , � , � � �" � � � � � " � � � �
� , � � � �" � � � � � � " � � �
� , � � , � � �" 	 � � � �" � � � � � � " � � �
� , 	 � � �" 	 � � � � � " � " � � � �

...� ,
	 � � �" 	 � � 	�� �
�� � " 
 � � (induction)

...� , � � � �" � � � � � �
�� � " 
 � �� � � � � � � � � � � � 	 � �
�
since

� � "�� and
� � �
�� � " 
 � " � 	 � � � 	 � �

� � � � � ���
The same order as the brute force approach!
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Comments on the Divide-and-Conquer Algorithm

Comments: The divide-and-conquer approach makes
no essential improvement over the brute force approach!

Question: Why does this happen.

Question: Can you improve this divide-and-conquer
algorithm?
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Problem: Given 4 numbers
� 	 � � � � � 	 � � �

how many multiplications are needed to calculate the
three values

� 	 � 	 � � 	 � � � � � � 	 � � � � ��-

This can obviously be done using 4 multiplications but
there is a way of doing this using only the following 3:

� � � � 	 � � � � � � 	 � � � �� � � 	 � 	� � � � � ��
and

�
are what we originally wanted and
� 	 � � � � � � 	 � � � � � � 3
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Improving the Divide-and-Conquer Algorithm

Define

� ����� � � � 	������ � � �0����� � � � � 	#����� � � � ����� �� ����� � � 	������ � 	!������ ����� � � �0����� � � �����
Then

� ����� � � ����� � � ����� � � 	������ � � ����� � � � ����� � 	
����� 3
Hence

� ����� � �����
is equal to� ����� � 1 � ����� � � ����� � � ����� 4 � �

�
" � � � ����� � � " � � " �

Conclusion: You need to call the multiplication pro-
cedure 3, rather than 4 times.
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The Second Divide-and-Conquer Algorithm

PolyMulti2
�
�
����� � 
 ����� �

� �
� ����� � � � � � � � � ����� � �����

�	� � � �
� �
� � � ��
�

� ����� � ��� �
� �

� ��� �
� ��
 � � � ����� � � � � � � ��� ��� 



 � ����� � � � � � � � � ����� � ��� �
� � � � �

���
��� � � 



 � ����� � �����
�	�

� �����
����
 � � � ����� � � � � � � � � � � 


� ����� � ��������� ���� / " �
�
� ����� �

�
� ����� � 
 � ����� � 
 � �������! ����� � �"�#���$� ���� / " �

�
� ����� � 
 � ����� � 
% ����� � �"�#���$� ���� / " �

�
� ����� � 
 � ����� � 


&�'�(�)*&,+ � ! ����� � - � ����� 	 ! ����� 	 % �����/. � � � � � � % ������� � � � � � � 

0
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Running Time of the Modified Algorithm

Assume
� � " � . Let ��� �

denote ����� � � �
By the substitution method,� � � � � ) � � � " � � � �

� ) � ) � � �" � � � � � " � � � �
� ) � � � �" � � � " � � ) " # � �
� ) � � ) � � �" 	 � � � �" � � � " � � )

" # � �
� ) 	 � � �" 	 � � � � )" � � ) "�� � � �

...� ) � � � �" � � � � � �
�� � � )"	� 
 � � �
We have) � � � "�

� 	 � � � " � 
�� 	 � � " � � 

� 	 � � 

� 	 � � ��� � � � �
and � � �
�� � � )" � 
 � � )�� " � � 	 �

)�� " 	 � � " � ) �" � 	 " � " � 

� 	 � � 	 " �
Hence� � � � � � � � 

� 	 � � � � � " � � 

� 	 � � � � � 
�� 	 ���
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Comments

� The divide-and-conquer approach doesn’t always
give you the best solution.
Our original D-A-C algorithm was just as bad as
brute force.

� There is actually an
� � � ����� � � solution to the

polynomial multiplication problem.
It involves using the Fast Fourier Transform algo-
rithm as a subroutine.
The FFT is another classic D-A-C algorithm (Chapt
30 in CLRS gives details).

� The idea of using 3 multiplications instead of 4 is
used in large-integer multiplications.
A similar idea is the basis of the classic Strassen
matrix multiplication algorithm (CLRS, Chapter 28).
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