Lecture 9: Kruskal’s MST Algorithm :
Disjoint Set Union-Find

A disjoint set Union-Find date structure supports
three operation on z, and y:

1. Create-Set(x) Create a set containing a single
item .

2. Find-Set(x) Find the set that contains z

3. Union(x, y) Merge the set containing x, and an-
other set containing y to a single set. After this
operation, we have Find-Set(x)=Find-Set(y).



Up-tree implementation

Basic ideas:

e Every item is in a tree. The root of the tree is the
represtative item of all items in that tree i.e., the
root of the tree represents the whole items.

e In this up-tree implementation, every node (ex-
cept the root) has a pointer pointing to its parent.
The root element has a pointer pointing to itself.

)

SO @x@\@



e The operation of Create-Set(x) is easy.

Create-Set (x)

X->parent=x;

e The operation of Find-Set(x) is easy, we simple
trace the parent point until we hit the root, then
return the root element.

Find-Set (x)
while (x!= x->parent)
X = X->parent;

return X;



e The operation of Union(z, y) is a little bit tricky.
We can just simply putting the parent pointer of
the representation of x pointing to the represen-
tation of y.

Is it a good idea?



The problem is that, it may become a linked-list at the
end! Hence it is not efficient. Can we do better?

o /
38 Bq. 47 O
& B e P

of

A simple trick: when we union two trees together,
we always make the root of taller tree the parent of
shorter tree. This trick is called Union by height.



Up-tree implementation : Union by height

The root of every tree also holds the height of the tree.

In case two trees has the same height, we choose the
root of the first tree point to the root of second. And
the tree height is increased by 1.

Union(x, Vy)
a=Find-Set (x); b=Find-Set(y) ;
if (a.height <= b.height)
if (a.height == b.height) b.height++;
a->parent=b;
else b->parent=a;



Up-tree implementation : Union by height

Lemma For any root x of a tree, let size(x) be the
number of nodes, and h(xz) be the height of the tree.
We have size(z) > 2M(@),

Proof (by induction)

1. At beginning, h(x) = 0, and size(x) = 1. We
have 1 > 20 = 1.

2. Suppose the assumption is tree for any x, and
y before Union(x, y) operation. Let the size and
height of the resulting tree be size(z ), and h(z).

e h(x) < h(y), we have

size(x) + size(y)
oh(z) 1 oh(y)

~>h(y)
2h(z).

size(acl)

AVARAVANT



e h(z) = h(y), we have

size(:c,) size(x) + size(y)
oh(z) 4 oh(y)

>h(y)+1
oh(a).

\YARVA|

e h(xz) > h(y), itis similar to the first case



Lemma For n items, the running time of Create-Set
is O(1), Find-Set is O(logn), and Union is O(log n)
respectively.

Proof Obviously, Create-Set(x) is O(1), and the run-
ning time of Union(x, y) depends on Find-Set(x). Since
the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we
have

n > 2h
= h < logn
= h = O(logn)

Hence we have Find-Set(x) = O(logn).



Up-tree implementation : path compression

We can make the running time even faster if we add
another trick.

In the Find-Set(x), we trace the path from x to the
root. Let r be the root of the tree, and the path from
x to r IS xajas...arr. We also make all the parent

pointers of x, a1, as,...ag pointing to r directly. This
idea is called path compression.

. 7

10



Up-tree implementation : path compression

It is expected that in some sequence Find-Set opera-
tion, the running time is expected to be faster (By how
much?).

To understand the running time, we first have to define
19() n and Ig* n (iterated logarithm).

Let the function 1g(¥) n be defined recursively for non-
negative integers ¢ as

(n if i = 0
gD n = . Ig(1gt=Yn) ifi > 0and Ig(f_l) n > 0,
undefined ifi >0and Igt—1) pn <0,
or 1g(i—=1) n is undefined.

\

The iterated logarithm is defined as
Ig*n = min {i >0 19 n <1},

which is a very slow growing function. We have
g*2=1,lg*4 =2,1g*16 = 3,
Ig* 65536 = 4, 1g* 269536 — 5

11



Up-tree implementation : path compression

The following theorem is stated without proof.

Theorem A sequence of m Create-Set, Find-Set and
Union operations, n of which are Create-Set opera-
tions, can be performed on a disjointed-set forest with
union by height and path compression in worst-case
time O(mlg*n).

Question : What is the running time of Kruskal’s algo-
rithm if we employ this implementation of disjoint set
Union-Find ?

12



