
Lecture 12: Chain Matrix Multiplication
CLRS Section 15.2

Outline of this Lecture

� Recalling matrix multiplication.

� The chain matrix multiplication problem.

� A dynamic programming algorithm for chain ma-
trix multiplication.

1

Recalling Matrix Multiplication

Matrix: An � � � matrix
� � �����
	���
����

is a two-
dimensional array

� �
����
�

����������� ����������� ����� ��� ��� � ! �"� ��� ��� � ������#����� �����#����� ����� ���$�#� � ! �"� ���$�#� � �
...��� � �%�"� ��� � �&��� ����� ��� � � � ! �"� ��� � � � �

')(((
* �

which has � rows and � columns.

Example: The following is a + � , matrix:����
�

�-� . / 0 10 1 .2/ , 1 �
, , 1 / �43. 1 3 ! . ! �

' (((
* 5

2

Recalling Matrix Multiplication

The product � � � �
of a � � � matrix

�
and a � � �

matrix
�

is a � � � matrix given by

� �
	���
�� � �
�	�

���
	���� ��
 ��� �
��
for

� � 	�� � and
� �
 � � .

Example: If

� � ��
�

� . /0 1 ! �
, , 1

' (
* � � � ��

�
� .0 1
, ,

' (
* �

then

� � � � � ��
�

�43 � �43 �
+ + . 00 3 �43 3

')(
* 5

3

Remarks on Matrix Multiplication

� If
� �

is defined,
� �

may not be defined.

� Quite possible that
� � �� � �

.

� Multiplication is recursively defined by�
 � � � � ����� � ���
 � �
� �
�� � � � � � � ��� � � ���
 � �	�
�
� 5

� Matrix multiplication is associative , e.g.,�
 � � � � � � �
 � � � � � � �
�� � � � � � �
so parenthenization does not change result.

4

Direct Matrix multiplication
� �

Given a � � � matrix
�

and a � � � matrix
�

, the direct
way of multiplying � � � �

is to compute each

� �
	���
�� � �
�	�

���
	���� ��
 ��� �
��
for

� � 	�� � and
� �
 � � .

Complexity of Direct Matrix multiplication:

Note that � has � � entries and each entry takes � � � �
time to compute so the total procedure takes � � � � � �
time.

5

Direct Matrix multiplication of
� � �

Given a � � � matrix
�

, a � � � matrix
�

and a � � �
matrix � , then

� � � can be computed in two ways
� � � � � and

� � � � �
:

The number of multiplications needed are:

� � ��� � � � � � � � � � � � � � ��� �
� � ��� ��� � � � � � � � ����� � ��� 5

When � � , , � � + , � � 1
and � � �

, then

� � ��� � � � � � � � � � . 3 �
� � ��� ��� � � � � � � . . 5

A big difference!

Implication: The multiplication “sequence”
(parenthesization) is important!!

6

The Chain Matrix Multiplication Problem

Given
dimensions ��� � �
 � 5�5�5 � ���
corresponding to matrix sequence

�
 , � �
, 5�5�5 , � �

where
� �

has dimension � � �
 � � � ,
determine the “multiplication sequence” that minimizes
the number of scalar multiplications in computing�
 � � ����� � � . That is, determine how to parenthisize
the multiplications.�
 � � � � � � � � �
 � � � � � � � � �

� �
 � � � � � �-� � �
� � �
 �
� � � � � � � � �
� �
� �
 � � � � � � � � � � � � �
�� � � � � �
� � � � �

Exhaustive search: � � + ��� � �
	 � � .
Question: Any better approach? Yes – DP

7

Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution
(in this case, a parenthesization).

Decompose the problem into subproblems: For
each pair

� � 	 �
 � � , determine the multiplication
sequence for

� ����� � � � � � ���
 ����� � � that minimizes
the number of multiplications.

Clearly,
� ����� � is a � � �
 � � � matrix.

Original Problem: determine sequence of multiplica-
tion for

�
 ��� � .

8

Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution
(in this case, a parenthesization).

High-Level Parenthesization for
� ����� �

For any optimal multiplication sequence, at the last
step you are multiplying two matrices

� ����� � and
� � �
 ��� �

for some
�
. That is,� ����� � � � � � ����� � � � � � � �
 ����� � � � � � ����� � � � �
 ��� � 5

Example� � ����� � � � � � � � � � �
� � � � � � � � ����� � � ����� 5
Here

� � , .

9

Developing a Dynamic Programming Algorithm

Step 1 – Continued: Thus the problem of determin-
ing the optimal sequence of multiplications is broken
down into 2 questions:

� How do we decide where to split the chain
(what is

�
)?

(Search all possible values of
�
)

� How do we parenthesize the subchains� ����� � and
� � �
 ��� � ?

(Problem has optimal substructure property that� ����� � and
� � �
 ��� � must be optimal so we can ap-

ply the same procedure recursively)

10

Developing a Dynamic Programming Algorithm

Step 1 – Continued:

Optimal Substructure Property: If final “optimal” so-
lution of

� ����� � involves splitting into
� ����� � and

� � �
 ��� �
at final step then parenthesization of

� ����� � and
� � �
 ��� �

in final optimal solution must also be optimal for the
subproblems “standing alone”:

If parenthisization of
� ����� � was not optimal we could

replace it by a better parenthesization and get a cheaper
final solution, leading to a contradiction.

Similarly, if parenthisization of
� � �
 ��� � was not op-

timal we could replace it by a better parenthesization
and get a cheaper final solution, also leading to a con-
tradiction.

11

Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal
solution.

As with the 0-1 knapsack problem, we will store the
solutions to the subproblems in an array.

For
� � 	 �
 � � , let � �
	���
"�

denote the minimum
number of multiplications needed to compute

� ����� � .
The optimum cost can be described by the following
recursive definition.

12

Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal
solution.

� � ��� ��� � � � � � � �� �
	���
�������� � � ��� � � � � � � �
 � ��� � � ����� � � � ��� ��� �

Proof: Any optimal sequence of multiplication for
� ����� �

is equivalent to some choice of splitting� ����� � � � ����� � � � �
 ��� �

for some
�
, where the sequences of multiplications for� ����� � and
� � �
 ��� � also are optimal. Hence

� � 	���
�� � � �
	�� � � � � ��� � ���
�� � � � �
 � � � � 5

13

Developing a Dynamic Programming Algorithm

Step 2 – Continued: We know that, for some
�

� � 	���
�� � � �
	�� � � � � ��� � ���
�� � � � �
 � � � � 5
We don’t know what

�
is, though

But, there are only

 ! 	

possible values of
�

so we
can check them all and find the one which returns a
smallest cost.

Therefore� � ��� ��� � � � � � � �� �
	���
������ � � � ��� � � � � � � �
 � ��� � � ����� � � � ��� ��� �

14

Developing a Dynamic Programming Algorithm

Step 3: Compute the value of an optimal solution in a
bottom-up fashion.

Our Table: � �
 ��� � �
 ��� � � .� � ��� ��� only defined for
��� �

.

The important point is that when we use the equation� � ��� ��� � � �
	��
������ � � � ��� � � � � � � �
 � ��� � � ����� � � � � �
to calculate � � ��� ��� we must have already evaluated � � ��� � � and� � � �
 � ��� �

For both cases, the corresponding length of the
matrix-chain are both less than

� � � �

. Hence, the algorithm

should fill the table in increasing order of the length of the matrix-
chain.

That is, we calculate in the order

�������
	����
����	��
�������������
��������������������������� �!	���������� �!	���� �"�#���
�����$�����%�&�
�������'�����
����	��
�(�����������
)������������������*�������*�+�,���
�����-��	����&�
�������������
����	��
)������������/.0�����������������*�������1�
...

���������*�2�#���
����	����&�
���������&�

15

Dynamic Programming Design Warning!!

When designing a dynamic programming algorithm
there are two parts:

1. Finding an appropriate optimal substructure prop-
erty and corresponding recurrence relation on ta-
ble items. Example:

� � 	���
�� � � ���� � � � �
� � �
	���� � � � ��� � ����
�� � � � �
 � � � ���

2. Filling in the table properly.
This requires finding an ordering of the table el-
ements so that when a table item is calculated
using the recurrence relation, all the table values
needed by the recurrence relation have already
been calculated.

In our example this means that by the time � �
	��
"�
is calculated all of the values � � 	�� � �

and � � � �����
��
were already calculated.

16

Example for the Bottom-Up Computation

Example: Given a chain of four matrices
�
 , � �

,
� �

and
� �

, with � � � , , �
 � + , � � � 1
, � � � �

and
� � � 0

. Find � � ��� + �
.

S0: Initialization ���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

17

Example – Continued

Stp 1: Computing � ���������
By definition

� ��������� � � ���

 � � � � � � � ����� � � � � � � ���&��� � � � � � � � �� � � �����"� � � �$� ����� � � � �
 � � � � � 3 5���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120

18

Example – Continued

Stp 2: Computing � ���#�����
By definition

� ���#����� � � ���� � � � � � � �$� ��� � � � � � � ������� � �
 � � � � �� � �$� ����� � � ��� ����� � �
 � � � � � + . 5���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120 48

19

Example – Continued

Stp3: Computing � � �#� + �
By definition

� � �#� + � � � ���� � � � � � � ��� ��� � � � � � � ��� + � � � � � � � � �� � ��� ����� � � � + � + � � � � � � � � � . + 5���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120 48 84

20

Example – Continued

Stp4: Computing � ���������
By definition

� ��������� � � ���

 � � � � � � � ����� � � � � � � ������� � � � � � � � �

� � ��� � � ��� �"� � � �$�#����� � � � �
 � �� � ���&��� � � ���#����� � � � � � � �� . . 5 ���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120 48 84

88

21

Example – Continued

Stp5: Computing � ���#� + �
By definition

� ���#� + � � � ���� � � � � � � �$� ��� � � � � � � ��� + � � �
 � � � � �

� � ��� � �$�#�&��� � � ���#� + � � �
 � � � �� �$�#����� � � � + � + � � �
 � � � �� �43 + 5 ���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120 48 84

88 104

22

Example – Continued

St6: Computing � ����� + �
By definition

� ����� + � � � ���

 � � � � � � � ����� � � � � � � ��� + � � � � � � � � �

� � ���
��� �� � ��������� � � ���#� + � � ��� �
 � �� ��������� � � � �#� + � � ��� � � � �� ��������� � � � + � + � � � � � � � �

����
��� � , . 5 ���������������

� � � � � � � � � � � � � � �

���������������� � � �

�����������

��������
����

� � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �
� � � ��

4

3

2

1

1

2

3

4

m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120 48 84

88 104

158

We are done!
23

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed
information – extract the actual sequence.

Idea: Maintain an array � ��� 5 5 � �%� 5 5 � �
, where � �
	��
"�

de-
notes

�
for the optimal splitting in computing

� ����� � �� ����� � � � �
 ��� � . The array � � � 5 5 � � � 5 5 � �
can be used re-

cursively to recover the multiplication sequence.

How to Recover the Multiplication Sequence?� �
 � � � ��� ������� ����� �
	���
 � ������� ��	���
�� � ����� � � �
� �
 � � �
 � � � � ��� ������� ����� �
	 ��� �
	���
�
 � ������� �
	 ��� �
	���
�
�� � ����� ����� ��	���
 �
� � � �
 � � � �
 � � � ������� �
	���
�� � ����� ��������� ��	���
�� ��	���
 ������ ������� �
	���
�� �
	���
�� � ����� � � �
... ...

Do this recursively until the multiplication sequence is
determined.

24

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed
information – extract the actual sequence.

Example of Finding the Multiplication Sequence:
Consider � � 1

. Assume that the array � � � 5 5 1 �%� 5 5 1 �
has been computed. The multiplication sequence is
recovered as follows.

� ����� 1 � � � � �
 � � � � � � � � � � � � �
� ��������� � � � �
�� � � � � �
�
� � + � 1 � � , �
� � � � � � � � �

Hence the final multiplication sequence is

� �
�� � � � � �
� �
� � � � � � � � � 5

25

The Dynamic Programming Algorithm

Matrix-Chain(
� � �)�

for (
� �

to �) � � ��� � � � � ;
for (� �

�
to �)�

for (
� �

to �
�
�
�

)�
� � � �

�
�

;� � ��� ��� � �
;

for (
� � �

to
� �

)�

�
� � � ��� � � � � � � �
 � ��� � � � � �
 ��� � � � ��� � � ��� ;

if (�
� � � ��� ���)� � � ��� ��� �

� ;� � ��� ��� � �
;�

�
�

�
return � and

�
; (Optimum in � �
 � � �)�

Complexity: The loops are nested three deep.

Each loop index takes on
� � values.

Hence the time complexity is � � �	� � . Space complexity
 � ��� � .
26

Constructing an Optimal Solution: Compute
�
 ��� �

The actual multiplication code uses the � �
	��
"�
value to

determine how to split the current sequence. Assume
that the matrices are stored in an array of matrices� � � 5 5 � �

, and that � � 	��
��
is global to this recursive pro-

cedure. The procedure returns a matrix.

Mult(
� � � � 	���
)�

if (
	��

)�
� � � � ��� � � � � � 	�� � � 	���
�� �

;�
is now

� � ����� � � , where
�

is � �
	��
��
� � � � ��� � � � � � � � 	���
�� � ����
 �

;�
is now

� � �
 ����� � �
return

� ���
; multiply matrices

�
and

�
�

else return
� � 	��

;�

To compute
�
 � � ����� � � , call Mult(

� � � �%��� �).

27

Constructing an Optimal Solution: Compute
�
 ��� �

Example of Constructing an Optimal Solution:
Compute

�
 �����
.

Consider the example earlier, where � � 1
. Assume

that the array � ��� 5 5 1 ��� 5 5 1 �
has been computed. The

multiplication sequence is recovered as follows.

Mult ��� � � �
 � � � � � �
 � � � � � � � � � �
�
�
�
� � ��� ��� ��� �

Mult ��� � � �
 � � � � � �
 � � � �
 � � � � � � � �
�
�
�
� � ��� � � � � � �

Mult ��� � � � ��� � � � � � � � � � � � � � ��� � � ���
�
�
�
� � � � � � � � � � � � � �

Mult ��� � � � � � � � � � � � � � � � � � � ��� � � � � �
�
� � �

�
� � � � ��� � � � � ��� � � �

Mult ��� � � � ��� � � � � � � � � � � � � � ��� � � � ���
�
� ���

�
� � � � � � � � � � � � � � ��� � � �

Hence the product is computed as follows

� �
�� � � � � �
� �
� � � � � � � � � 5

28

