Lecture 13: All-Pairs Shortest Paths

CLRS Section 25.1

Outline of this Lecture

e Introduction of the all-pairs shortest path problem.

e First solution using Dijkstra’s algorithm.
Assumes no negative weight edges
© (IV[3log |V]).
Needs priority queues

e A (first) dynamic programming solution.
Only assumes no negative weight cycles.
First version is © <|V|4) .

Repeated squaring reduces to © (|V|3 log |V|> :

No special data structures needed.

The All-Pairs Shortest Paths Problem

Given a weighted digraph G = (V, E) with weight
function w : £ — R, (R is the set of real numbers),
determine the length of the shortest path (i.e., dis-
tance) between all pairs of vertices in G. Here we
assume that there are no cycles with zero or negative
Ccost.

S 2 Ao 2
e
OZE 26 00
d C d c

without negative cost cycle with negative cost cycle

Solution 1: Using Dijkstra’s Algorithm

If there are no negative cost edges apply Dijkstra’s al-
gorithm to each vertex (as the source) of the digraph.

e Recallthat D’s algorithm runsin ©((n—+e) logn).
This gives a

O(n(n+e)logn) = O(n?logn + nelogn)

time algorithm, where n = |V| and e = |E|.

e Ifthe digraph is dense, this is an ©(n3log n)algorithm.

e With more advanced (complicated) data structures
D’s algorithm runs in ©(n log n + e)time yielding
a ©(n2logn + ne) final algorithm. For dense
graphs this is ©(n3) time.

Solution 2: Dynamic Programming

(1) How do we decompose the all-pairs shortest paths
problem into subproblems?

(2) How do we express the optimal solution of a
subproblem in terms of optimal solutions to some
subsubproblems?

(3) How do we use the recursive relation from (2) to
compute the optimal solution in a bottom-up
fashion?

(4) How do we construct all the shortest paths?

Solution 2: Input and Output Formats

To simplify the notation, we assume that V = {1,2,...,n}.

Assume that the graph is represented by an n X n
matrix with the weights of the edges:

0 if 4 = j,
w;; = w(i,j) ifiz#jand (4,5) € E,
00 ifi = jand (i,7) € E.

Output Format: an n x n matrix D = [d;;] where d;;
IS the length of the shortest path from vertex z to j.

Step 1: How to Decompose the Original Problem

e Subproblems with smaller sizes should be easier
to solve.

e An optimal solution to a subproblem should be ex-
pressed in terms of the optimal solutions to sub-
problems with smaller sizes.

These are guidelines ONLY.

Step 1: Decompose in a Natural Way

e Define d,g”) to be the length of the shortest path
from ¢ to 5 that contains at most m edges.
Let D(™) pe the n x n matrix [dg."’)] .

° d,g.“_l) Is the true distance from : to 5 (see next
page for a proof this conclusion).

e Subproblems: compute D(™m) for m = 1,---,n— 1.

Question: Which D(™) is easiest to compute?

d,g?_l) = True Distance from i to j

Proof. We prove that any shortest path P from ; to j
contains at most n — 1 edges.

First note that since all cycles have positive weight,
a shortest path can have no cycles (if there were a
cycle, we could remove it and lower the length of the
path).

A path without cycles can have length at most n — 1
(since a longer path must contain some vertex twice,
that is, contain a cycle).

A Recursive Formula

Consider a shortest path from ¢ to 5 of length dg”).

O—0——0 O—-0— —®—0

wkj

m—1 m—1
L di "

Casel: atmostm — 1 edges Case 2: exactly m edges
shortest path shortest path

Case 1: It has at most m — 1 edges.

(m) _ ;(m—1) __ ,(m—1)
Case 2: It has m edges. Let k be the vertex before j
on a shortest path.

—1
Then dg.") = dz(,:"’) + wy,.-
Combining the two cases,

(m) — i (m—1)
4= g, (0)

Step 3: Bottom-up Computation of D(7—1)

e Bottom: D(1) = [wij}, the weight matrix.

e Compute D) from D(m=1) for m = 2,...,n—1,
using

(m) — i (m—1)
157 = i, (D)

10

Example: Bottom-up Computation of D{(7—1)

Example
D2
| L
o

D) = [w;;] is just the weight matrix:

0O 3 8
co 0 4 11
oo oo 0 7
4 oo oo O

p1) —

11

Example: Computing D(2) from D(1)

d?) = min {dgli) + wkj} :

v 1<k<4
D2
| S
pra—

with D(1) given earlier and the recursive formula,

0 3 7 147
p@_ |15 0 411
111 o 0 7

4 7 12 0.

12

Example: Computing D(3) from D(2)

d(3): min {dz(lf)—l-’wkj}

v 1<k<4
)
e
ae @

with D(2) given earlier and the recursive formula,

0 3 7 14
15 0 4 11
11 14 0 7
4 7 11 0|

p3) —

D) gives the distances between any pair of vertices.

13

The Algorithm for Computing D("—1)

form=1ton—1
forr=1ton
fory=1ton
{
min
for k
{

oQ;
1ton

new — dg'z’_l) + wy;;

If (new < min) min = new;
}
dgn) = man;

}

14

Comments on Solution 2

e Algorithm uses ©(n3) space; how can this be
reduced down to ©(n2)7?

e How can we extract the actual shortest paths from
the solution?

e Running time O(n%), much worse than the solu-
tion using Dijkstra’s algorithm. Can we improve
this?

15

Repeated Squaring

Observe that we are only interested to find D(7=1) all
others D*,1 < i < n — 2 are only auxiliary. Further-
more, since the graph does not have negative cycle,
we have D("=1) = Dt forall i > n.

(2“092 M)

In particular, this implies that D = p(n—1),

(QUOQQ 7%1)
We can calculate D

iIng” to find

using “repeated squar-

D(Q), 13(4)7 13(8)7 N D<2f|092n1>

)

16

We use the recurrence relation:

e Bottom: D(1) = [wij}, the weight matrix.

e For s > 1 compute D(2%) using

(25) _ i (s) (s)
0 = min {4 +47})

. . . 1 1—1
Given this relation we can calculate D(2") from D(277)
in O(n3) time. We can therefore calculate all of

p®, p@, p@® . p"") _ po

in O(n3log n) time, improving our running time.

17

The Floyd-Warshall Algorithm

Step 1 : Decomposition

Definition: The vertices vy, vs, ..., v;_1 are called the
intermediate vertices of the path p = (v1,vo, ..., v;_1, v}).

o Let dg;) be the length of the shortest path from 2
to 5 such that all intermediate vertices on the path
(ifany) areinset {1,2,...,k}.

dg)) Is set to be w;;, I.e., no intermediate vertex.

Let D(*) be the n x n matrix [dgi“)].

e Claim: dg-%) IS the distance from z to 3. So our aim
is to compute D).

e Subproblems: compute D) for k = 0,1,---,n.

18

Step 2: Structure of shortest paths

Observation 1: A shortest path does not contain the
same vertex twice. Proof: A path containing the
same vertex twice contains a cycle. Removing cycle
gives a shorter path.

Observation 2: For a shortest path from 2 to 5 such
that any intermediate vertices on the path are chosen
from the set {1, 2, ..., k}, there are two possibilities:

1. k is not a vertex on the path,

The shortest such path has length a1,

iJ

2. k is a vertex on the path.
The shortest such path has length dgj_l) + d,g;._l).

19

Step 2: Structure of shortest paths

Consider a shortest path from ¢ to 5 containing the
vertex k. It consists of a subpath from ¢ to k£ and a
subpath from k& to j.

Each subpath can only contain intermediate vertices
in {1,....,k — 1}, and must be as short as possible,
namely they have lengths d,f,f_l) and d,g;_l).

Hence the path has length d(k 1) + d(k L),
Combining the two cases we get

k) — gtk—1) 4(k=1) (k—1)
2.7 mln{ i d —I—d }

20

Step 3: the Bottom-up Computation

e Bottom: D(0) = [w;;], the weight matrix.

e Compute D) from D(*~1) ysing
(k) _ i (k—1) (k—1) (k—1)
dt*) = min <dij A+ at)

fork=1,...,n.

21

The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall(w, n)
{ fori =1tondo initialize
fory =1tondo
{ DO, j]1 = wls, 41;
pred[i, j] = nil;

}

fork=1tondo dynamic programming
fori = 1tondo
forj =1tondo
it (d*=D [, k] + dE~ DIk, 5] < d®[i, 5])
{d®i, 5] = d*=D[i, k] + d*=D [k, 5];
pred[i, j] = k;}
else dF)[;, 5] = dk—1D[;, 4];
return d(™M[1..n, 1..n];

}

22

Comments on the Floyd-Warshall Algorithm

e The algorithm’s running time is clearly ©(n3).

e The predecessor pointer pred|i, j| can be used
to extract the final path (see later).

e Problem: the algorithm uses ©(n3) space.
It is possible to reduce this down to @ (n?) space
by keeping only one matrix instead of n.
Algorithm is on next page. Convince yourself that
it works.

23

The Floyd-Warshall Algorithm: Version 2

Floyd-Warshall(w, n)
{ fori =1tondo initialize
fory =1ton do
{ dli, 5] = wls, 5
pred[t, j] = nal;

}

for k = 1ton do dynamic programming
for: = 1 ton do
forj =1tondo
it (d[s, k] + d[k, 5] < d[i, 5])
{dls, j] = dli, k] + d[k, j];
pred[i, j] = k;}
return d[1..n, 1..n];

}

24

Extracting the Shortest Paths

The predecessor pointers pred|i, j| can be used to
extract the final path. The idea is as follows.

Whenever we discover that the shortest path from 3
to 5 passes through an intermediate vertex k, we set
pred[i, j] = k.

If the shortest path does not pass through any inter-
mediate vertex, then pred|i, j] = nil.

To find the shortest path from 7 to 4, we consult pred|s, 7].
If it is nil, then the shortest path is just the edge (4, 5).
Otherwise, we recursively compute the shortest path
from i to pred|i, 7] and the shortest path from pred|s, ;]
to j.

25

The Algorithm for Extracting the Shortest Paths

Path(z, 5)
{
if (pred|i, j] = nil) single edge
output (¢, 5);
else compute the two parts of the path

{
Path(i, predl[i, 7]);
Path(predl[s, j], j);

26

Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2.
2.
2.

3 Path(2,3)
4.3 Path(2,4)
5..4..3 Path(2,5)
5..4..3 Path(5,4)
4.3 Path(4, 3)
4..6..3 Path(4,6)

6..3 Path(6,3)

pred
pred
pred
pred
pred
pred

pred|

2,3

o

nal
nl
nl
nl

Output(2,5)
Output(5,4)

Output(4,6)
Output(6,3)

27

