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Abstract 
Portable devices such as PDA phones and smart phones are 
increasingly popular. Many of these devices already have 
voice dialing capability. The next step is to offer more 
powerful personal-assistant features such as speech 
translation. In this paper, we propose a system that can 
translate speech commands in Chinese into English, in real-
time, on small, portable devices with limited memory and 
computational power. We address the various computational 
and platform issues of speech recognition and translation on 
portable devices. We propose fixed-point computation, 
discrete front-end speech features, bi-phone acoustic models, 
grammar-based speech decoding, and unambiguous inversion 
transduction grammars for transfer-based translation. As a 
result, our speech translation system requires only 500k 
memory and a 200MHz CPU.  

1. Introduction 
Enabled by the ever-increasing hardware power of portable 
devices such as personal digital assistants (PDAs), PDA 
phones and smart phones, more and more functionalities can 
be incorporated into such devices. These portable devices are 
not merely communication and storage devices, but also 
information access devices [1]. Incorporating speech 
recognition technologies into portable devices is of increasing 
interest in recent years. Speech input provides a natural and 
easy user interface, and is faster than handwriting recognition 
or keypads. A portable speech translation system, moreover, 
will enable business and leisure travelers (who are already 
heavy mobile phone users) to communicate more efficiently 
in day-to-day situations, such as booking tickets, reserving 
hotel rooms, and so on.  
 
There are several major challenges in deploying speech 
translation on portable devices. First, the hardware resources 
(e.g., memory and CPU) of portable devices are much more 
limited than that of desktop machines. Second, most portable 
devices only support fixed-point calculations rather than 
floating-point calculations, yet speech recognition systems 
need to perform a large amount of floating-point calculations 
for front-end signal processing and computing output 
likelihoods during decoding. Consequently, speech 
recognizers ported directly from desktop versions would have 
very low efficiency. The system response time increases and 
becomes unacceptable by users. Third, large-vocabulary 
continuous speech recognition (LVCSR) cannot be run on 
portable devices, whereas isolated word recognition is not 
enough for speech translation and retrieval. We are required 
to establish a suitable and efficient design of the speech 
recognizer that supports a flexible user speech input, and 

generates sufficient information for translation and retrieval. 
Finally, the challenge of translation on a portable device is 
the trade-off between translation quality and speed, given 
real-time computation with limited hardware resources. 
Statistical machine translation algorithms with powerful 
performance on servers have to be modified according to the 
platform specification of portable devices.  
 
Fortunately, speech translation applications on portable 
devices do not require a large vocabulary, or generic grammar 
coverage. Words and sentence structures used in ticketing 
booking, hotel reservation, airline information enquiry, etc. 
tend to be limited. A portable speech translation device 
should be able to dynamically load up different lexicon, 
grammars, and translation memory, for different applications.  
 
In this paper, we describe the design of a dynamic-domain 
speech translation and retrieval system, on portable devices, 
which allows flexible speech input and generates translations 
that are sufficiently accurate and fluent. In order to make 
speech translation perform smoothly and efficiently on 
portable devices under the constraints of limited memory size, 
low CPU speed and fixed-point calculation, we propose (1) 
using a fixed-point, front-end feature extraction method for 
speech signal processing, (2) using discrete HMM class-based 
bi-phone models instead of the original continuous HMM 
triphone models; (3) using state-of-the-art context free 
grammar (CFG) decoder for dynamic vocabulary and 
grammar upload; (4) using unambiguous inversion 
transduction grammars (ITGs) with an integrated parsing, 
transduction and generation process, for translation.  
 
The architecture of our speech translation system is shown in 
Figure 1.  

 

 
 

Figure 1: System architecture. 

2. Front End Processing  
Conventional speech recognition systems use mel-frequency 
cepstral coefficients (MFCCs) generated by front-end signal 
processing as the acoustic observations. The MFCCs can be 



3. Acoustic Modeling computed using the algorithm shown in Figure 2 [2].  This 
front-end processing of speech signals is mathematically 
intensive, and requires a large amount of float-point 
emulation. In profiling the source code, we found that the 
computation time increases over 100 times (e.g., from 20ms 
to 2s) if we directly adopt the MFCC feature extraction 
process from desktop version to portable devices, which 
greatly increases the recognition response time. To reduce the 
computation time for MFCC feature extraction, we first 
change the float-point emulation to fixed-point emulation 
using scaled integers, and then simplify some computations in 
MFCC extraction using a polynomial approach (e.g., log 
function calculation) and a look-up table. 

Due to memory size and CPU speed limitations on portable 
devices, we propose using class-based bi-phone models. The 
input speech to our system is Mandarin Chinese, and the basic 
and natural phone-level units for Mandarin consist of 27 
initials and 38 finals [3]. We first divide the initials into seven 
different classes according to their pronunciation similarities 
from phonological rules [4], and finals into five different 
classes according to their first vowel. Each individual initial 
or final is combined with a particular class of finals or initials 
to form a class-based bi-phone unit. For example, an 
independent initial unit ‘b’ has five distinguished class-based 
bi-phones, i.e., ‘ba’, ‘bi’, ‘bu’, ‘bo’ and ‘be’.   
 

 

With the use of class-based biphone models we achieve a 
good balance of recognition accuracy and memory size. The 
triphone models commonly used on desktop machines are 
capable of achieving high recognition accuracy, but need a 
large amount of memory (over 2M generally speaking) and a 
powerful CPU for on-line decoding. Such memory and CPU 
resources are typically impractical on portable devices. On 
the other hand, context-independent initial/final (i.e., mono-
phone) models only require a very small memory size; 
however, the recognition accuracy of using such model is 
much lower than that of using triphone models. Experimental 
results showed that this level of accuracy leads to too many 
errors for the subsequent speech translation process.  Our 
proposed class-based bi-phone model is at an intermediate 
level between triphone and mono-phone models. Compared to 
triphone models, the class-based bi-phone models reduce the 
memory size from over 2M to less than 400K while 
sacrificing less than 2% recognition accuracy. Compared to 
mono-phone models, the class-based bi-phone models only 
slightly inflate the model size, but achieve over 10% accuracy 
increase.  

Figure 2: The MFCC computation algorithm. 
 
The fixed-point emulation process utilizes scaled integers to 
perform basic mathematical functions using the existing 
integer hardware of portable devices. The scaling factor is 
either fixed at design time or determined dynamically for 
each specific calculation item. Fixed-point FFT in MFCC 
feature extraction leads to over 10 times reduction in  
computation time on portable devices. In order to avoid 
overflow problems in fixed-point emulation, we rewrite the 
Mel-filter bank by using the magnitude 

4. Grammar-Based Decoding 
Our speech translation system includes a state-of-the-art 
context free grammar (CFG) speech decoder. Compared to 
conventional isolated word decoder or continuous 
speech/LVCSR decoders, our CFG decoder supports dynamic 
vocabulary and grammars to meet the platform requirements 
of limited memory size and low CPU speed. A grammar 
generation tool is provided for the developer to write CFGs 
for each different application. Moreover, one important 
advantage in our CFG decoder is that we can attach different 
attributes in the grammar associated with the CFG decoder. 
These attributes are passed to the subsequent modules of 
speech translation and retrieval. As a result, the attribute 
values can be derived according to the exact requirements 
represented by the grammar. For example, our decoder is able 
to identify the difference of “one-two-three” as a digit string 
from the number “one hundred and twenty three” even if they 
are both represented by same character string “123”. 
Associated with attributes, our decoder is well suited for 
speech translation and retrieval within the grammar constrain 
framework, since the focused keywords in speech translation 
and retrieval can be easily indexed by corresponding 
attributes.  
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where , therefore the value of the result of each 
multiplication is small. To further reduce the computation 
time, the coefficients of 
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in a look-up table. Similarly, we also generate a look-up table 
stored in memory for the original floating-point calculation of 
sine and cosine functions in DCT. As a result, we can rapidly 
compute the values of Mel-filter bank and DCT through look-
up in the relevant tables without complex float-point 
calculations. In addition, we use polynomial linear 
combination to estimate the calculation of log function.  
 
From these modified and optimized approaches of front-end 
processing of speech signals, the computation time on 
portable devices is decreased to around 80ms, compared to 
the original time of 2100ms, resulting in a fast real-time and 
on-line feature extraction process. 

 



Meanwhile, in order to run the CFG decoder smoothly and 
efficiently under limited memory size and CPU speed, we 
propose an approach of automatically control of searching 
coefficients (e.g., pruning thresholds). We first set the 
searching coefficients automatically according to the size of 
initial searching space determined by the set of confusable 
words. Then the pruning coefficients are dynamically 
adjusted/adapted according to the acoustic likelihood ratio 
from n-best list, during the searching process. If the initial 
search space is large, we will set the pruning coefficients to 
higher value in order to reduce the computation time. On the 
other hand, if the search space is small, we assign a lower 
value to the pruning coefficients in order to guarantee 
sufficient candidate paths for accurate decoding result. Our 
proposed method of automatically setting and adapting 
searching coefficients is able to greatly reduce the redundant 
computing cost and achieve a good tradeoff between 
recognition accuracy and speed under constrained hardware 
conditions. The output of the decoder is a Chinese sentence, 
but it can also produce a one-best sentence or character 
sequence, n-best lists, or word networks for future use. 

5. ITG-based Translation 
The translation component consists of (1) an inversion 
transduction grammar or ITG [5] in conjunction with (2) a 
transduction algorithm. Like other statistical MT models, our 
general ITG model can be time- and memory-intensive. Thus 
restricted models are required to meet the computational 
design goals for portable devices. 
 
The ITG model was selected for its attractive balance of 
expressiveness and computational complexity. With respect 
to expressiveness, Zens & Ney [6] have shown that a variant 
of the ITG achieves 96.1% coverage of an automatically 
word-aligned version of the Canadian Hansards parallel 
corpus, and 96.5% coverage on the Verbmobil corpus. For 
our application, which is far more restricted, the translations 
are satisfactory with respect to both fluency and accuracy. In 
specialized domains like travel and ticket booking, users ask 
questions that the service systems are expecting, relating for 
instance to things like flight time, flight number, or 
destination city. Therefore, we expect the words and 
structures to be limited as well. Transduction rules can 
feasibly be written manually to capture the majority of 
common structures in the users' utterances.  
 
With respect to complexity, efficient polynomial-time 
algorithms have been shown for bibracketing, biparsing, and 
word-alignment [5] as well as translation [7]. ITGs are 
computationally efficient because transductions are restricted 
to only straight and inverted rules, rather than arbitrary 
permutations [5]. A context-free transduction grammar (or 
bigrammar) is a bilingual generalization of CFGs that can be 
seen as a generator of string-pairs, and takes the form of a set 
of transduction rules (or birules). An ITG permits only 
straight and inverted birules. For example, N  
is an example of a birule with straight orientation, which 
means that the transduction does not change the order of the 
source language side symbols and produces a target language 
side which is still NU NP (NP and NU stand for noun phrase 
and noun phrase specifying number respectively). On the 

other hand, VP is a birule with an inverted 
orientation, in which VP and NT stand for verb phrase and 
noun phrase specifying time respectively, VP is the left hand 
symbol, NT VP the source language side and VP NT is the 
target language side resulted from the transduction. Refer to 
Figure 3 for concrete examples of birules with straight 
orientation and inverted orientation. 

P  [NU NP]→

  [NT VP]→

 

  
Figure 3: Examples of birules with straight and inverted 

orientation. 

Although the transduction algorithm is actually a single 
integrated process, for conceptual purposes it can be 
described in terms of the three steps of traditional transfer MT 
as follows: 
 
• Parsing. The input Chinese sentence from the decoder is 

parsed using the source language side of the transduction 
rules, which yields a parse tree of the input. For example, 
Figure 4 shows the parse tree of the Chinese input 
sentence “我明天从香港出发去南京”.  

 

 

      Figure 4: Example parse tree for a Chinese input 
sentence. 

• Transfer. Via the transduction rules, the parse tree of the 
Chinese input is mapped to an English tree that generates 
the output translation. In other words, by looking not 
only at the source language side of the transduction rules 
but also their target language side, we now see the 
Chinese parse tree as a Chinese-English biparse tree. For 
example, Figure 5 shows the Chinese-English biparse 
tree of the Chinese input “我明天从香港出发去南京”. 
Notice the node in the parse tree labeled as VP with two 
children labeled as NT and VP, which is an instance of 
the transduction rule VP  NT VP→ . This means 

that in the corresponding constituent for the generation 
side, the children of the VP node are VP and NT. 



 

Figure 5: Example biparse tree for a Chinese input 
sentence. 

• Generation. The leaf nodes of the English side of the 
biparse tree are output in left-to-right order. For example, 
the English string generated by the tree in Figure 6 is: 
“I set out from HongKong to Nanjing tomorrow”. 

 

Figure 6: Example of the output of generation from 
the biparse tree.  

In order to meet the design goals, we further constrain the 
ITG to be an unambiguous ITG, thus facilitating a 
lightweight transduction algorithm suitable for small devices. 
The rules are constrained such that the set of rules in the 
bigrammar is unambiguous on both the parsing and 
transduction levels, that is, the parsing step and the 
transduction step of the translation processes can be carried 
out without fear of ambiguity. By building the system we 
have found empirically that this strong constraint is feasible 
for limited domains like the Ticketing Booking Service, 
although it is doubtless infeasible for more general domains. 
 
We employed a variant of the transduction algorithm for 
translating using ITGs as described by Wu [9] and Wu & 
Wong [7]. The algorithm can be characterized as a bilingual 
generalization of Earley parsing [8]. However, unlike [9], we 
utilized a linguistic bigrammar with real constituent structures, 
as opposed to simply a BTG (bracketing ITG) containing only 
generic rules such as A   or [AA]→ A  AA→ . 

Moreover, the linguistic bigrammar is formulated for precise 
parsing of the input language, as opposed to robust parsing 
biased toward the output language as in [7]. This has the 
consequence of permitting us to dispense with the language 
model, reducing time and space complexity by an order of 
magnitude. Because the bigrammar is unambiguous, the time 
and space complexity is reduced from the Earley upper bound 
of O(n3) to being linear in the length n of the input sentence. 
 
Writing transfer rules tends to be both difficult and time 
consuming when the system is extended to cover a wider 
range of user utterances or to translate in more general 

domains; the system, therefore, should be easily adaptable to 
stochastic formulations to increase disambiguation power. 
The ITG model is easily made stochastic by assigning 
probabilities to the transduction rules, which may be 
estimated via estimation-maximization (EM) [10]. 

6. Conclusions 
Compared to a continuous speech recognizer, our CFG 
decoder has very small memory size requirements. Unlike 
isolated word decoders, our CFG decoder supports flexible 
user speech input ranging from isolated words to short phases 
and full utterances, which provides sufficient information for 
speech translation. The translation component takes the 
output of the Chinese speech recognizer in the form of a 
sentence, or word lattices, and decodes the sentence into 
English in linear time and space, as dictated by an 
unambiguous inversion transduction grammar. 
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