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Abstract. This article investigates the implications of active user model acquisition upon
plan recognition, domain planning, and dialog planning in dialog architectures. A dialog
system performs active user model acquisition by querying the user during the course of the
dialog. Existing systems employ passive strategies that rely on inferences drawn from passive
observation of the dialog. Though passive acquisition generally reduces unnecessary dialog, in
some cases the system can effectively shorten the overall dialog length by selectively initiating
subdialogs for acquiring information about the user.

‘We propose a theory identifying conditions under which the dialog system should adopt
active acquisition goals. Active acquisition imposes a set of rationality requirements not met
by current dialog architectures. To ensure rational dialog decisions, we propose significant
extensions to plan recognition, domain planning, and dialog planning models, incorporating
decision-theoretic heuristics for expected utility. The most appropriate framework for active
acquisition is a multi-attribute utility model wherein plans are compared along multiple di-
mensions of utility. We suggest a general architectural scheme, and present an example from
a preliminary implementation.

Key words: active acquisition, decision-theoretic planning, decision theory, dialog planning,
dialog systems, expected utility, multi-attribute utility, plan recognition, subdialogs, user mod-
eling.

1. Introduction

In this article, we investigate the implications of active user model acquisition
upon plan recognition, domain planning, and dialog planning in dialog archi-
tectures. Consider the following dialog between a user and a route consultant
system:
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(1) U: How do I get to the center of the bay?
(2) S: Why do you want to go there?
(3) U: I want to take a picture of the skyline.
(4) S: Isit sufficient to drive to Treasure Island, or is it necessary to take

a cruise?
(5) U: No, Idon’t want to take the picture from Treasure Island.
(6) S: Then you can take a bay cruise tour from Fisherman’s Wharf.

This kind of dialog behavior, an example of active user model acquisition,
is beyond most existing dialog systems. Not only does the user query the
system, but the system also queries the user, in order to acquire information
about the user that can be used to increase the effectiveness of its responses.

Active acquisition is a logical extension of research on dialog-based con-
sultation [e.g., Wilensky et al. 1988, Wahlster et al. 1983, Kobsa 1985].
Previous user modeling systems have been either entirely passive or entirely
active. GRUNDY [Rich 1979] relied exclusively on an active acquisition
phase prior to the main consultation session, asking the user a “canned” set of
questions. The “canned” nature of the acquired information restricted consul-
tation applications to domains with little conceptual variation from one dialog
to another. Later systems such as KNOME [Chin 1988], TRACK [Carberry
1988], and PAGAN [Mayfield 1989] were designed to extract user models
by making inferences based on passive observation of the dialog. Passive
acquisition is generally preferable to active querying, to minimize unneces-
sary dialog. However, we are concerned with cases where the system should
actively initiate subdialogs for the purpose of acquiring information about
the user. In our view, neither entirely active nor entirely passive strategies
are adequate when reasonably flexible queries are permitted. Our theory was
developed to identify conditions under which interactive acquisition is called
for.

It has been possible in existing dialog architectures to use simple plan
recognition and planning models, because the task of conducting dialog is
simplified by performing user model acquisition entirely passively or entirely
actively. These models, however, are insufficiently flexible to handle the sort
of trade-off decision-making necessary for interactive acquisition. We argue
in this article that major extensions to plan recognition, dialog planning, and
domain planning models are needed, incorporating multi-attribute decision-
theoretic notions of expected utility.

Active acquisition is strongly connected with plan recognition research
[Allen and Perrault 1980, Cohen and Perrault 1979, Litman and Allen 1984]
but has a different emphasis. Whereas plan recognition mechanisms only
recognize the correlations between a given discourse structure and the con-
versants’ plans, active acquisition models predict the most cooperative con-
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tinuation of a dialog, given the conversants’ plans.

In Section 2, the motivations for active acquisition are discussed, and an
overview of the theory is given. We introduce the notion of active acquisition
goals (AAGs) which cause the system to query the user, and consider a
number of rules for generating AAGs in response to reasoning failures that
occur in the normal operation of a dialog system. In Section 3, the decision-
theoretic implications for the architecture of dialog agents are considered. We
first note that the active acquisition theory requires the dialog architecture to
satisfy a number of rationality conditions that are often not met by existing
architectures. We then examine five dimensions of expected utility that play a
role in generating and selecting active acquisition goals. Section 4 describes
an architecture we are constructing as a preliminary implementation to meet
these requirements. An example is followed in greater detail in Section 5.

2. Active Acquisition

An ideal dialog agent relies primarily on passive acquisition to construct a
user model, to meet considerations of efficiency, cooperativeness, and appro-
priateness. For example, no active acquisition is required in the following
dialog:

(1) U: Is there an inexpensive motel close to Fisherman’s Wharf?

(2) S: Yes, but they are usually full at this time of the year. You might
try the Ponderosa Inn, which is about a mile from Fisherman’s
Wharf. There is a cable car stop less than two blocks away.

(3) U: How do I get there?

(4) S: Go down the street, then turn right on Powell, at the third light.
There is a sign on the left-hand-side after half a block.

To generate these responses, the system must build a user model contain-
ing many inferences, among them:

—  The user has the goal of knowing an inexpensive motel close to Fisher-
man’s Wharf.

—  The user assumes the system has this knowledge, and wants the system
to communicate it to him.

—  The user has the goal of staying in the motel today.

—  The user wants to be as close as possible to Fisherman’s Wharf.

—  The user wants to be able to reach Fisherman’s Wharf as conveniently
as possible. |

— The user’s budget constraints outweigh his desire to stay close to Fish-
erman’s Wharf.
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—  The user has the goal of knowing how to reach the motel.

—  The user is driving a car (because he asked for a motel).

—  The user does not live in the area, and is probably a tourist.

—  The user does not know the area well, and requires detailed directions.

By acquiring the user model through passive observation of the dialog, the
system is able to generate responses that take all these factors into account
without burdening the user with unnecessary querying. The same consider-
ations of efficiency, cooperativeness, and appropriateness that dictate heavy
reliance on passive acquisition, however, also dictate occasional motivated
use of active acquisition. Consider again the earlier example: :

(1) U: How do I get to the center of the bay?

(2) S: Why do you want to go there?

(3) U: I want to take a picture of the skyline.

(4) S: Isitsufficient to drive to Treasure Island, or is it necessary to take
a cruise?

(5) U: No,Idon’t want to take the picture from Treasure Island.

(6) S: Then you can take a bay cruise tour from Fisherman’s Wharf.

A passive system would respond:

(1) U: How do I get to the center of the bay?
(2a) S: You can drive to Treasure Island.

(3a) U: But I don’t want to be on land.

(4a) S: Then you can charter a yacht.

(5a) U: ButI don’t have the money.

(6a) S: Then you can rent a sailboard.

(7a) U: But I can’t windsurf.

and so on. Alternatively, the system could suggest all known options:

(2b) S: You can drive to Treasure Island, charter a yacht, rent a sail-
board, take BART through the tube, swim in a wetsuit, take a bay
cruise tour, buy a rowboat, scuba dive, hop on the ferry, or hire a
helicopter.

Clearly, for some queries an active acquisition approach is more efficient,
cooperative, and appropriate. The information needed to select the best plan—
i.e., the knowledge that the user has a goal of taking a picture of the skyline
from an angle other than Treasure Island—cannot be inferred passively. The
need to know the user’s specific goal becomes apparent only after the dialog
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has already begun, requiring post-query acquisition rather than GRUNDY’s
pre-session “canned” active acquisition. Sleeman’s [1985] UMFE system
actively acquires information about the user’s expertise level after the user’s
query, but is limited to asking a series of yes-no questions. More flexible
discourse structures are needed; the system’s query (4) depends on the user’s
response (3) to the system’s first query (2). Moreover, these active acquisition
queries are useful for purposes other than determining the user’s expertise
level.

2.1. ACTIVE ACQUISITION GOALS (AAGS)

As a conceptually useful notion for studying subdialog initiation behavior,
we define an active acquisition goal (AAG) as a goal held by a dialog agent
to actively acquire knowledge about the dialog partner. Continuing with
the previous example, the system must make the decision to initiate the
clarification subdialog (2)—(3) so as to determine more specifically what the
user’s goal is. The system must also decide to initiate the subdialog (4)—(5)
in order to determine the user’s preference between two plans. We model
this behavior by assuming that in normal operation, a dialog agent builds a
user model using passive acquisition, but occasionally adopts an AAG, and
therefore initiates an information-seeking subdialog.

In the general scheme, plans for achieving AAGs may be verbal or non-
verbal. However, the only plans that concern us here are verbal, involving
the production of an utterance via a speech act [Austin 1962]. The most
straightforward form (and the only form used in this article) verbalizes a
direct request to the user for information. A more subtle plan might ask a
question whose answer could then be used to infer the desired information.
More sophisticated plans can use indirect speech acts [Searle 1969] such as

(2¢c) S: Do you have a particular reason for going there?

Indirect speech acts are sometimes more courteous and also provide more
flexibility; here, for example, (2c) does not presuppose the user to have a
particular reason, whereas (2) requires the user to explicitly contradict the
presupposition if it is unacceptable.

There are many potential reasons why an agent might wish to initiate a
subdialog for the purpose of seeking information about the user. Fig. 1 shows
a broad classification of some of these reasons. Our study targets only a high-
level set of sources of AAGs, where the cause of an AAG stems from a failure
in the system’s plan recognition or planning processes.

The nature of AAGs can be understood in two different ways. In one view,
acquisition goals in themselves are neither active nor passive, but the plans for
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Sources of AAGs
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Fig. 1. Potential sources of AAGs.

achieving them either involve active speech acts or passive inference. There
are active acquisition plans, but AAGs are merely a conceptual shorthand for
ordinary acquisition goals where our focus is on active means for satisfying
them. In the second view, AAGs are seen as a real class of goals that delimit
a narrower class of plans than ordinary acquisition goals. AAGs are directly
indexed to plans involving active acquisition, speeding up memory retrieval
for plans that satisfy AAGs. Flexibility is traded off for speed, because if
the system adopts an AAG instead of a more general acquisition goal, it
does not consider passive acquisition plans. This is an instance of a general
tradeoff found in planners, where compiling frequently used plans can buy an
overall speed-up at the price of misplanning in a small number of cases. The
choice of perspective on the nature of AAGs depends on the investigator’s
goals. From the engineering standpoint, AAGs should index plans only if
the overall speed-up outweighs the loss in flexibility. From the cognitive
modeling standpoint, one would need psychological verification as to whether
human dialog participants have active acquisition strategies compiled into
conversational behavior. We remain agnostic on this issue in the absence of
sufficient data of either sort.

2.2. GENERATING AAGS FROM REASONING FAILURES

Failures in the dialog system’s normal reasoning processes are a highly pro-
ductive source of AAGs, and account for dialogs like the example above. We
assume that dialog processing requires three major kinds of normal reasoning
processes: plan recognition, domain planning, and dialog planning. Briefly,
AAGs can be produced by failures in the following manner:
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Plan recognition: Plan recognition is one of the main passive acquisition
strategies since it infers the user’s underlying goals and plans so as to explain
the user’s speech acts. Moreover, the inferences produced by plan recognition
are crucial to the cooperative continuation of a dialog. If the system is unable to
construct any plan to explain the user’s speech act, it might hypothesize one of
two causes: (1) an unknown user goal, or (2) an unknown user misconception.
In either case, it may generate an AAG to identify the unknown. If, on the
other hand, the system is able to produce two or more plausible explanations
for the speech act but cannot decide between them, it can generate an AAG
to determine some fact that would eliminate all but one explanation.

Domain planning: To produce a solution for the user’s goals (a route plan,
in this article’s examples), the system performs planning in its domain of
expertise. When the system is unable to evaluate the expected utility of the
plans it produces because of a lack of information about the user, an AAG
to obtain the needed information can be generated. If the system is able to
produce multiple plans of high expected utility but cannot choose between
them, it can generate an AAG to determine the user’s preference.

Dialog planning: The system performs dialog planning to determine its
own course of action, particular with regard to its speech acts. In cases where
the system is unable to evaluate the expected utility of potential alternative
plans, it can generate an AAG to obtain relevant information.

The notion of expected utility is described subsequently in Section 3.2.
Also, note that once an AAG is generated, the system may or may not actually
adopt and attempt to satisfy the goal; this issue is also discussed later, in
Section 3.1. |

The following are a number of rules for generating AAGs under the failure
conditions sketched above. The rules are summarized in Fig. 2 at the end of
this section. This is a slightly updated version of the rules presented in an
earlier paper [Wu & Horster 1989].

Rule 1a If the plan recognizer produces no plan of acceptable utility
explaining the user’s speech act, then generate an AAG to identify an
unknown user goal.

Rule 1b If the plan recognizer produces no plan of acceptable utility ex-
plaining the user’s speech act, then generate an AAG to identify (and/or
correct) an unknown user misconception.

i

Rules 1a and 1b are responsible for (8a) or (8b) in the following example.
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The system cannot produce a plan of acceptable utility to explain (7) and
assumes either an unknown user goal or misconception. In (8a), an AAG to
determine the unknown user goal is satisfied; (8b) corrects a possible user
misconception.!

(1) U: How do I get to the center of the bay?

(2) S: Why do you want to go there?

(3) U: I want to take a picture of the skyline.

(4) S: Isit sufficient to drive to Treasure Island, or is it necessary to take
a cruise?

(5) U: No, a cruise isn’t necessary.

(6) S: Then you should drive to the Bay Bridge and take the Treasure

Island exit.
(7) U: What about Angel Island?

(8a) S: Why do you ask?
(9a) U: I also want to visit Angel Island.

(8b) S: There is no bridge to Angel Island, you must take a ferry.

Rule 2 If multiple plans explain the user’s speech act, but they are plans
for independent user goals (so it makes no sense to compare their utili-
ties), and all of the goals are plausible, then generate an AAG to disam-
biguate the user’s intention.

Rule 2 is responsible for (4) in the following dialog. The system cannot
determine whether the user’s goal behind uttering (3) is to request additional
directions or to convey a wish to eat in Chinatown, because either goal is
plausible given the system’s knowledge of the user’s overall goals.

(1) U: Where can we eat a good Chinese meal tonight?
(2) S: There is a good restaurant called Mandarin House on Clement.
(3) U: Isthat in Chinatown?

(4) S: No, do you want to eat in Chinatown?
(5a) U: Yes.
(6a) S: The Red Chamber on Jackson is quite good.

(4) S: No, do you want to eat in Chinatown?

! Rule 1b is just one case of suspecting a user misconception; detecting and correcting
misconceptions is an orthogonal issue that many researchers have addressed independently
[e.g., McCoy 1988, Chin 1988].
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(5b) U: No, that doesn’t matter.
(6b) S: To get to Clement, you can take Geary down to 30th and then go
north one block.

Rule 3a If, while comparing the over-specificness of the highest-utility
domain plans, no plan closely matches the specificness of the known
user goals, and the plans have mutually exclusive consequences, then
generate an AAG to determine a more specific user goal.

Rule 3a accounts for the following exchange:

(1) U: How do I get to the center of the bay?
(2) S: Why do you want to go there?

The system is able to build a number of plans, including driving to Trea-
sure Island, chartering a yacht, windsurfing, and taking a bay cruise tour. Each
plan’s consequences are over-specific in comparison with the known goal of
the user, which is to get to the center of the bay; thus, each plan strongly
constrains the possible future actions. Moreover, each plan constrains future
actions differently; one results in the user being on Treasure Island, another
results in the user being on a boat, and so on. Since the user presumably has
a particular purpose for getting to the center of the bay, the plan selected
should be the one whose constraints most closely match his specific goal.
However, since the system does not know the user’s specific goal, it is unable
to evaluate which plan’s consequences provide the best match.

Rule 3b If, while comparing the difficulty of the highest-utility domain
plans, some plans have a precondition that others do not, and the precon-
dition is neither known to hold nor assumable by default, then generate
an AAG to determine the ease of achieving the precondition.

Rule 3b produces (2) below, because the system needs to discover whether
the user can satisfy the precondition of a plan, in order to select the easiest
plan.

(1) U: How do I get to the Marina?
(2) S: Do you drive?

Rule 4 If the highest—uthity domain plans are non-comparable, then gen-
erate an AAG to determine the user’s preference.



158 DEKAI WU

Rule 4 is responsible for (4) in the following dialog, because the Treasure
Island plan is superior to the cruise plan in terms of difficulty, but the cruise
plan is superior in terms of being less susceptible to potential goal conflicts
and resulting in a less over-specific state, because taking the picture from the
water constrains the angle less than the island.

(1) U: How do I get to the center of the bay?

(2) S: Why do you want to go there?

(3) U: I want to take a picture of the skyline.

(4) S: Isitsufficient to drive to Treasure Island, or is it necessary to take
a cruise?

Rule 5 If the dialog planner lacks information to compare the highest-
utility dialog plans, then generate an AAG to obtain the needed infor-
mation.

Rule 5 is illustrated by (2) below, where the system has built several
different plans for expressing a location, but cannot judge how difficult to
execute (or how likely to succeed) they are until it ascertains whether the
user’s knowledge satisfies the plans’ preconditions.?

(1) U: Where is Cafe Rigoletto?
(2) S: Do you know where Symphony Hall is?

(3) U: Yes.
(4) S: Cafe Rigoletto is in the alley across the street from Symphony
Hall.

3. Decision-Theoretic Implications

We believe that decision-theoretic search is the most appropriate framework
for modeling the kind of planning and plan recognition needed for active
acquisition. In this section, we examine several architectural requirements
imposed by the active acquisition theory. These conditions are not met in
most existing dialog systems, because they require the system to estimate
the expected utilities of alternative plans, without actually executing them.
This suggests using decision theory, which elegantly treats how to resolve

2 UMFE [Sleeman 1985] can be characterized as performing active acquisition in this class.
The active acquisition queries are aimed at determining the user’s expertise level, in order to
formulate a felicitous response.
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Plan recognition failure
- Plan recognizer produces no plan of acceptable utility explaining user's speech act

Rule 1a If the plan recognizer produces no plan of acceptable utility explaining the user's speech act,
then generate an AAG to identify an unknown user goal.

Rule 1b If the plan recognizer produces no plan of acceptable utility explaining the user's speech act,
then generate an AAG to identify (and/or correct) an unknown user misconception.

« Plan recognizer produces multiple plans of acceptable utility explaining user's speech act
Rule 2 If multiple plans explain the user's speech act, but they are plans for independent user goals

(so it makes no sense to compare their utilities), and all of the goals are plausible,
then generate an AAG to disambiguate the user's intention.

Domain planning failure
» Domain planner lacks information needed to compare plan utility
Rule 3a If, while comparing the over-specificness of the highest-utility domain plans,
no plan closely matches the specificness of the known user goals,
and the plans have mutually exclusive consequences,
then generate an AAG to determine a more specific user goal.
Rule 3b If, while comparing the difficulty of the highest-utility domain plans,
some plans have a precondition that others do not,
and the precondition is neither known to hold nor assumable by default,
then generate an AAG to determine the ease of achieving the precondition.
» Domain planner produces plans with non-comparable utility

Rule 4 If the highest-utility domain plans are non-comparable,
then generate an AAG to determine the user's preference.

Dizlog planning failure
» Dialog planner lacks information needed to compare plan utility

Rule 5 If the dialog planner lacks information to compare the highest-utility dialog plans,
then generate an AAG to obtain the needed information.

Fig. 2. Taxonomy of rules for generating AAGs in response to failure conditions.

choice points using statistically-derived heuristic estimates of expected utility.
We identify five dimensions of expected utility that are relevant to active
acquisition; a subtype of decision theory called multi-attribute utility theory
is employed to handle the multiple dimensions of utility.

3.1. RATIONALITY REQUIREMENTS

Active acquisition requires that the following conditions on dialog system
architecture hold:

(C1) Rational (non-arbitrary) domain plan selection. Rules 3a, 3b, and 4
generate AAGs from failures during the domain planning process, specifi-
cally, from the part of the process that selects between alternative plans when
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more than one is available. This assumes that the domain planner employs
a rational strategy for selecting plans, based upon estimates of the expected
utility of alternative plans. The rules could not be applied in dialog systems
employing simpler planning models that arbitrarily select one plan when
several options are possible.

(C2) Rational dialog plan selection. The same argument holds for dialog
planning. Rule 5 generates AAGs from failures during the selection process
in dialog planning, so the dialog planner must also employ a rational strategy
for selecting plans.

(C3) Rational plan recognition termination. The system must be able to
determine when the expected utility of attempting further plan recognition
is lower than an alternative course of action. Rules 1a and 1b apply when
“the plan recognizer produces no plan of acceptable utility explaining the
user’s speech act”. In a realistically large domain, the search space—i.e., the
number of explanations that could be produced, considered, then accepted
or rejected—is enormous. This does not mean that exhaustive search must
be performed before generating an AAG. Some heuristic means is needed
to prune those search directions likely to produce only poor explanations,
such as explanations involving unlikely user goals or superfluous operators.
Moreover, for plan recognition problems that are likely to be time-consuming
it may be quicker to take an interactive course of action such as requesting
clarification from the user. Rules 1a and 1b, then, could be more precisely
stated to apply “when it is pragmatic to terminate attempting to produce a
plan of acceptable utility explaining the user’s speech act”. This is similar to
Mayfield’s [1991] principle of trading off between the difficulty and benefits
of continuing a plan recognition search.

(C4) Rational AAG plan selection. The system must be able to compare
the expected utility of alternate plans for different AAGs, in order to eliminate
poorer AAG plans when they are superceded by better ones.

Unlike the earlier three conditions which related to generation of AAGs,
condition (C4) relates to AAG selection. Multiple AAGs may be generated
while processing a single user utterance, because we attempt to continue nor-
mal processing after a failure occurs as best as possible, collecting all AAGs.
This will suggest a number of potential plans, some of which satisfy one
AAG, and some of which simultaneously satisfy multiple AAGs. The sys-
tem should select the plan that maximizes utility with respect to the system’s
overall goals of being cooperative, brief, comprehensible, and relevant [Grice
1975]. Consider the following dialog:

(1) U: Do you know good restaurants in this neighborhood?
(2) S: Yes, are you interested in a particular style of cuisine?
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(2) is the result of a plan that simultaneously satisfies two different AAGs
generated while processing (1). One AAG, produced by Rule 2, is to determine
whether the user’s goal in asking (1) is to discover the system’s breadth of
knowledge or to discover good restaurants. The other AAG, produced by Rule
3aunder the assumption that the user’s goal is to discover good restaurants, is
to determine information needed to compare the utility of various restaurant-
going plans (i.e., domain plans). (2) is a better response than either “Yes, do
you want to know some?”, which satisfies the former AAG, or “What style
of cuisine?”, which satisfies the latter.

The system must also compare plans for AAGs against other dialog plans
not involving AAGs, since active acquisition is not always the best response
when a reasoning failure occurs. One example is Rule 1b, where the system
has the option of correcting a suspected user misconception without actually
determining whether it exists. The following example demonstrates another
case:

(1) U: Where can I buy a newspaper?
(2) S: In the tobacco shop across the street.

Suppose that there is actually a newspaper vending machine a few steps
closer than the tobacco shop, but it only sells the Chronicle and moreover
requires exact change. There is not enough information to compare the plan
involving the vending machine with the tobacco shop plan, so Rule 3b gener-
ates an AAG to determine the ease of meeting the preconditions of the vending
machine plan. However, the time needed to walk the few extra steps to the to-
bacco shop is less than that required by an active-acquisition subdialog. Since
the system’s overall goal is to be as cooperative with the user as possible, it
decides not to satisfy the AAG and chooses the non-active-acquisition plan
instead, producing (2).

3.2. MULTI-ATTRIBUTE UTILITY

Conditions (C2), (C3), and (C4) all require the system to evaluate the expected
utility of its alternative courses of action so that it can execute the most
promising. Condition (C1) involves choosing between hypothetical domain
plans for the user; even though the system is not itself contemplating executing
these plans, it is reasonable to use the same utility evaluation functions.
Condition (C3) has the peculiar characteristic that it treats “thinking”, i.e.,
plan recognition computation, as an action in itself (one way of handling this
will be described below).

We have already alluded to'several types of utility considerations: difficulty
of plan execution, degree of conflict with other goals, and over-specificness
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(1) Difficulty Y . i i
(2) Degree of goal conilict Y ¥,
(3) Over-specificness Y ; ¥ 4
(4) Productiveness 2 7 ) v
(5) Likelihood of success ? Y

Fig. 3. Usefulness of individual attributes for AAG generation and selection.

of the result state. In general, dialog agents must consider many dimensions
of utility when comparing plans. Thus, a multi-attribute utility metric is most
appropriate, where each plan is assigned a vector of values for the different
utility attributes.> A multi-attribute utility metric establishes a partial order
on a set of plans, such that a plan is judged to be better than another plan if
and only if it is superior in all attributes. Two plans are non-comparable if
neither plan is superior in all attributes.

A major issue in decision-theoretic models is the estimation of expected
utility. We now propose five utility attributes for active acquisition and their
estimation methods. Attributes (1)—(3) are required because AAGs are gen-
erated from rational plan selection failures involving the estimation or com-
parison of these attributes. We suggest attributes (4)—(5) as the minimal set
of attributes needed for decision-making involving rational plan recognition
termination and AAG selection; in reality, additional attributes will probably
be desirable to further increase efficiency and plan discrimination.* Fig. 3
shows more precisely how we envision the various attributes’ usefulness.

(1) The difficulty attribute measures the effort or time required of the indi-
vidual steps of the plan, as well as the difficulty of achieving the preconditions
(if they are not already satisfied). It can be estimated statistically by summing
average execution times (or other cost functions such as effort or energy) for
the individual steps of the plan.

(2) The degree of goal conflict attribute measures how much unintended
side-effect consequences of a plan conflict with other goals. It can be com-
puted as a weighted count of conflicting goals, where the weights reflect the
relative importance assigned to each goal.

(3) The over-specificness attribute is more difficult to define. We would
like some metric that describes how much more specific the plan’s conse-
quence description is than the goal description. Ideally, by viewing the goal

3 See von Winterfeldt & Edwards [1986] for an introduction to multi-attribute utility theory.

4 In particular, a risk attribute is used in many decision-theoretic applications and most likely
ought to be employed in dialog systems as well. Its omission here is purely methodological:
a risk attribute was not required to explain active acquisition in any of the examples in our
study, and evaluating expected risk is non-trivial.
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description as a set of states in a state space representing the real world, and
the plan consequence description as a more specific subset of those states, we
can view the over-specificness attribute as the ratio of the sizes of the state
sets. In other words, we would like to determine what percentage of states
matching the goal description also match the plan consequence description.
Unfortunately, it makes little sense to count states in the planner’s represen-
tation language, because the choice of states in the representation is arbitrary
and depends entirely on the designer. What can be done instead is to attach
numeric weights to each state description in the knowledge base, as an ap-
proximate measure of the size of the corresponding real-world state sets. For
example, if the “being at the Marina” state is arbitrarily assigned a weight of
100, the more specific “being at the foot of the Marina pier” state might be
assigned a weight of 60, indicating that within the system’s experience, 60%
of the “being at the Marina” states were eventually resolved to “being at the
foot of the Marina pier”.

(4) The productiveness attribute measures how much a plan achieves.
Productiveness can be computed by counting the number of goals achieved by
the plan, or, more precisely, by summing the importance weights of the goals
achieved by the plan.’ As an example of how the productiveness attribute
helps facilitate rational AAG selection, again consider the dialog:

(1) U: Do you know good restaurants in this neighborhood?
(2) S: Yes, are you interested in a particular style of cuisine?

The plan that produces (2) is chosen over the less productive plans that
produce *“Yes, do you want to know some?” and “What style of cuisine?”
which satisfy only one of two AAGs.

(5) The likelihood of success attribute measures how likely the plan is
to succeed. Estimation is based on the frequency of unexpected failure in
previous experience.

The estimation techniques for difficulty, over-specificness, and likelihood
of success are all based on prior experience and thus require statistical data,
data that is not likely to be readily available. The theoretical approach to
gathering the numbers is to apply an incremental learning algorithm to some
training corpus of dialogs. Research on learning techniques being at a rel-
atively immature stage, this may not be practical. Such an approach would
also require a sizeable training corpus, which either the system would have
to be capable by itself of analyzing—parsing, interpreting, segmenting—or
would need to be extensively annotated by hand. Moreover, not very much

.5 Choosing the plan with the highest productiveness is a general rule that subsumes two
principles for meta-planning (“meta-themes”) described by Wilensky [1983, p. 31]: “achieve
as many goals as possible”, and “maximize the value of the goals achieved”.
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statistical data on difficulty, over-specificness, and likelihood of success for
domain plans can be acquired from consultation transcripts; however, this
problem applies to all general planning models and is not specific to active
acquisition.

A more engineering-oriented approach is to guess at the numbers by trial
and error until they produce something close enough to the desired results.
Optimal results are not likely to be achieved by number twiddling. However,
it should be possible to meet the most important criteria: that the system err on
the conservative side, i.e., asks a potentially unnecessary clarification question
rather than failing to volunteer a potentially relevant plan. Another tactic is
to assign default “no information” null values to utility attributes for which
insufficient knowledge engineering is available. Attempting to evaluate or
compare null-valued attributes can either be made to produce random results
(which is no worse than existing systems) or generate failures (which might
require additional failure-handling AAG rules). So long as utility attributes are
treated as a means of pruning only obviously poor plans, some performance
gain should be achievable without undesirable side-effects.

A possible compromise is to combine the approaches. For example, dif-
ficulty values for dialog planning may be feasible to collect using learning
techniques since dialog planning is a fairly restricted domain, whereas values
for more general domains such as route planning may have to be estimated,
at least until better learning methods are developed for general planners.

4. Architecture

The decision-theoretic approach requires a reorganization of conventional
dialog architectures. Fig. 4 shows the flow of information for the generation
of AAGs in MAPS, a preliminary implementation we are developing. If the
division of functions is viewed abstractly, the information flow requirements
are applicable to most current dialog architectures. Both domain planning and
dialog planning must consult the utility evaluation and comparison functions.
Plan recognition can also use the utility functions to rank its alternative
explanations of user speech acts, though we have not yet explored minimal
pairs demonstrating necessity of this. The functions that handle failures are
responsible for generating AAGs, which must then be fed back into the dialog
planner’s set of candidate goals. There, the AAGs must be weighed against
other possible non-active-acquisition courses of action.

Active acquisition demands a more flexible control strategy than in
pipeline architectures, yet a more centrally-planned control strategy than in
blackboard architectures. A pipeline architecture does not permit alternating
control between plan recognition, domain planning, and dialog planning. On
the other hand, a blackboard architecture, by running all processes whenever

ACTIVE ACQUISITION OF USER MODELS 165

AAGSs—

failure report  failure report

utility —
attr values

utility
attr values

utility
attr values

attribute |
comparison
function

dialog
planning

Fig. 4. Flow of information for active acquisition.

possible, does not allocate computational resources as wisely as a centralized
control mechanism can. The architecture of MAPS implements the informa-
tion flow described above using a centralized scheduler that takes advantage of
the decision-theoretic expected utilities that are already needed for AAG gen-
eration. In essence, the utility estimates are used to guide navigation through
the search space representing possible courses of action. The architecture
incorporates the following features, depicted graphically in Fig. 5:

(1) A central planning agent, that builds and initiates execution of plans,
thus determining the dialog system’s actions [Chin 1988].

(2) Primitive functions for estimation and comparison of plan utilities.

(3) An agenda of tasks, each of which represents the execution state of a
partially-executed plan.

(4) An aggregation function for converting utility estimates into task
priorities. ‘

(5) A scheduler that executes and suspends tasks, periodically reviewing
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Fig. 5. The MAPS control strategy.

the utilities of the plans on the agenda.

The central agent consists of the scheduler plus the dialog planner, which
is a task permanently on the agenda. Computation alternates between dialog
planning and other tasks, but always returns to dialog planning.

The dialog planner is a task that builds plans, selects the best plans, and
adds them to the agenda as new tasks. Some of the plans it builds may be plans
about planning (either dialog or domain) or plan recognition. This strategy
allows flexible control where the system, at each point in time, chooses the
course of action most likely to produce the desired results. Moreover, the
recursive dialog planning loop facilitates efficient meta-level planning, i.e.,
at each point in time, the system considers whether further planning compu-
tation is more worthwhile than other actions [Russell & Wefald 1988, 1991].
Although we have not yet found meta-planning to be absolutely necessary in
our active acquisition theory, it seems wise to employ a multi-level architec-
ture with general meta-reasoning facilities. We are also studying cases where
AAGs are produced by failures in meta-planning.

The purpose of the aggregation function is to translate a vector of utility
attribute values into a scalar priority value, thus allowing the scheduler to
select the highest-priority task. The most straightforward, additive aggrega-
tion function is simply a weighted sum of the attribute values. Compressing
a partial ordering into a full ordering, though necessary, introduces some
arbitrariness that should be minimized. In particular, it is worth noting that
attributes are often not entirely independent (though this makes no difference
in how we treat them elsewhere in the system). For example, there is clearly
some interaction between productiveness and degree of goal conflict, since
any goal conflict limits the productiveness of a plan. Similarly, difficulty and
likelihood of success in most domains stand in a loosely inverse relation-
ship. When attributes are (partially) correlated in this way, the weight given
to those attributes must compensate for the fact that a change in any one
attribute value will show up in another attribute as well.
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The functions for evaluating, comparing, and aggregating plan utilities
are assumed to be primitive. It is particularly important that the evaluation
and aggregation functions incur negligible execution cost, to avoid inadver-
tently distorting the expected utility values on which scheduling decisions are
based. If any of these functions require significant computational resources,
their costs and benefits should also be taken into account in making control
decisions.®

5. Example

The following trace of an example interchange demonstrates the effect of
several AAG rules. For the initial implementation, stubs are being used in
place of an actual parser, analyzer, and generator; however, they are assumed
to operate just as the components in existing dialog architectures such as UC
[Wilensky et al. 1988].

Executing listen
User> How do I get to the center of the bay?

Executing cooperatively-handle-user—-speech-act
Executing recognize-user-speech-act

Executing analyze-current-user-utterance
Executing extract-user-plans

Extracted user plans:
user-has-plan (planl)
plan-has-goal (planl, goall)
user-knows-route-goal (goall, locationl, location2)
here (locationl)
center-of (location2, bayl)
san-francisco-bay (bayl)
plan-composition (planl, query-systeml)

The extracted user plan is the relevant output from the plan recognizer.
The symbol query-systeml is the root node of a structure representing
the user’s plan to learn the route by querying the system. The system now
identifies the goal it should adopt in order to help the user, and then begins
domain planning.

Executing identify-cooperative—-goals

Identified cooperative goal:
L BB i
® This requires an extra meta-level in the search structure, to mediate computation resources
between the scheduler (including the utility functions it calls) and agenda tasks.
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user-knows—route (locationl, location2)
center-of (location2, bayl)
san—-francisco-bay (bayl)

Executing plan-route

Executing plan-for-goal

Executing plan-for-goals

Executing collect-plans—-for-goals
Executing select-best-plan-for-context

Failure detected in plan utility attribute comparison function
... no plan closely matches specificness of known user goals

Over-specificness of drive-to-treasure-island = 1/0.15 = 6.66

Over-specificness of embark-on-bay-cruise-tour = 1/0.10 = 10.00
Over-specificness of embark-on-bart-through-tube = 1/0.20 = 5.00

... some plans have mutually exclusive consequences
Consequences of drive-to-treasure-island:
be-at-treasure-island
Consequences of embark-on-bay-cruise-tour:
be-on-path-in-bay-with-view-of-sf
Consequences of embark-on-bart-through-tube:
be-in-bay-under-water
Activating AAG Rule 3a
... generating AAG: determine-more-specific-user-goal
Adopting AAG: determine-more-specific-user-goal

The system detects that it lacks the information needed to compare the
three route plans it has produced. All three are excessively over-specific, and
the plan’s consequences exclude each other. The over-specificness measure
used here is the inverse of the (hand-estimated) percentage of occurrence in
an expert’s experience of the subclass within the superclass. For example,
driving to Treasure Island is estimated to account for 15situations in middle
of the bay, yielding an over-specificness measure of 1/0.15. The system now
attempts to satisfy the AAG generated by Rule 3a.

Executing query-user-for-more-specific-goal
Executing express-request-for-more-specific-user-goal

System> Why do you want to go there?
Executing listen

User> I want to take a picture of the skyline.
Executing recognize-user-speech-act

Executing analyze-current-user-utterance
Executing extract-more-specific-user—-goal
Extracted user goal:

user-has—-goal (picture-takingl)
event-located-at (picture-takingl, location2)
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center-of (location2, bayl)

user-subplan-for (picture-takingl, goingl)
event-path-through (goingl, locationl, location2)
user-prerequisite-for (goingl, knowing-routel)
user-has—goal (knowing-routel)

here (locationl)

Resuming select-best-plan-for-context

Having determined the user’s goal more specifically, the system now
attempts again to choose the best route plan. However, it discovers that
neither of the two top-ranked plans are superior in all attributes. Driving to
Treasure Island is less difficult than taking a bay cruise (the difficulty values
are computed as a sum of the difficulty values of all preconditions and plan
steps, again hand- estimated at some base level), but Treasure Island is now
more over-specific because the context is the user’s skyline-photo goal. The
system therefore adopts the AAG generated by Rule 4, and asks the user for
a preference.

Failure detected in plan utility attribute comparison function
highest-utility plans are non-comparable

Difficulty of drive-to-treasure-island = .31

Difficulty of embark-on-bay-cruise-tour = .46
Over—-specificness of drive-to-treasure—-island = 1/0.25 = 4.00
Over-specificness of embark-on-bay-cruise-tour = 1/0.65 = 1.54

Activating AAG Rule 4
generating AAG: determine-user-preference
Adopting AAG: determine-user-preference

Executing query-user-for-preference
Executing express-request-for-user-preference

System> Is it sufficient to drive to Treasure Island,
or is it necessary to take a cruise?

Executing listen

User> No, a cruilse isn’t necessary.
Executing recognize-user-speech-act
Executing analyze-current-user-utterance
Executing extract-user-preference
Resuming select-best-plan-for-context

Executing express-route-plan

System> Then you should drive to the Bay Bridge and
|take the Treasure Island exit.

Executing listen
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Once the original user query has been satisfactorily answered, the system
returns to a listening state. If the user’s subsequent question cannot be suc-
cessfully analyzed by the plan recognizer, Rule 1 generates another pair of
AAGs.

User> What about Angel Island?

Executing cooperatively-handle-user-speech-act
Executing recognize-user-speech-act

Executing analyze-current-user—utterance
Executing extract-user-plans

Failure detected in plan recognition

. no plan explaining user’s speech act
Activating AAG Rule la

. generating AAG identify-unknown-user-goal
Activating AAG Rule 1b

. generating AAG identify-unknown-user-misconception
Adopting AAG identify-unknown-user—-goal

Executing query-user-for-unknown-goal
Executing express-request-for-unknown-goal

System> Why do you ask?
Executing listen

User> I also want to vist Angel Island.

6. Conclusion

Our analysis of active acquisition applies the decision-theoretic principle of
maximizing expected utility to dialog systems in two ways: (1) it is assumed
that the system performs planning and plan recognition in order to determine
the course of action that maximizes its expected utility, and that failures can
occur when reasoning about expected utilities, and (2) it is assumed that
after a failure occurs, the system selects the recovery option that maximizes
expected utility, which may (or may not) require satisfying an AAG.

We have examined theoretical requirements of active acquisition that are
not met in the planning and plan recognition models used by existing dialog
systems. Multi-attribute utilities will be required for any feasible implemen-
tation of active acquisition. We then described a control architecture that
supports multi-attribute decision-theoretic planning and execution.

The long-term goal of this work is to construct a performance theory of
how and when a dialog agent should actively acquire information for the
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user model. We feel that decision-theoretic active acquisition is the natural
synthesis of plan-based speech act theories with dialog agent models. As plan
recognition models evolve to handle broader types of ill-formed input (e.g.,
Eller & Carberry [1991]), they hypothesize increasing numbers of alternative
explanations, requiring the dialog agent to choose from a greater number
of possible reactions. Further avenues of investigation include adding other
utility attributes and refining the estimation methods. The coherence and in-
formation content metrics used by Raskutti & Zukerman [1991] to rank and
prune alternative explanations can be viewed as additional utility attributes
(or subcomponents of existing attributes such as likelihood of success and
productiveness). Plan recognizers that assign probabilities to alternative ex-
planations [Calistri-Yeh 1991, Raskutti & Zukerman 1991] can be used to
increase utility estimation accuracy when the user’s true goals cannot be
determined with certainty, by using probabilities as weights for computing
weighted averages of utility attribute values.
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