Lecture 11: Dynamic Progamming
CLRS Chapter 15

Outline of this section

e Introduction to Dynamic programming;
a method for solving optimization problems.

e Dynamic programming vs. Divide and Conquer

e A few examples of Dynamic programming
— the 0-1 Knapsack Problem
— Chain Matrix Multiplication
— All Pairs Shortest Path

— The Floyd Warshall Algorithm: Improved All
Pairs Shortest Path

Recalling Divide-and-Conquer

1. Partition the problem into particular subproblems.

2. Solve the subproblems.

3. Combine the solutions to solve the original one.

Remark: In the examples we saw the subproblems
were usually independent, i.e. they did not call the
same subsubproblems. If the subsubproblems were
not independent, then D&C could be resolving many
of the same problems many times. Thus, it does more
work than necessary!

Dynamic programming (DP) solves every subsubprob-
lem exactly once, and is therefore more efficient in
those cases where the subsubproblems are not in-
depndent.

The Intuition behind Dynamic Programming

Dynamic programming is a method for solving
optimization problems.

The idea: Compute the solutions to the subsub-problems
once and store the solutions in a table, so that they

can be reused (repeatedly) later.

Remark: We trade space for time.

0-1 Knapsack Problem

Informal Description: We have n items. Let v; de-
note the value of the :-th item, and let w; denote the
weight of the :-th item. Suppose you are given a knap-
sack capable of holding total weight V.

Our goal is to use the knapsack to carry items, such
that the total values are maximum; we want to find a
subset of items to carry such that

e The total weight is at most W

e The total value of the items is as large as possible.

We cannot take parts of items, it is the whole item or
nothing. (This is why it is called 0-1.)

How should we select the items?

0-1 Knapsack Problem

Formal description:
Given W > 0, and two n-tuples of positive numbers

(v1,v0,...,vp) and (wi,ws...,wn),

we wish to determine the subset
T C{1,2,...,n} (of items to carry) that

maximizes v,
ieT

subjectto) w; < W.

1€T

Remark: This is an optimization problem. The Brute
Force solution is to try all 2™ possible subsets T'.

Question:ls there a better way?
Yes. Dynamic Programming!

General Schema of a DP Solution

Stepl: Structure: Characterize the structure of an
optimal solution by showing that it can be decom-
posed into optimal subproblems

Step2: Recursively define the value of an optimal
solution by expressing it in terms of optimal so-
lutions for smaller problems (usually using min
and/or max).

Step 3: Bottom-up computation: Compute the value
of an optimal solution in a bottom-up fashion by
using a table structure.

Step 4. Construction of optimal solution: Construct
an optimal solution from computed information.

Remarks on the Dynamic Programming Approach

e Steps 1-3 form the basis of a dynamic-programming
solution to a problem.

e Step 4 can be omitted if only the value of an opti-
mal solution is required.

Developing a DP Algorithm for Knapsack

Step 1: Decompose the problem into smaller
problems.

We construct an array V' [0..n,0..W].
Forl < ¢ < mn,and 0 < w < W, the entry
V[i, w] will store the maximum (combined)

value of any subset of items {1,2,...,4} of (com-

bined) weight at most w.

That is

V[i,w] =max{ Y v : TC{1,2,...,i}, Y wj<w;.
JeET JeT

If we can compute all the entries of this array, then
the array entry V[n, W] will contain the solution
to our problem.

Note: In what follows we will say that 7" is a solu-
tion for [i,w] if T C {1,2,...,4} and 3 ;e w; <
w and that T' is an optimal solution for [, w] if T
Is a solution and 3~ ;crv; = Vi, w].

Developing a DP Algorithm for Knapsack

Step 2: Recursively define the value of an optimal
solution in terms of solutions to smaller problems.

Initial Settings: Set

V[O,w]=0 forO0<w<W, noitem
Vi, w] = —oc0 forw < 0, illegal

Recursive Step: Use

Vi, w] = max(V[i—1,w],v;+V[i—1,w—w;])
for1<i<mO0<w<W.

Intuitively, an optimal solution would either choose item
¢ IS or not choose item 3.

Developing a DP Algorithm for Knapsack

Step 3: Bottom-up computation of V [z, w]
(using iteration, not recursion).

Bottom: V[0O,w] =O0forall0 < w < W.

Bottom-up computation: Computing the table using

Vi, w] =max(V[i—1,w],v; + V[i — 1,w — w;])

row by row.

V[iiw] (w=0| 1| 2| 3| | | W
=0 0 O O| O/ ...| ...| O | bottom

1
2

up

10

Example of the Bottom-up computation

Let W = 10 and

v; | 10 | 40 | 30 | 50

Vlibw]|O 1 2 3 4 5 6 7 8 9 10

i = O 0 0O 0 0O O O O O o o

110 0 0 0O O 10 10 10 10 10 10

2|0 0 0O O 40 40 40 40 40 50 50

3|0 0 0O O 40 40 40 40 40 50 70

410 0 O 50 50 50 50 90 90 90 90
Remarks:

e The final outputis V[4,10] = 90.

e The method described does not tell which subset gives the
optimal solution. (Itis {2, 4} in this example).

11

The Dynamic Programming Algorithm

KnapSack(v, w, n, W)
{
for (w=0to W) V[0,w] = O;
for (i = 1ton)
for(w =0to W)
if (w[i] < w)
Vi, w] = max{V[i — 1,w],v[i] + V[i — 1,w — w[i]]};
else
Vi, w] =V[i— 1,w];
return V[n, W1;
}

Time complexity: Clearly, O(nW).

12

Constructing the Optimal Solution

e The algorithm for computing V' [7, w] described in
the previous slide does not record which subset
of items gives the optimal solution.

e To compute the actual subset, we can add an
auxiliary boolean array keepli, w] which is 1 if we
decide to take the :-th file in V' [¢, w] and O other-
wise.

Question: How do we use all the values keepl[i, w] to
determine the subset T of files having the maximum
computing time?

13

Constructing the Optimal Solution

Question: How do we use the values keep[i, w] to
determine the subset T" of items having the maximum
computing time?

If keep[n,W]is 1, then n € T. We can now repeat
this argument for keep[n — 1, W — wy].

If keep[n, W]is 0O, the n € T and we repeat the argu-
ment for keep[n — 1, W1].

Therefore, the following partial program will output the
elements of T

K =W,;
for (¢ = n downto 1)
if (keep[i, K] == 1)
{ .
output i;
K = K — wli];

}

14

The Complete Algorithm for the Knapsack Problem

KnapSack(v, w,n, W)

{
for (w = 0to W) V[0, w] = O;
for (: = 1 to n)
for (w =0to W)
if (w[i] <w)and (v[i]+ V[i—1,w—w[i]] > V[i—1,w]))
Vi, w] =v[i]]+ V[i—1,w — w[i]];
keep[:,w] = 1;
else
Vi, w] =V][i — 1,w];
keep[:, w] = O;
K =W,;
for (¢ = n downto 1)
if (keep[i, K] == 1)
{
output i;
K=K — w[i];
}
return V[n, W1;
}

15

Dynamic Programming vs. Divide-and-Conqguer

The Dynamic Programming algorithm developed runs
iIn O(nW) time.
We started by deriving a recurrence relation for solv-
Ing the problem

V[0, w]
Vi, w]

0]
max(V[i— L,wl,v; +V[i— 1w — w;])

Question: why can’t we simply write a top-down divide-
and-conguer algorithm based on this recurrence?
Answer: we could, but it could run in time ©(2")
since it might have to recompute the same values
many times.

Dynamic programming saves us from having to re-
compute previously calculated subsolutions!

16

Final Comment

Divide-and-Conquer works Top-Down.

Dynamic programming works Bottom-Up.

17

