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Chapter Objectives

• Introduce the student to the concept of Data 
Mining (DM), also known as Knowledge 
Discovery in Databases (KDD).

How it is different from knowledge elicitation from 
experts
How it is different from extracting existing knowledge 
from databases.

• The objectives of data mining
Explanation of past events (descriptive DM)
Prediction of future events (predictive DM)

• (continued)
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Chapter Objectives (cont.)

• Introduce the student to the different classes of 
statistical methods available for DM

Classical statistics (e.g., regression, curve fitting, …)
Induction of symbolic rules
Neural networks (a.k.a. “connectionist” models)

• Introduce the student to the details of some of 
the methods described in the chapter.
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Historical Perspective

• DM, a.k.a. KDD, arose at the intersection of 
three independently evolved research directions:

Classical statistics and statistical pattern recognition
Machine learning (from symbolic AI)
Neural networks
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Objectives of Data Mining

• Descriptive DM seeks patterns in past actions 
or activities to affect these actions or activities

eg, seek patterns indicative of fraud in past records
• Predictive DM looks at past history to predict 

future behavior
Classification classifies a new instance into one of a 
set of discrete predefined categories
Clustering groups items in the data set into different 
categories
Affinity or association finds items closely associated 
in the data set
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Classical statistics & 
statistical pattern recognition

• Provide a survey of the most important statistical 
methods for data mining

Curve fitting with least squares method
Multi-variate correlation
K-Means clustering
Market Basket analysis
Discriminant analysis
Logistic regression
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Figure 12.14 – 2-D input data 
plotted on a graph
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Figure 12.15 – data and 
deviations
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Induction of symbolic rules

• Present a detailed description of the symbolic approach 
to data mining – rule induction by learning decision trees

• Present the main algorithm for rule induction
C5.0 and its ancestors, ID3 and CLS (from machine learning)
CART (Classification And Regression Trees) and CHAID, very 
similar algorithms for rule induction (independently developed in 
statistics)

• Present several example applications of rule induction
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Table 12.1 – decision tables
(if ordered, then decision lists)

Name Outlook Temperature Humidity Class
Data sample1 Sunny Mild Dry Enjoyable
Data sample2 Cloudy Cold Humid Not Enjoyable
Data sample3 Rainy Mild Humid Not Enjoyable
Data sample4 Sunny Hot Humid Not Enjoyable

Note: DS = Data Sample
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Figure 12.1 – decision trees
(a.k.a. classification trees)
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Induction trees

• An induction tree is a decision tree holding the 
data samples (of the training set)

• Built progressively by gradually segregating the 
data samples
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Figure 12.2 – simple induction 
tree (step 1)
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Figure 12.3 – simple 
induction tree (step 2)
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Writing the induced tree as rules

• Rule 1. If the Outlook is cloudy, then the 
Weather is not enjoyable.

• Rule 2. If the Outlook is rainy, then the Weather
is not enjoyable.

• Rule 3. If the Outlook is sunny and Temperature
is mild, then the Weather is enjoyable.

• Rule 4. If the Outlook is sunny and Temperature
is cold, then the Weather is not enjoyable.
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Learning decision trees for 
classification into multiple classes

• In the previous example, we were learning a function to predict a 
boolean (enjoyable = true/false) output.

• The same approach can be generalized to learn a function that 
predicts a class (when there are multiple predefined 
classes/categories).

• For example, suppose we are attempting to select a KBS shell for
some application:

with the following as our options:
ThoughtGen, Offsite, Genie, SilverWorks, XS, MilliExpert

using the following attributes and range of values:
Development language:  { Java, C++, Lisp }
Reasoning method:  { forward, backward }
External interfaces:  { dBase, spreadsheetXL, ASCII file, devices }
Cost:  any positive number
Memory:  any positive number
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Table 12.2 –
collection of data samples (training set)

described as vectors of attributes (feature vectors)

Language Reasoning
method

Interface
Method

Cost Memory Classification

Java Backward SpreadsheetXL 250 128MB MilliExpert
Java Backward ASCII 250 128MB MilliExpert
Java Backward dBase 195 256MB ThoughtGen
Java * Devices 985 512MB OffSite
C++ Forward * 6500 640MB Genie
LISP Forward * 15000 5GB Silverworks
C++ Backward * 395 256MB XS
LISP Backward * 395 256MB XS
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Figure 12.4 – decision tree resulting from 
selection of the language attribute
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Figure 12.5 – decision tree resulting from 
addition of the reasoning method attribute
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Figure 12.6 – final decision 
tree
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Order of choosing attributes

• Note that the decision tree that is built depends 
greatly on which attributes you choose first
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Figure 12.2 – simple induction 
tree (step 1)
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Figure 12.3 – simple 
induction tree (step 2)
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Table 12.1 – decision tables
(if ordered, then decision lists)

Name Outlook Temperature Humidity Class
Data sample1 Sunny Mild Dry Enjoyable
Data sample2 Cloudy Cold Humid Not Enjoyable
Data sample3 Rainy Mild Humid Not Enjoyable
Data sample4 Sunny Hot Humid Not Enjoyable

Note: DS = Data Sample
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Figure 12.7
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Order of choosing attributes 
(cont)

• One sensible objective is to seek the minimal 
tree, ie, the smallest tree required to classify all 
training set samples correctly

Occam’s Razor principle:  the simplest explanation is 
the best

• What order should you choose attributes in, so 
as to obtain the minimal tree?

Often too complex to be feasible
Heuristics used
Information gain, computed using information 
theoretic quantities, is the best way in practice
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Artificial Neural Networks

• Provide a detailed description of the connectionist 
approach to data mining – neural networks

• Present the basic neural network architecture –
the multi-layer feed forward neural network

• Present the main supervised learning algorithm –
backpropagation

• Present the main unsupervised neural network 
architecture – the Kohonen network
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Figure 12.8 – simple model of a 
neuron
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Figure 12.9 – three common 
activation functions
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Figure 12.10 – simple single-
layer neural network
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Figure 12.11 – two-layer neural 
network
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Supervised Learning:
Back Propagation

• An iterative learning algorithm with three 
phases:
1. Presentation of the examples (input patterns with 

outputs) and feed forward execution of the network
2. Calculation of the associated errors when the output 

of the previous step is compared with the expected 
output and back propagation of this error

3. Adjustment of the weights
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Unsupervised Learning:
Kohonen Networks

Clustering by an iterative competitive algorithm
Note relation to CBR
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Figure 12.12 – clusters of 
related data in 2-D space
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Figure 12.13 – Kohonen self-
organizing map
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When to use what

• Provide useful guidelines for determining what 
technique to use for specific problems
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Table 12.3

Goal Input
Variables

(Predictors)

Output
Variables

(Outcomes)

Statistical
Technique

Examples

[SPSS, 2000]

Find linear
combination of
predictors that
best separate the
population

Continuous Discrete Discriminant
Analysis

• Predict instances of fraud
• Predict whether customers
will remain or leave
(churners or not)
• Predict which customers
will respond to a new
product or offer
 •Predict outcomes of
various medical procedures

Predict the
probability of
outcome being in
a particular
category

Continuous Discrete Logistic and
Multinomial
Regression

• Predicting insurance policy
renewal
• Predicting fraud
• Predicting which product a
customer will buy
• Predicting that a product is
likely to fail
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Table 12.3 (cont.)

Output is a linear
combination of
input variables

Continuous Continuous Linear
Regression

• Predict expected revenue
in dollars from a new
customer
• Predict sales revenue for a
store
• Predict waiting time on hold
for callers to an 800 number.
• Predict length of stay in a
hospital based on patient
characteristics and medical
condition.

For experiments
and repeated
measures of the
same sample

Most inputs
must be
Discrete

Continuous Analysis of
Variance
(ANOVA)

• Predict which
environmental factors are
likely to cause cancer

To predict future
events whose
history has been
collected at
regular intervals

Continuous Continuous Time Series
Analysis

• Predict future sales data
from past sales records

Goal Input
Variables

(Predictors)

Output
Variables

(Outcomes)

Statistical
Technique

Examples

[SPSS, 2000]
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Table 12.4

Goal Input
(Predictor)
Variables

Output
(Outcome)
Variables

Statistical
Technique

Examples

[SPSS, 2000]

Predict outcome
based on values
of nearest
neighbors

Continuous,
Discrete, and

Text

Continuous or
Discrete

Memory-
based

Reasoning
(MBR)

•Predicting medical
outcomes

Predict by
splitting data into
subgroups
(branches)

Continuous or
Discrete
(Different

techniques used
based on data
characteristics)

Continuous or
Discrete
(Different

techniques
used based on

data
characteristics)

Decision
Trees

•Predicting which
customers will leave
•Predicting
instances of fraud

Predict outcome
in complex non-
linear
environments

Continuous or
Discrete

Continuous or
Discrete

Neural
Networks

•Predicting expected
revenue
•Predicting credit
risk
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Table 12.5

Goal Input
(Predictor)
Variables

Output
(Outcome)
Variables

Statistical
Technique

Examples  [SPSS,
2000]

Predict by
splitting data into
more than two
subgroups
(branches)

Continuous,
Discrete, or

Ordinal

Discrete Chi-square Automatic
Interaction Detection

(CHAID)

• Predict which
demographic
combinations of
predictors yield the
highest probability of
a sale
• Predict which
factors are causing
product defects in
manufacturing

Predict by
splitting data into
more than two
subgroups
(branches)

Continuous Discrete C5.0 • Predict which loan
customers are
considered a “good”
risk
• Predict which
factors are
associated with a
country’s investment
risk
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Table 12.5 (cont.)

Predict by
splitting data into
binary subgroups
(branches)

Continuous Continuous Classification and
Regression Trees

(CART)

• Predict which
factors are
associated with a
country’s
competitiveness
• Discover which
variables are
predictors of
increased customer
profitability

Predict by
splitting data into
binary subgroups
(branches)

Continuous Discrete Quick, Unbiased,
Efficient, Statistical

Tree (QUEST)

•Predict who needs
additional care after
heart surgery

Goal Input
(Predictor)
Variables

Output
(Outcome)
Variables

Statistical
Technique

Examples  [SPSS,
2000]
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Table 12.6

Goal Input
Variables

(Predictor)

Output
Variables
(Outcome)

Statistical
Technique

Examples [SPSS, 2000]

Find large groups
of cases in large
data files that are
similar on a small
set of input
characteristics,

Continuous
or Discrete

No
outcome
variable

K-means
Cluster
Analysis

• Customer segments for
marketing
• Groups of similar insurance
claims

To create large
cluster
memberships

Kohonen
Neural

Networks

• Cluster customers into
segments based on
demographics and buying
patterns

Create small set
associations and
look for patterns
between many
categories

Logical No
outcome
variable

Market
Basket or

Association
Analysis with

Apriori

• Identify which products are
likely to be purchased
together
• Identify which courses
students are likely to take
together
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Errors and
their significance in DM

• Discuss the importance of errors in data mining 
studies

• Define the types of errors possible in data 
mining studies
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Table 12.7 – Confusion Matrix

Heart Disease Diagnostic
Predicted

No Disease

Predicted

Presence of Disease

Actual

No Disease
118 (72%) 46 (28%)

Actual Presence of Disease 43 (30.9%) 96 (69.1%)
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Table 12.7 – Confusion Matrix

Heart Disease Diagnostic
Predicted

No Disease

Predicted

Presence of Disease

Actual

No Disease
118 (72%) 46 (28%)

Actual Presence of Disease 43 (30.9%) 96 (69.1%)

false negatives
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Table 12.7 – Confusion Matrix

Heart Disease Diagnostic
Predicted

No Disease

Predicted

Presence of Disease

Actual

No Disease
118 (72%) 46 (28%)

Actual Presence of Disease 43 (30.9%) 96 (69.1%)

false positives
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Conclusions

• You should know when to use:
Curve-fitting algorithms.
Statistical methods for clustering.
The C5.0 algorithm to capture rules from examples.
Basic feedforward neural networks with supervised 
learning.
Unsupervised learning, clustering techniques and the 
Kohonen networks.
Other statistical techniques.
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