
Lecture 6: Depth-First Search

Background

Graph Traversal Algorithms: Graph traversal algo-
rithms visit the vertices of a graph, according to some
strategy.

Example: The BFS is an example of a graph traversal
algorithm that traverses each connected component
separately. It traverses the vertices of each compo-
nent in increasing order of the distances of the ver-
tices from the ‘root’ of the component.
Can be thought of processing ‘wide’ and then ‘deep’.

DFS will process the vertices first deep and then wide.
After processing a vertex it recursively processes all
of its descendants.

1

DFS Algorithm

Graph is
� � ������� 	

. The algorithm works in discrete
time steps. Each vertex
 is given a “discovery” time�
�
�� when it is first processed and a “finish” time, � �
��
when all of its descendants are finished.

The output is a collection of trees. As well as
�
�
�� and

� �
�� , each node points to ������� �
�� , its parent in the
forest.

2

DFS Algorithm

DFS{G} {
for each u in V do // Initialize
color[u] = white;
pred[u] = NULL;
time=0;
for each u in V do
// start a new tree
if (color[u] == white) DFSVisit(u);

}

DFSVisit(u) {
color[u] = gray; // u is discovered
d[u] = ++time; // u discovery time
for each v in Adj(u) do
// Visit undiscovered vertex
if (color[v] == white) {
pred[v] = u;
DFSVisit(v);

}
color[u] = black; // u has finished
f[u] = ++time; // u finish time
}

3

DFS Example

9/14

12/1310/11

4/5

B

1/8

2/7

3/6

c g

d

b

e

f

e

a d

gc

a

b

f

B

4

What Does DFS Do

Given a digraph
� � ������� 	

, it traverses all vertices
of

�
and

� constructs a forest (a collection of rooted trees),
together with a set of source vertices (the roots);
and

� outputs two arrays,
�
�
�� � � �
�� , the two time units.

Note: Forest is stored in ������� � � array with ������� �
��
pointing to parent of
 in the forest. � ����� � � of a root
node is NULL.

DFS Forest: DFS creates a forest � � ����� � � 	
, a

collection of rooted trees, where
� � � � �����
	 �
�
�� �
 	�� where DFS calls are made

5

Idea of the DFS Algorithm

� In DFS, edges are explored out of the most recently dis-
covered vertex � . Only edges to unexplored vertices are
explored.

� When all of � ’s edges have been explored, the search “back-
tracks” to explore edges leaving the vertex from which �

was discovered.

� The process continues until we have discovered all the ver-
tices that are reachable from the original source vertex.

� If any undiscovered vertices remain, then one of them is se-
lected as a new source vertex, and the search is repeated
from that source vertex.

� This process is repeated until all vertices are discovered.

The strategy of the DFS is to search “deeper” in the graph when-

ever possible.

6

Four Arrays for the DFS Algorithm

To record data gathered during traversal.

� ������� � ��� � , the color of each vertex visited: white
means undiscovered, gray means discovered but
not finished processing, and black means finished
processing.

� ���
	 �
��� � , the predecessor pointer, pointing back to
the vertex that discovered

�
.

� �
��� � , the discovery time, a counter indicating when
vertex

�
is discovered.

� � ��� � , the finishing time, a counter indicating when
the processing of vertex

�
(and all its descen-

dants) is finished.

7

Tree structure

DFS imposes a tree (a collection of trees, or forest) on
the structure of the graph. For undirected graphs, the
edges are classified as follows:

Tree edges: which are the edges (pred[v], v) where
DFS calls are made.

Back edges: which are the edges (u, v) where v is
an ancestor of

�
in the tree.

8

Time-stamp structure

There is also an important and useful structure to the
time stamps.

� u is a descendant of v, if and only if
� �
��� � � � ��� � � is

a subinterval of
� �
�
�� � � �
�� � .

� u is an ancestor of v, if and only if
� �
��� � � � ��� � �

contains
� �
�
�� � � �
�� � .

� u is unrelated to v, if and only if
� �
��� � � � ��� � � and� �
�
�� � � �
�� � are disjoint intervals.

9

Time-stamp structure : Proof

The idea is to consider every case. We first consider�
�
���� �
��� � .

1. If � �
���� �
��� � , then
�

is discovered when
 is still
not finished yet (marked gray). This implies

�
is

descendant of
 .

Moreover, since
�

is discovered later than
 ,
�

should finish before
 . Hence we have
� �
��� � � � ��� � �

is a subinterval of
� �
�
�� � � �
�� � .

2. If � �
���� �
��� � , obviously
� �
�
�� � � �
�� � and

� �
��� � � � ��� � �
are disjoint. It means that when

�
or
 is discov-

ered, the others are not marked gray. Hence nei-
ther vertex is a descendant of the other.

The argument for other case, where
�
�
�� � �
��� � , is

similar.
10

Running Time Analysis of DFS

DFS{G} {
for each u in V do // 2n
color[u] = white;
pred[u] = NULL;
time=0; // 1
for each u in V // n
if (color[u] == white) DFSVisit(u);

}// Sum: 3n + 1

DFSVisit(u) { // 1
color[u] = gray; // 1
d[u] = ++time; // 2
// out-degree of u
for each v in Adj(u) do
if (color[v] == white) {
pred[v] = u;
DFSVisit(v); // 2

}
color[u] = black;// 1
f[u] = ++time; // 2
}// Sum : T_u <= 7 + 2 out-degree(u)

11

Running Time Analysis of DFS – Continued

The total running time is

����� � � 	��
�	��

� ��

We have

�	��

� � �

�	��

��� � �

outdeg
� � 	 	 � ��� � � 	

and

�	��

� � �

�	��

��� �

outdeg
� � 	 	 � ��� � 	

Hence

� ��� � 	 	 � �	��� � � 	�� � � � ��� � 	 	 �
� ��� � 	 	 � �	��� � 	�� � � � ��� � 	 	

Therefore
� ��� � 	 	 � � ��� � 	 	

.

12

An Application of DFS : Articulation points

Definition : Let
� � ��� � � 	

be a connected undi-
rected graph. An articulation point (or cut vertex) of

�
is a vertex whose removal disconnects

�
.

Given a connected graph
�

, how to find all articulation
points?

13

Articulation points: Easy solution

The easiest solution is to remove a vertex (and its
corresponding edges) one by one from

�
and test

whether the resulting graph is still connected or not
(say by DFS). The running time is

� ��� � ��� � � 	 	
.

A more elegant algorithm always starts at simple ob-
servations. Suppose we run DFS on

�
, we get a DFS

tree. If the root has two or more children, it is an ar-
ticulation point. Moreover, a leaf is not an articulation
point.

Some parts of the tree have edges that ’climbs’ to the
upper part of the tree , while other does not have this
edge.

14

Articulation points: Three observations

These lead to the following ideas to identify articula-
tion points:

1. The root of the DFS tree is an articulation if it has
two or more children.

2. A leaf of a DFS tree is not an articulation point.

3. Any other internal vertex
 in the DFS tree, if it
has one or more subtrees rooted at a child of

that does NOT have an edge which climbs ’higher’
than
 , then
 is an articulation point.

15

Articulation points: How to climb up

Observation 1 and 2 can be handled easily. How to
make use of observation 3?

Observe that for an undirected graph, the DFS tree
can only has tree edges or back edges. A subtree
can only climb to the upper part of the tree by a back
edge, and a vertex can only climb up to its ancestor.

v

. . . .
k

w1
w

2
w

16

Articulation points: Tackle observation 3

We make use of the discovery time in the DFS tree
to define ’low’ and ’high’. Observe that if we follow a
path from an ancestor (high) to a descendant (low),
the discovery time is in increasing order.

If there is a subtree rooted at a children of
 which
does not have a back edge connecting to a SMALLER
discovery time than

�
�
�� , then
 is an articulation point.

How do we know a subtree has a back edge climb-
ing to an upper part of the tree ? We make use of
recursion.

In the following algorithm, we define
� ��� �
�� be the

smallest value of a subtree rooted at
 to which it can
climb up by a back edge.

17

ArtPt(v) {
color[v] = gray;
// v initially can only climb up to itself
Low[v] = d[v] = ++time;
for all w in Adj(v) do {
if (color[w] == white) {
pred[w] = v;
ArtPt(w);
// When ArtPt(w) is completed, Low[w] stores the
// lowest value it can climb up for a subtree
// rooted at w.
// Recall v is the parent of w.
if (pred [v] == NULL) {
// v has no predecessor , so v is the root.
// apply observation 1.
if (’w’ is v’s second child) output v;

}
else if (Low[w] >= d[v]) output v;
// subtree rooted at w can’t climb higher than v
// apply observation 3.

// update Low[v] if a children subtree can
// climb higher
Low[v] = min(Low[v], Low[w]);

}
else if (w != pred[v]) { // (v, w) is a back edge
// update Low[v] if a back edge climbs higher
Low[v] = min(Low[v], d[w]);

}
}
color[v] = black;

}

18

Articulation points: Example

(4, 4−>1)

(d[v], Low[v])=(1, 1)

(5, 5−>3)

(2, 2−>1)

(3, 3−>1)

(8, 8−>1)

(9, 9−>1) (11, 11−>8)

(7, 7−>5−>3)(6, 6−>3)

(10, 10−>8−>1)

19

An Application of DFS : Biconnected components

A biconnected graph
� � ��� � � 	

is a connected
graph which has no articulation points.

To disconnect a biconnected graph, we must remove
at least two vertices.

A biconnected component of a graph
�

is maximal
biconnected subgraph (i.e., it is not contained in any
larger biconnected subgraph) of

�
.

The problem is how to identify all biconnected compo-
nents of

�
?

20

An Application of DFS : Biconnected components

21

An Application of DFS : Biconnected components

Key observations:

1. Two different biconnected components should not
have any common edges (but they can have com-
mon vertex).

2. That common vertex linking two (or more) bicon-
nected components must be an articulation point
of

�
.

3. That is, the articulation points of
�

’seperate’ the
biconnected components of

�
. If

�
has no artic-

ulation point,
�

is biconnected.

22

An Application of DFS : Biconnected components

It now boils down to find all the articulation points of�
and check how they seperate the biconnected com-

ponents.

recursive calls finished
1 binconnected component

1 binconnected component

b

a
recursive calls finished

recursive calls

recursive calls

x

u

Again, we make use of the recursive call structure.

23

An Application of DFS : Biconnected components

Recall that DFS is a recursive algorithm, we make use
of a stack to trace back the recursive calls. When we
process an edge

� � ��� 	
(either by a recursive call on

vertex
�

from vertex
�

, or
� � ��� 	

is back edge), we
push that edge to a stack. Later, if we identify

�
as an

articulation point (where the subtree rooted at
�

can’t
climb higher than

�
), then all the edges from the top

of the stack down to
� � ��� 	

are the edges of one bi-
connected component. (Observe how a stack is used
to trace the recursive calls). So we pop edges out of
the stack until

� � ��� 	
(also pop

� � ��� 	
), those edges

belong to a biconnected component.

24

An Application of DFS : Biconnected components

edges are in the same biconnected component

c

a

pop the stack until (c, e), those

point, as ’e’ can’t climb higher;
’c’ is idenfied as an articulation

e k

ji

h

gf

d

b

(a, b)

(c, d)
(d, a)

(b, c)
(a, b)

(c, d)

(g, c)

(f, g)
(e, f)

(g, e)

(c, e)
(d, a)

(b, c)
(a, b)

(c, d)
(b, c)

(d, a)

25

