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ABSTRACT

We describe a method for automatically learning a parser
from labeled, bracketed corpora that results in a fast, ro-
bust, lightweight parser that is suitable for real-time dialog
systems and similar applications. Unlike ordinary parsers,
all grammatical knowledge is captured in the learned deci-
sion trees, so no explicit phrase-structure grammar is needed.
Another characteristic of the architecture is robustness, since
the input need not fit pre-specified productions. Even with-
out using specific lexical features, we have achieved re-
spectable labeled bracket accuracies of about 81% precision
and 82% recall. Processing speed is more than 500 words
per CPU second. We keep the parameter space small (in
comparison to other statistically learned parsers) by using
only part-of-speech tags and constituent labels as features.
Without any optimization, the decision trees consume only
6M of memory, making it possible to run on platforms with
limited memory. The learning method is readily applica-
ble to other languages. Preliminary experiments on a Chi-
nese corpus (which contains about 3000 sentences from Chi-
nese primary school text) have yielded results comparable
to that for English.

1. INTRODUCTION

In the past decade, significant advances in parsing by in-
corporating statistical methods have been reported. Some
concentrated on improving scores for ranking all possible
parses [12, 8, 9, 17], while some worked on search algo-
rithms and pruning strategies to reduce the search space
[11, 4].

However, most of the parsing algorithms are still based
on classical methods that are non-deterministic in nature.
Thus, they may not be fast enough to give instant response
as required by most on-line applications.

In fact, deterministic parsing is not impossible. Deter-
ministic parsing is first hypothesized by Marcus in his thesis
[15]: Natural language can be parsed by a mechanism that
operates ”strictly deterministically” in that it does not sim-
ulate a non-deterministic machine...

The ultimate goal of this work is to develop a determin-
istic parser. Apart from being accurate, lightweight and
fast, our parser is also robust, automatically learned and
readily applicable to other languages.

This paper is organized as follows. Section 2 and 3
describes the base parsing model and the improved parsing
model. Section 4 gives the experimental results. Section 5

compares the performance of our parser with other parsers.
Section 6 concludes this paper.

2. BASE PARSING MODEL

The basis of our parser is a shift-reduce parser [1] consisting
of a stack, an input stream and a decision control mecha-
nism. The core part of our work is to learn the decision con-
trol mechanism, for which we employ a novel Shift/Reduce
decision algorithm and a novel Constituent Labeling deci-
sion algorithm.

2.1. Child-Type Tagging

In ordinary shift-reduce parsers, a Reduce action refers to a
specific production, and it groups constituents in a way that
matches the right-hand-side of the production. However, we
have no explicit productions in our system. Instead, a Re-
duce action chooses a group of constituents as determined
by a tagging scheme inspired to some extent by [12, 16].
Whenever a new constituent is pushed onto the stack, ei-
ther by a Shift action or a Reduce action, a decision tree is
used to tag it with one of four Child-Type values:

e UNARY, which means the constituent is the only
child of its parent.

e LEFT, which means the constituent is the left-most
child of its parent.

e RIGHT, which means the constituent is the right-
most child of its parent.

e MID, which means the constituent is a middle child
of its parent.

Assigning the constituent a Child-Type tag directly de-
termines whether to Shift or Reduce. LEFT or MID sig-
nifies an incomplete constituent and therefore represents a
Shift action. Conversely, RIGHT or UNARY represents a
Reduce action where a single constituent is grouped in the
case of a UNARY tag, or otherwise all constituents up to
the top LEFT tag in the stack.

2.2. Constituent Labeling

Apart from making decisions on the constituent boundaries,
we need to to assign a label to every constituent. In ordi-
nary shift-reduce parsers, the label of the new constituent
formed by a Reduce action is given by the left-hand-side of



the production. Again, since we have no explicit produc-
tions, an alternative method is required. The solution is to
introduce a second decision tree to predict the constituent
label.

3. IMPROVED PARSING MODEL

We improved the base parsing model by introducing a Base
NP model and expanding the POS tag for prepositions.

3.1. Base NP Model

Base NP is a noun phrase that doesn’t include any recur-
sive NPs. Lots of works focusing on Base NP bracketing
has been reported [16, 8, 5]. It is commonly believed that
finding Base NP before parsing can improve parsing accu-
racy.

In our NP model, the tag set used is similar to our
Child-Type Tag system. The tags includes:

e UNARY, means the word itself is a Base NP

e LEFT, means the word is the left-most child of a Base
NP

RIGHT, means the word is the right-most child of a
Base NP

e MID, means the word is a middle child of a Base NP
e OUT, means the word is outside of a Base NP
A separate decision tree is learned for this task.

3.2. Preposition Tag Expansion

Prepositional Phrase attachment is another area which re-
ceives lot of attentions [3, 7, 18, 20]. Lexical or semantic
features are used to tackle the problem. However, in our
model, we restrict ourselves to simple syntactic features in
order to keep our model slim. So we anticipate a poor per-
formance on prepositional phrase attachments.

To remedy that, we expands the current POS tag set
as follows. Preposition that appears more than 100 times
in the training data are extracted. There are totally 49 of
them. We create a new POS tag for each of them, so at
the end, we have 49 POS tags representing the 49 most
frequent prepositions and a POS tag representing the rest
of prepositions.

4. EXPERIMENTS AND RESULTS

We use parsed sentences from sections 2-21 (about 40000

sentences) of the Penn Wall Street Journal corpus, release

2 [14], as the training data and section 23 (about 2400 sen-

tences) as the testing data. The PARSEVAL measures [10]

are used as the evaluation criteria:

#correct constituents proposed
#constituents proposed

Labeled Precision =

#correct constituents proposed

#constituents in treebank parse

Crossing Brackets(CBs) = #constituents which violate
constituent boundaries with a constituent in the Tree-
bank parse.

Labeled Recall =

A constituent is correct if and only if it spans the same
set of words (ignoring punctuation, i.e. all tokens tagged
as commas, colons or quotes) and has the same label as a
constituent in the Treebank parse.

m, n | #nodes in Decision Tree | error rate
3,3 148k 6.274%
4,3 160k 6.107%
4,4 162k 6.092%
5,3 170k 6.011%
5,4 169k 6.005%

Table 1: Results of Child-Type tagging

m, n | #nodes in Decision Tree | error rate
3,2 24k 2.017%
4,3 26k 2.027%

Table 2: Results of Constituent Labeling

4.1. Base Model:Child-Type Tagging Results

Below is the features that we used in training the Child-
Type tagging module.
S1y .oy Smytly ey bm,C1,C2, 01, ..., in, Where:

e s; represent the label of the constituent on the top of
stack,

e s, represent the label of k-th constituent counted
from the top of the stack,

e t; is the corresponding Child-Type tag of sy,
e ¢ and c» is the first and last child label of s,
e i is the POS tag of the k — th word in the input

We have run a couple of experiments by varying m and
n. The training examples are extracted from section 2—
21, and the testing examples are extracted from section 22.
Table 1 shows the error rates of the Child-Type tagging
results.

4.2. Base Model:Constituent Labeling Results

In the Constituent Labeling module, we use the followings
as features,
82,y .eey Smy b2, coitm, C1,C2,C3,Ca, 11, ...Tn, Where:

® si, tr and 4, has the same meaning as in the Child-
Type Tag model,

® ci, ¢2, ca and c4 is the first, second, second last and
last child of the top constituent in stack

Table 2 shows the labeling results with different values
of m and n. Training data comes form section 2-21 and
testing data comes from section 22 of the Penn Treebank.

4.3. Parsing Results

We use the best model from each of the above 2 modules
to build our parser. Table 3 shows the parsing result of the
Base Model(B), the Base Model with Base NP Model(N),
and the Base Model with both Base NP Model and Prepo-
sition Tag Expansion(P). We also show the result of the (P)
model on inputs tagged by Brill’s tagger [2] in column (T).



Model B N P T

Lab. Precision 0.7926 0.7978 0.8146 0.7772
Lab. Recall 0.8039 0.8108 0.8233 0.7886
Precision 0.8284 0.8298 0.8455 0.8166
Recall 0.8402 0.8433 0.8545 0.8286
CB/Sent. 1.9030 | 1.87981 | 1.61671 | 1.9367
Sent. w/0CB 0.4700 0.4812 0.5104 0.4526
Sent. w/<2CBs | 0.7151 0.7220 0.7522 0.7023
speed(words/s) | 733.488 | 623.986 | 541.877 | 528.049

Model: PC PL O PL O
Sent. Len. 2-12 | 2-12 | 2-12 | 2-40 | 2-40
Ave. Sent. Len. 8.7 8.3 8.4 | 21.6 | 21.7
Lab. Precision(%) 87.1 | 88.9 | 81.9 | 81.5
Lab. Recall(%) 856.2 | 91.8 | 79.5 | 82.3
Precision(%) 88.6 | 89.8 | 91.4 | 83.0 | 84.6
Recall(%) 91.7 | 90.7 | 94.3 | 80.7 | 85.5
Ave. CBs 0.27 | 0.09 | 1.99 | 1.59
Sent. w/0CBs(%) 84.5 | 92.5 | 41.5 | 51.8

Table 3: Parsing results

Lab. Recall
0.8028

Recall
0.8734

Precision
0.8620

Lab. Precision
0.7924

Table 4: Parsing result of the Base Model on Chinese

The precision and recall differs from the Labeled preci-
sion and recall in that, a constituent is correct if the span
is correct, the constituent label is not considered.

From the table, we observed a tiny improvement in ac-
curacy by incorporating the Base NP model. However the
parsing speed drops at the same time. By expanding the
POS tag set for prepositions, the increase in accuracy is
more significant. Around 2% increase in Labeled Precision
and Labeled Recall is observed, but the speed drops fur-
ther. When evaluated on input containing tagging errors,
3%—4% drop in the accuracy is observed.

4.4. Parsing Results on Chinese

In respect to the portability objective which we stated at
the beginning of this paper, we also tested our parser on an-
other language, Chinese. It is well known that the difference
in sentence structure between Chinese and English is quite
large, thus running our parser on Chinese is a good test for
portability. Due the the lack of Chinese parsed sentence,
the best resource we can find is [19], which contains about
3000 sentences from Chinese primary school text. Table 4
shows the parsing result of our base model. Observed from
the table, the result is comparable to that of English. This,
to certain degree, indicates that our learning algorithm is
readily applicable to language other than English. Cautions
should be taken, however, as the Chinese sentences that we
used in both training and testing are simpler than the En-
glish sentences. On the other hand, we haven’t incorporate
the NP model and preposition tag expansion technique for
the Chinese experiment.

5. COMPARISON TO OTHER PARSERS

In the literature, a lot of parsers have been proposed. We
divided the previous works into 2 groups, tag based parsers
and word based parsers.

5.1. Tag Based Parsers

In a tag based parser, the input is a sequence of POS tags,
so no lexical feature is available. The parameter space is rel-

PC=PCFG, PL=PLCG, 0=0Our Model
Unavailable data are leaves as blank.

Table 5: A Comparison between Tag based parsers

atively smaller and the parsing accuracy is relatively lower.

We compare our result with 2 parsers. One is based
on probabilistic context free grammar(PCFG) [6] and the
other is based on probabilistic left corner grammar(PLCG)
[13]. Our work differs from the above works, in that, our
parsing algorithm is deterministic. There is no redundant
sub-structures generated by our parser. Moreover, there is
no explicit grammar in our system.

To the best of our knowledge, the accuracy of our parser
is the highest among all tag based parsers evaluated on
the Penn Treebank corpus. A comparison of the results is
shown in table 5.

5.2. Word Based Parsers

A word based parser take a sequence of words as input.
POS tags are assigned either by an automatic POS tagger
or by the parser itself. A far more rich set of features are
available, including, lexical identities, morphological infor-
mation, word classifications, verb sub-categorizations and
semantic classes, etc. We compare our result with two word
based parsers, the SPATTER and the CONTEXT.

Our parser is similar to SPATTER in the sense that
both of us use extension'/Child-Type tag to keep track of
constituent boundaries. However, the parsing algorithm of
SPATTER is based on dynamic programming which is non-
deterministic and the search space is huge.

Both CONTEXT and our parser are deterministic. We
differs in that, CONTEXT employ a rich set of linguistic
features in learning and requires a human expert to guild
the training. So the learning process is not fully automated.

Table 6 shows the parsing accuracy of our parser, SPAT-
TER and CONTEXT.

It may appears that the performance of CONTEXT is
the best. However, CONTEXT is trained and tested on sen-
tences containing only the 3000 most frequent words and
the testing sentence is shorter in average. If we compare
SPATTER with CONTEXT on testing sentences with sim-
ilar average length, the performance is similar. As observed
from the table, our parser is a few percent lower in accu-
racy. However, we use only simple syntactic features and
the whole learning process is automatic.

IThe term extension used in Magerman’s paper is equivalent
to Child-Type



Model S S C O
Deterministic No No Yes Yes
Auto. learned Yes | Yes No Yes
Sent. Len. 4-25 | 4-40 | 4-45 | 4-40
Ave. Sent. Len. 16.8 | 22.3 | 17.1 | 22.0
Lab. Precision(%) 88.1 | 84.5 | 89.8 | 77.7
Lab. Recall(%) 87.6 | 84.0 | 89.6 | 78.9
CBs / Sent. 0.63 | 1.33 | 1.03 | 1.94
Sent. w/0CBs(%) 69.8 | 55.4 | 56.3 | 45.3
Sent. w/<2CBs(%) | 92.1 | 80.2 | 84.9 | 70.2

S=SPATTER, C=CONTEXT, O=0Our Model

Table 6: A Comparison between Word based parsers

6. CONCLUSION

We presented a lightweight, robust, automatically learned
and deterministic parser. The parser is driven by two simple
decision algorithm, Child-Type Tagging and Constituent
Labeling. We have incorporated the Base NP model and the
preposition tag expansion technique into the base model.
More than 2% improvements is observed. The accuracy of
our parser is highest among tag based parsers and compa-
rable to some state-of-the-art parsers. The speed of our
parser is more than 500 words per CPU second and only
6M of memory is needed for loading the decision trees. This
make our parser suitable for on-line applications with lim-
ited memory.
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