
Handling Ties Correctly and Efficiently
in Viterbi Training Using the Viterbi

Semiring

Markus Saers(B) and Dekai Wu

Department of Computer Science and Engineering,
Human Language Technology Center,

The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong

{masaers,dekai}@cs.ust.hk

Abstract. The handling of ties between equiprobable derivations during
Viterbi training is often glossed over in research paper, whether they are
broken randomly when they occur, or on an ad-hoc basis decided by the
algorithm or implementation, or whether all equiprobable derivations are
enumerated with the counts uniformly distributed among them, is left
to the readers imagination. The first hurts rarely occurring rules, which
run the risk of being randomly eliminated, the second suffers from algo-
rithmic biases, and the last is correct but potentially very inefficient. We
show that it is possible to Viterbi train correctly without enumerating all
equiprobable best derivations. The method is analogous to expectation
maximization, given that the automatic differentiation view is chosen
over the reverse value/outside probability view, as the latter calculates
the wrong quantity for reestimation under the Viterbi semiring. To get
the automatic differentiation to work we devise an unbiased subderiva-
tive for the max function.

Keywords: Parsing · Viterbi training · Automatic differentiation
Deductive systems · Semiring parsing

1 Introduction

Conventional wisdom has it that expectation maximization is preferable over
Viterbi training for reestimating generative models because all possible config-
urations of the hidden variables (paths through a lattice/trees in a forest) con-
tribute proportionally to the reestimation, but Viterbi training has the potential
of being significantly faster, since only the best paths/trees are needed. Good-
man [6] showed that the necessary quantities for expectation maximization (EM)
can be derived automatically in the form of reverse values, a generalization of
backward/outside probabilities. Eisner et al. [5], Li and Eisner [8], and Smith
[14] showed that automatic differentiation [2] of the sentence probability with
respect to the rule probabilities is equivalent to reverse values, and Eisner [4]
c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 284–295, 2018.
https://doi.org/10.1007/978-3-319-77313-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77313-1_22&domain=pdf
http://orcid.org/0000-0002-0744-5075


Handling Ties in Viterbi Training 285

pointed out that it is all essentially backpropagation as we know it from neural
networks [10]. In this paper we show that the equivalence between reverse values
and derivatives fails to generalize away from the probability semiring, specifically:
applying the two methods to the Viterbi semiring gives very different results. We
further show that the backpropagation approach is indeed as helpful to Viterbi
training as it is to EM training.

Viterbi training (not to be confused with Viterbi decoding: finding the best
path/tree in a lattice/forest) is similar to EM in that the rule probabilities are
iteratively reestimated through counts obtained by reconstructing the hidden
lattice/forest using the model itself. The difference lies in how the counts are
obtained: EM lets the entire lattice/forest contribute proportionally, producing
expected counts, whereas only the best path/tree is counted in Viterbi training.
This makes it attractive because it opens up for more efficient algorithms to be
used.

There is a hidden problem with performing Viterbi training based on Viterbi
decoding, in that a decoder must return either (a) a single path/tree, or (b) enu-
merate all best paths/trees, which harms training of highly ambiguous models.
These models can have a (potentially very) large number of best paths/trees,
making (a) highly approximative, and (b) highly inefficient. It is not difficult to
code around these problems, but as we show in this paper, it is possible to use
automatic differentiation to do it correctly and efficiently with the exact same
code as EM by substituting the probability semiring with the Viterbi semiring,
and differentiating it carefully.

Although this paper is framed in terms of reestimation over parse forests or
lattices, the techniques are equally valid for any model that can be described in
terms of a deductive system (Sect. 2.3).

2 Background

This paper synthesizes expectation maximization and Viterbi training under
deductive systems using automatic differentiation; all of which are known and
established methods that we will briefly review in this section.

2.1 Expectation Maximization

Expectation maximization (EM) is a method for reestimating model parameters
towards a local optimum of the marginal log likelihood of some data when part
of the data is hidden and has to be reconstructed by the model [3]. Rather than
optimizing the likelihood directly, the Q-function—the expectation of the log
likelihood—is optimized iteratively in two steps: the expectation step (E) cal-
culates the Q-function, and the maximization step (M) reestimates the model
parameters to maximize Q:

expectation: Q
(
θ|θ(t)

)
=EZ|X,θ(t) [log L (θ;X,Z)] (1)

maximization: θ(t+1) =argmax
θ

Q
(
θ|θ(t)

)
(2)



286 M. Saers and D. Wu

where X is the observed data, Z is the hidden data, and θ is the model
parameters. Instead of calculating the Q-function explicitly, which is frequently
intractable, the sufficient statistics q needed for the M-step is enough:

expectation: q(t) = EZ

[
log P

(
X,Z|θ(t)

)]
(3)

maximization: θ(t+1) = MLE
(
q(t)

)
(4)

The sufficient statistics for context-free grammars are the fractional rule counts
obtained from inside/forward and outside/backward probabilities which are cal-
culated by integrating out the hidden structure (forest/lattice), and can be gen-
eralized as such:

q
(
A → φ0 · · · φR−1

)
=

p
(
A → φ0 · · · φR−1

) ∑
w0..T ∈D

1

α (S0,T )

∑
0≤i0<iR≤T

β (Ai0,iR)
∑

i0<···<iR

R−1∏
j=0

α
(
φj
ij ,ij+1

)

(5)

where p is the rule probability function, A is a nonterminal, φi is either a non-
terminal or a terminal, and φi

s,t is that same (non-)terminal covering the span
from s to t, R is the number of nonterminals and terminals on the right hand
side of the rule, w0..T = w0w1 · · · wT−1 is a sentence in the data D, α is the
inside/forward probability, β is the backward/outside probability, and S is the
dedicated start symbol of the grammar. Saers and Wu [11] and later Eisner [4]
show that reverse values can be generalized to rules, replacing most of Eq. 5 with
the rule’s reverse value:

q (r) = p (r)
∑

w0..T ∈D

1
α (S0,T )

β (r) (6)

2.2 Viterbi Training

Viterbi training consists of iteratively counting the number of times a rule occurs
in the best path/tree of a sentence over the entire training data, and performing
maximum likelihood estimation on those counts. This is guaranteed to approach
a local optimum of the best path probability, at least for hidden Markov models
[7]. Viterbi training is attractive, as it is often faster to derive only the best
path/tree than to derive the entire lattice/forest. Describing it as closely as we
can to EM, we have:

counts: c(t) = argmax
z

log P
(
X,Z = z|θ(t)

)
(7)

maximization: θ(t+1) = MLE
(
c(t)

)
(8)



Handling Ties in Viterbi Training 287

with the only difference that rather than integrating over the hidden data, we
choose the hidden data configuration z that maximizes the likelihood.

Many NLP applications contain a best decoding component that provides
the path or tree to collect Viterbi counts from, but there is an inherent problem
hidden in this approach: It typically chooses a single path/tree—either randomly
or worse: systematically—when there are multiple equiprobable paths/trees. For
correct training, the rule counts have to be distributed equally to all equiprobable
best paths/trees. It is possible to enumerate all such paths/trees, but the time
complexity grows exponentially with the ambiguity of the model. In this paper,
we show that it is possible to leverage the lattice/forest created during the for-
ward/inside pass to efficiently and correctly solve this problem using automatic
differentiation and the Viterbi semiring provided an unbiased subderivative of
the max function is used.

Table 1. Common semirings.

Name Domain ⊕ ⊗ 0 1

real R + × 0 1

Boolean {true, false} ∨ ∧ false true

tropical R ∪ ∞ min + ∞ 0

max-plus (“arctic”) R ∪ −∞ max + −∞ 0

probability [0, 1] + × 0 1

Viterbi [0, 1] max × 0 1

log probability [−∞, 0] logadd + −∞ 0

negative log probability (cost) [0, ∞] logadd + ∞ 0

log Viterbi [−∞, 0] max + −∞ 0

negative log Viterbi (min cost) [0, ∞] min + ∞ 0

2.3 Semiring Parsing and Deductive Systems

A deductive system [6,9,12] is a way to specify how a parser uses grammar rules
to construct larger constituents from smaller constituents and the input sentence.
A conclusion b may be reached iff all the I conditions a0, a1, · · · , aI−1 are met.
This is written as an inference rule:

a0, a1, · · · , aI−1

b

Conclusions are items (partial results such as labeled spans), and conditions are
either other conclusions or axioms (grammar rules).

Semirings are best understood as generalizations of addition and multipli-
cation. Formally they are tuples (A,⊕,⊗,0,1), where A is the domain, ⊕ is
a generalization of addition, and ⊗ is a generalization of multiplication, with



288 M. Saers and D. Wu

identity elements 0 and 1 respectively. Table 1 shows several semirings with dif-
ferent usages: The real semiring is conventional math, the Boolean is symbolic
logic. The tropical [13] and max-plus [1] semirings are closely related in that
their domains can be though of as the negative logarithms and logarithms of
the real numbers respectively. The probability semiring is the real semiring over
the domain of valid probabilities, and the Viterbi semiring—of interest to this
paper—is the same but with addition replaced with the maxoperator. In practice,
we rarely deal with probabilities in the real domain due to underflow problems,
but instead with (negative) log probabilities that rely on the logadd operator:
logadd(x, y) ≡ logb(bx + by). The corresponding (negative) log Viterbi semiring
replaces the logadd-operator with the (min) max operator. The choice between
raw logarithms and negated logarithms is mostly a matter of taste, but there
is a nice interpretation of negative log probabilities as costs that are higher for
unlikely events and lower for likely events.

Intuitively, deductive systems and semirings can be understood as a gener-
alization of Boolean logic with arbitrary values instead of true/false. We can
use the generalized semiring operators to compute the value α, corresponding to
inside/forward probabilities of a conclusion, as:

α (b) =
⊕

a0,··· ,aI−1
b

I−1⊗
i=0

α (ai) (9)

One advantage with this generalization is that reverse values, βs, correspond-
ing to backward/outside probabilities, can be derived from values:

β (ai)
⊕

a0,··· ,ai,··· ,aI−1
b

β (b) ⊗
I−1⊗
j=0

{
α (aj) if i �= j
1 otherwise (10)

where the reverse value of the goal item is assumed to be 1.

2.4 Viterbi Training with Equiprobable Derivations

Viterbi training relies on finding the best derivation of a deductive system, and
counting each rule used in that derivation once. Finding only the best deriva-
tion is more efficient because more efficient search algorithms can be used, and
because, when operating in log domain (which is typically necessary to avoid
underflow problems), the operations themselves are faster: the logadd procedure
requires calls to log and exp, both relatively heavy functions, whereas max and
min are built-in CPU instructions. One problem with Viterbi training that is
often glossed over is that grammars frequently contain ambiguity, and there is a
real risk of having multiple equiprobable best derivations. In practice, implemen-
tations typically solve this by choosing one to be the best on an ad-hoc basis,
although it is understood that the choice should be random in order to avoid
biasing the training. With enough observations any true ambiguity will be pre-
served by the random selection. This sounds good until you realize that counts



Handling Ties in Viterbi Training 289

are integers, and that observing a phenomenon an uneven number of times will
drive likelihood of the unfavored interpretation to zero in the next iteration.

Imagine for example the Swedish noun stegen, which has two interpretations:
steg+en ‘the steps’ and stege+n ‘the ladder’. Suppose that we have a CFG for
noun phrases containing the following eight rules with their associated probabil-
ities initialized to be an informative example:

· · ·
p

(
NP → NNSG DET

)
= 0.05

p
(
NP → NNPL DET

)
= 0.05

p
(
NP → ArtSGNNSG DET

)
= 0.15

p
(
NP → ArtPLNNPL DET

)
= 0.10

p
(
NNSG DET → stegen

)
= 0.03

p
(
NNPL DET → stegen

)
= 0.03

p
(
ArtSG → den

)
= 0.50

p
(
ArtPL → de

)
= 1.00

· · ·

(11)

Suppose also that the grammar is ambiguous, so that p
(
NP → NNSG DET

)
=

p
(
NP → NNPL DET

)
and p

(
NNSG DET → stegen

)
= p

(
NNPL DET → stegen

)
.

Our training data contains many example of noun phrases with articles, but
only one example of a lone noun: stegen. Even if the ties are broken randomly,
we will only ever get counts, and thus nonzero value for either NP → NNSG DET

and NNSG DET → stegen, or NP → NNPL DET and NNPL DET → stegen, not
both; the information that stegen is ambiguous will be lost. Now suppose our
test data contains the noun phrases de stegen ‘those steps’ and den stegen ‘that
ladder’; we will only be able to assign a nonzero probability to one or the other,
depending on whether we trained the grammar to treat stegen as a singular or
plural noun. In this paper we will show that automatic differentiation under
the Viterbi semiring preserves this type of ambiguity provided that an unbiased
subderivative of max is used.

2.5 Automatic Differentiation

As pointed out in Li and Eisner [8] and further explored in Smith [14] it is possible
to view the expectation step in expectation maximization as a case of automatic
differentiation in the reverse mode [2], which makes it essentially identical to
backpropagation [10], but over a lattice/forest rather than a neural network [4].
With this view, reverse values of rules are equivalent to partial derivatives of the
goal value with respect to rule probabilities:

β (r) =
∂α (S0,T )

∂α (r)
(12)

We can use the chain rule to aggregate the derivatives of all consequences that
any one condition can lead to:



290 M. Saers and D. Wu

∂α (S0,T )
∂α (ai)

=
∑

e=
a0,··· ,ai,··· ,aI−1

b

∂α (S0,T )
∂α (b)

∂
∑

e′=
a0,··· ,aK−1

b

α (e′)

∂α (e)

∂
I−1∏
j=0

α (aj)

∂α (ai)
(13)

which calculates the same quantity as traditional reverse values, which we get
by substituting sum and product for their generalized place holders in Eq. 10:

β (ai) =
∑

a0,··· ,ai,··· ,aI−1
b

β (b)
I−1∏
j=0

{
α (aj) if i �= j
1 otherwise (14)

The equality in Eq. 12 can be understood by inspecting the summation in Eq. 13
and noting that (a) the first factor is β (b) provided that the equality holds (equal
to the first factor in the summation in Eq. 14), (b) the second factor will always
be 1 since it is the derivative of a sum with respect to one of its terms, and
that (c) the third factor is the derivative of a product with respect to one of its
factors, which is equivalent to the product of all the other factors (equal to the
second factor in the summation in Eq. 14).

Relating this back of EM reestimation, we can reformulate Eq. 6 as:

q (r) = p (r)
∑

w0..T ∈D

1
α (S0,T )

∂α (S0,T )
∂α (r)

(15)

3 Reverse Values �= Derivatives

As we saw in Sect. 2.5, both reverse values and automatic differentiation can
be used in EM-training, as they are equivalent under the real semiring; in this
section we show that this equivalence fails to hold for the Viterbi semiring. First,
we observe that values under the Viterbi semiring correspond to the most likely
path/tree leading to a particular conclusion, so the value calculated for the goal
item is the probability of the best path/tree. Next, we construct an expression
for the derivative of a condition under the Viterbi semiring. Following Eq. 13 we
get:

∂α (S0,T )
∂α (ai)

=
∑

e=
a0,··· ,ai,··· ,aI−1

b

∂α (S0,T )
∂α (b)

∂ max
e′=

a0,··· ,aK−1
b

α (e′)

∂α (e)

∂
I−1∏
j=0

α (aj)

∂α (ai)
(16)

Note that only the inner sum is replaced by a max, the outer sum is part of how
derivatives are accumulated and has nothing to do with the semiring operators.
Further note that we use max as an iterated binary operator like sum or product.

If we instead substitute the generalized operators in Eq. 10 with the Viterbi
operators max and product we get:

β (ai) = max
a0,··· ,ai,··· ,aI−1

b

β (b)
I−1∏
j=0

{
α (aj) if i �= j
1 otherwise (17)



Handling Ties in Viterbi Training 291

Equartions 16 and 17 have very different forms, and there is no reason to believe
that they would calculate the same quantity. The easiest way to see why they
are different is to note that the second factor in the summation in Eq. 16 allows
the entire term to become zero (whenever there is a competing way to arrive at
b that has higher probability), whereas Eq. 17 is nonzero for all axioms that are
used in the derivation.

4 Viterbi Training with Derivatives

Reverse values are unrelated to the rule counts needed for Viterbi training, but
we show in this section that derivatives can be used to calculate counts for Viterbi
training, and that the mechanism for doing so is the same as for how fractional
counts but in a different semiring.

In the case when there is exactly one best derivation, its probability α (S0,T )
is the product of the probability of all grammar rules used in that derivation.
Designating the rules used in a derivation of sentence w0..T as r0, r1, · · · , rkwe
have:

cw0..T (ri) = p (ri)
1

α (S0,T )
∂α (S0,T )
∂p (ri)

=
p (ri)

k−1∏
j=0

p (rj)

∂
k−1∏
j=0

p (rj)

∂p (ri)
=

p (ri)
p (ri)

= 1

(18)
which is what we would expect: every rule in the best derivation of a single
sentence gets a count of one. More generally, the rule counts have the exact
same form as the fractional counts in EM, but under the Viterbi semiring rather
than the probability semiring:

c (r) = p (r)
∑

w0..T ∈D

1
α (S0,T )

∂α (S0,T )
∂α (r)

(19)

Calculating the derivatives of the max operator does, however, pose a problem
for sentences where there are multiple equiprobable (sub-)derivations because the
derivative of max is undefined for equal arguments. We can get around this by
using the subderivative, which allows us to distribute the results between the
two maximizers. But with the subderivative we have to decide how to distribute
the results between the two maximizers. We can characterize the distribution of
the results with a parameter 0 ≤ λ ≤ 1, and define our subderivative as:

∂ max (x, y)
∂x

=

⎧
⎨
⎩

1 if x > y
λ if x = y
0 if x < y

and
∂ max (x, y)

∂y
=

⎧
⎨
⎩

1 if x > y
1 − λ if x = y
0 if x < y

(20)



292 M. Saers and D. Wu

5 Example

Only an unbiased subderivative for max will preserve genuine ambiguity found
in the data, and to show the mechanism, we will return to our example CFG
from 11. We have two derivations for the Swedish noun phrase stegen:

p
(
NNSG DET → stegen

)

NNSG DET
0,1

, p
(
NP → NNSG DET

)

NP0,1
(21)

and
p

(
NNPL DET → stegen

)

NNPL DET
0,1

, p
(
NP → NNPL DET

)

NP0,1
(22)

The value of the noun phrase NP0,1 is:

α (NP0,1) = max
(

p
(
NP → NNSG DET

)
p

(
NNSG DET → stegen

)
,

p
(
NP → NNPL DET

)
p

(
NNPL DET → stegen

)
)

(23)

where both arguments to max are equal, which is the property that we want to
preserve, since the data lacks any evidence for preferring one over the other. We
can work out the counts of a rule r1 = NNSG DET → stegen with its companion
rule r2 = NP → NNSG DET as follows:

c (r1) = p (r1)
1

α (NP0,1)
∂α (NP0,1)

∂p (r1)
(24)

= p (r1)
1

α (NP0,1)
∂α (NP0,1)

∂p (r1) p (r2)
∂p (r1) p (r2)

∂p (r1)
(25)

= p (r1)
1

p (r1) p (r2)
λp (r2) (26)

= λ (27)

conversely for the other rules we have:

c
(
NP → NNSG DET

)
= λ, (28)

c
(
NP → NNPL DET

)
= 1 − λ, (29)

c
(
NNPL DET → stegen

)
= 1 − λ (30)

as we can see, setting λ = 0 or λ = 1 recreates the behavior of choosing one
or the other, whereas setting λ = 0.5 preserves the desired ambiguity. Since
setting λ to anything but 0.5 will cause the winner to be sole maximizer in the
next iteration of training, any value other than 0.5 has the same effect as setting
it to 0 or 1. We call the subderivative that preserve the ambiguity unbiased.



Handling Ties in Viterbi Training 293

After one iteration of training, the rules of interest would have their proba-
bilities altered depending on λ such that:

λ = 1 λ = 0.5

p
(
NP → NNSG DET

)
= 0.10 p

(
NP → NNSG DET

)
= 0.05

p
(
NP → NNPL DET

)
= 0.00 p

(
NP → NNPL DET

)
= 0.05

p
(
NNSG DET → stegen

)
= 0.06 p

(
NNSG DET → stegen

)
= 0.03

p
(
NNPL DET → stegen

)
= 0.00 p

(
NNPL DET → stegen

)
= 0.03

Looking at the derivations of our test sentences, the grammar trained with the
unbiased subderivative give non-zero probabilities to both de stegen ‘those steps’:

p
(
ArtPL → de

)

ArtPL
0,1

,
p

(
NNPL DET → stegen

)

NNPL DET
1,2

, p
(
NP → ArtPLNNPL DET

)

NP0,2
(31)

and den stegen ‘that ladder’:

p
(
ArtSG → den

)

ArtSG0,1

,
p

(
NNSG DET → stegen

)

NNSG DET
1,2

, p
(
NP → ArtSGNNSG DET

)

NP0,2
(32)

whereas the biased subderivative assigns zero probability to derivation Eq. 31.
The unbiased subderivative of max has a problem when being generalized

to iterated binary operations. Consider max (a, b, c) where a = b = c. If we
binarize it as max (a,max (b, c)),

∂ max (a,max (b, c))
∂a

= λ �= ∂ max (a,max (b, c))
∂b

= λ (1 − λ) (33)

Luckily, we can generalize the unbiased subderivative to distribute the mass
uniformly to one or more arguments:

∂
K−1
max
k=0

xk

∂xi
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
K−1∑
j=0

{
1 if xj =

K−1
max
k=0

xk

0 otherwise

if xi =
K−1
max
k=0

xk

0 otherwise

(34)

The time complexity for this derivative of max is still linear in K.

6 With Respect to the Entire Data Set

It turns out that the derivatives have another advantage, as we can generalize the
calculation away from individual sentences and apply them to the entire data



294 M. Saers and D. Wu

set; specifically, the (fractional) counts are obtained when taking the partial
derivative of rule probabilities with respect to the logarithm of the probability
of the data:

p (r)
∂log

∏
w0..T ∈D

α (S0,T )

∂p (r)
= p (r)

∂
∑

w0..T ∈D
logα (S0,T )

∂p (r)
(35)

= p (r)
∑

w0..T ∈D

∂logα (S0,T )
∂p (r)

(36)

= p (r)
∑

w0..T ∈D

∂logα (S0,T )
∂α (S0,T )

∂α (S0,T )
∂p (r)

(37)

= p (r)
∑

w0..T ∈D

1
α (S0,T )

∂α (S0,T )
∂p (r)

(38)

= c (r) (39)

We get the counts needed for Viterbi training when differentiating under the
Viterbi semiring, and the fractional counts or sufficient statistics needed for
expectation maximization when differentiating under the probability semiring.
This gives an interesting unified view of training as applying maximum likelihood
estimation to “expected rule probability gradient”.

7 Conclusions

We have showed that the equality between a reverse pass and automatic differ-
entiation, which exists for the probability semiring, fails to hold for the Viterbi
semiring, and that automatic differentiation, in contrast to reverse values, gives
the counts needed for Viterbi training. The differentiation approach is the same
for both expectation maximization and Viterbi training except for the semiring
used, opening up great opportunities for code reuse in implementations. We fur-
ther highlighted a problem with the intuitive way of doing Viterbi training, in
that ambiguous models, whose best paths/trees should be counted proportionally
to not loose important information, are hard to count correctly and efficiently;
again, just using automatic differentiation solves the problem, provided that an
unbiased subderivative of max is used.

Acknowledgements. This material is based upon work supported in part by the
Defense Advanced Research Projects Agency (DARPA) under LORELEI contract
HR0011-15-C-0114, BOLT contracts HR0011-12-C-0014 and HR0011-12-C-0016, and
GALE contracts HR0011-06-C-0022 and HR0011-06-C-0023; by the European Union
under the Horizon 2020 grant agreement 645452 (QT21) and FP7 grant agreement
287658; and by the Hong Kong Research Grants Council (RGC) research grants
GRF16210714, GRF16214315, GRF620811 and GRF621008. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of DARPA, the EU, or RGC. The authors would
also like to thank the anonymous reviewers for valuable feedback.



Handling Ties in Viterbi Training 295

References

1. Baccelli, F., Cohen, G., Older, G.J., Quadrat, J.P.: Synchronization and Linearity:
An Algebra For Discrete Event Systems. Wiley Series in Probability and Mathe-
matical Statistics. Wiley, Chichester (1992)

2. Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U. (eds.): Automatic
Differntiation of Algorithms: From Simulation to Optimization. Springer, New York
(2002). https://doi.org/10.1007/978-1-4613-0075-5

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–38
(1977)

4. Eisner, J.: Inside-outside and forward-backward algorithms are just backprop. In:
Proceedings of the EMNLP Workshop on Structured Prediction for NLP, Austin,
Texas, November 2016

5. Eisner, J., Goldlust, E., Smith, N.A.: Compiling comp Ling: weighted dynamic
programming and the Dyna language. In: Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Processing
(HLT-EMNLP), Vancouver, Canada, pp. 281–290, October 2005

6. Goodman, J.: Semiring parsing. Comput. Linguist. 25(4), 573–605 (1999)
7. Juang, B.H., Rabiner, L.R.: The segmental K-means algorithm for estimating

parameters of hidden Markov models. IEEE Trans. Acoust. Speech Signal Process.
38, 1639–1641 (1990)

8. Li, Z., Eisner, J.: First- and second-order expectation semirings with applications
to minimum-risk training on translation forests. In: 2009 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2009), Singapore, pp. 40–51,
August 2009

9. Pereira, F.C.N., Warren, D.H.D.: Parsing as deduction. In: Proceedings of the 21st
Annual Meeting of the Association for Computational Linguistics (ACL 1983),
Cambridge, Massachusetts, pp. 137–144, June 1983

10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323, 533–536 (1986)

11. Saers, M., Wu, D.: Reestimation of reified rules in semiring parsing and biparsing.
In: Fifth Workshop on Syntax, Semantics and Structure in Statistical Translation
(SSST-5), Portland, Oregon, pp. 70–78, June 2011

12. Shieber, S.M., Schabes, Y., Pereira, F.C.: Principles and implementation of deduc-
tive parsing. J. Logic Program. 24(1–2), 3–36 (1995)

13. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Chytil,
M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 107–120.
Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0017135

14. Smith, N.A.: Linguistic structure prediction. Synth. Lect. Hum. Lang. Technol.
4(2), 1–274 (2011)

https://doi.org/10.1007/978-1-4613-0075-5
https://doi.org/10.1007/BFb0017135

	Handling Ties Correctly and Efficiently in Viterbi Training Using the Viterbi Semiring
	1 Introduction
	2 Background
	2.1 Expectation Maximization
	2.2 Viterbi Training
	2.3 Semiring Parsing and Deductive Systems
	2.4 Viterbi Training with Equiprobable Derivations
	2.5 Automatic Differentiation

	3 Reverse Values = Derivatives
	4 Viterbi Training with Derivatives
	5 Example
	6 With Respect to the Entire Data Set
	7 Conclusions
	References




