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Abstract

We describe a broadly-applicable conserva-
tive error correcting model,N-fold Tem-
plated Piped Correction (NTPC), that con-
sistently improves the accuracy of existing
high-accuracy base models. Under circum-
stances where most obvious approaches actu-
ally reduce accuracy more than they improve
it, NTPC nevertheless comes with little risk of
accidentally degrading performance. NTPC is
particularly well suited for natural language ap-
plications involving high-dimensional feature
spaces, such as bracketing and disambiguation
tasks, since its easily customizable template-
driven learner allows efficient search over the
kind of complex feature combinations that have
typically eluded the base models. We show em-
pirically that NTPC yields small but consistent
accuracy gains on top of even high-performing
models like boosting. We also give evidence
that the various extreme design parameters in
NTPC are indeed necessary for the intended
operating range, even though they diverge from
usual practice.

1 Introduction

In language processing tasks, situations frequently arise
where (1) we have already trained a highly accurate
model for classification and/or sequence recognition, (2)
the model nevertheless cannot deal with some kinds of er-
rors, because it does not consider complex conjunctions
of many features (usually because the computational cost
would be infeasible), and (3) we have some general idea
as to what kinds of feature conjunctions might help. Such
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conditions are often found in tasks such as word sense
disambiguation, phrase chunking, entity recognition, role
labeling for understanding tasks, and the like.

We introduce a useful general technique calledN-
fold Templated Piped Correctionor NTPC for robustly
improving the accuracy of existing base models under
such circumstances. Given that the base accuracy is al-
ready high, even small gains are desirable and difficult
to achieve, particularly since it is difficult to correct the
few remaining errors without also accidentally undoing
correct classifications at the same time. NTPC has the
virtues of consistently producing these small gains in ac-
curacy, being straightforward to implement, and being
applicable in a wide variety of situations.

To demonstrate the consistency and effectiveness of
the method, we apply it to two tasks across four lan-
guages with very different characteristics, using an Ad-
aBoost.MH base model already trained to high accuracy
on named-entity datasets. This is typically representative
of the kinds of language processing classification and se-
quence recognition tasks we are concerned with. Boost-
ing was chosen for its superior reputation for error driven
learning of ensemble models; along with maximum-
entropy models and SVMs, it performs extremely well
in language-independent named-entity recognition. Yet
like all learning models, these base models can and do
reach certain limits that other models are less suscepti-
ble to (despite which, boosting has typically been used
for the final stage in NLP systems). This holds even af-
ter careful feature engineering to compensate is carried
out. Error analysis for this task indicated that one of the
major practical limitations of the model was that only a
small number of conjunctions of features could be feasi-
bly searched during boosting.

This type of phenomenon in fact occurs frequently,
over a wide range of language processing tasks. Some
systems attempt to compensate usingad hocvoting meth-
ods combining multiple base models, but this can lead
to unpredictable results that often do not address the un-
derlying causes of the remaining errors. The question
is therefore how to systematically correct errorsafter a
high-accuracy base model such as boosting has done its
best.



NTPC combines a template-driven error correction
learning mechanism with cross-validation style n-fold
partitioning of datasets generated by the base model.
The error correction mechanism possesses similarities
in some theoretical respects to both decision lists and
tranformation-based learning, but not with regard to their
conventional uses. The n-fold partitioning setup is a form
of stacking, but again not in a form typically used in NLP.
We discuss the motivation and evidence for the necessity
of the differences.

NTPC owes its leverage to (1) being able to ex-
plore a much wider range of conjunctive hypotheses
than the base model, owing to its template-driven (and
thus, template-constrained) hypothesis generator, (2) be-
ing able to observe right contexts not knowable to the
base model, and (3) being extremely conservative via the
combination of n-fold partitioning and zero error toler-
ance.

In the following sections, we first give the formal def-
inition of the NTPC model. We then describe the ex-
perimental setup of the eight different tasks used to test
NTPC, and discuss the relations to previous work. After
presenting overall results, we identify and analyze some
of the key theoretical characteristics that allow NTPC to
perform better than other base models, and present the
corresponding empirical confirmation to support these
claims.

2 Error Correction in Extreme Operating
Ranges

Several conditions must be true for an error correction
model to be effective at its task. This is even more the
case when the base model is state-of-the-art and already
high-performing. The error correction model must be:

• Biased differently: The corrector must be able to
capture phenomena which were not learned by the
base model – therefore it must have characteristics
that vary significantly from the base model.

• Extremely risk-averse: The goal of an error correc-
tor is to achieve performancegainson a base learner.
Therefore, one of the basic requirements is that it
should only correct existing errors, and not intro-
duce any new ones by miscorrecting accurate pre-
dictions.

• Extremely reliable: The error corrector works in
ranges where errors are far and few in between. As
a result, it needs to be able to identify valid error
patterns, as opposed to noise-induced abberations.

NTPC is designed to fulfill the above requirements.
The following will give a description of the model and
discuss the various design issues with respect to the fore-
going design requirements.

Figure 1: Piped architecture with n-fold partitioning.

The inputs to NTPC are (1) a set of rule templates
which describe the types of rules that it is allowed to hy-
pothesize, (2) a single base learning model (the example
in this paper being an AdaBoost.MH model), and (3) an
annotated training set.

Figure 1 shows the architecture of NTPC. The train-
ing set is partitionedn times in order to trainn base
models. Each base model is evaluated on its correspond-
ing held-out validation set, and the labelledn validation
sets are then recombined to create the training set forEr-
ror Corrector Leaner. The Error Corrector learns a list
of rules which are generated from a given set of tem-
plates:

R = {r| r ∈ H ∧ τ (r) > τmin ∧ ε (r) = 0} (1)

τ(r) =
∑X

j=1

∑
r(xj ,ŷj) 6=∅

δ(r(xj , ŷj), yj) (2)

ε(r) =
∑X

j=1

∑
r(xj ,ŷj) 6=∅

1− δ(r(xj , ŷj), yj)(3)

whereX is a sequence ofX training examplesxi, Y is
a sequence of reference labelsyi for each example re-
spectively,Ŷ is a sequence of labelŝyi as predicted by
the base model for each example respectively,H is the
hypothesis space of valid rules implied by the templates,
andτmin is a confidence threshold.τmin is set to a rel-
atively high value (say 15), which implements the re-
quirement of high reliability.R is subsequently sorted



by theτi value of each ruleri into an ordered list of rules
R∗ = (r∗0, . . . , r

∗
i−1).

The evaluation phase is depicted in the lower portion of
Figure 1. The test set is first labeled by the base model.
The error corrector’s rulesr∗i are then applied in the order
of R∗ to the evaluation set. The final classification of
a sample is then the classification attained when all the
rules have been applied. This differs from the similar-
spirited decision list model (Rivest, 1987).

3 Experiments

To verify the hypotheses underlying the design of NTPC,
we performed a series of experiments applying NTPC
to eight different named entity recognition (NER) mod-
els, for various tasks and languages. The data used was
from the shared tasks of the CoNLL 2002 and 2003 con-
ferences (Tjong Kim Sang, 2002)(Tjong Kim Sang and
Meulder, 2003), which evaluated NER in Spanish, Dutch,
English and German. The data consisted of two subsets
in which named entities had been manually annotated.

3.1 Previous Work

Boosting (Freund and Schapire, 1997), at present one of
the most popular machine learning techniques, is based
on the idea that a set of many simple but moderately weak
classifiers can be combined to create a single highly accu-
rate strong classifier. It has the advantage of being able to
handle large numbers of sparse features, many of which
may be irrelevant or highly interdependent. This would
make it appear to be well suited for NLP tasks which of-
ten exhibit these characteristics.

In our experiments, we construct a high-performance
base model based on AdaBoost.MH, (Schapire and
Singer, 2000), the multi-class generalization of the orig-
inal boosting algorithm, which implements boosting on
top of decision stump classifiers (decision trees of depth
one).

Boosting has been successfully applied to several NLP
problems. In these NLP systems boosting is typically
used as the ultimate stage in a learned system. For ex-
ample, Schapire and Singer (2000) applied it to Text Cat-
egorization while Escuderoet al.(2000) used it to ob-
tain good results on Word Sense Disambiguation. More
closely relevant to the experiments described here in, two
of the best-performing three teams in the CoNLL-2002
Named Entity Recognition shared task evaluation used
boosting as their base system (Carreraset al., 2002)(Wu
et al., 2002).

However, precedents for improving performanceafter
boosting are few. At the CoNLL-2002 shared task ses-
sion, Tjong Kim Sang (unpublished) described an exper-
iment using voting to combine the NER outputs from the
shared task participants which, predictably, produced bet-
ter results than the individual systems. A couple of the in-
dividual systems were boosting models, so in some sense
this could be regarded as an example. We began prelim-

inary investigation of methods based on error correction
for the CoNLL-2003 shared task (Wuet al., 2003).

Tsukamoto et al.(2002) used piped AdaBoost.MH
models for NER. Their experimental results were some-
what disappointing, but this could perhaps be attributable
to various reasons including the feature engineering or
not using cross-validation sampling in the stacking.

The AdaBoost.MH base model’s high accuracy sets a
high bar for error correction. Aside from brute-forceen
massevoting of the sort at CoNLL-2002 described above,
we do not know of any existing post-boosting models that
improve rather than degrade accuracy. We aim to further
improve performance, and propose using a piped error
corrector.

4 Results

Table 1 presents the results of the boosting-only base
model versus the NTPC-enhanced models on the eight
different named-entity recognition models, using differ-
ent tasks and languages. For each task/language com-
bination, the top row shows the base model (AdaBoost)
result, and the bottom row shows the result of the piped
system.

The evaluation uses the standard Precision/Recall/F-
Measure metrics:

Precision =
num of correctly proposed NEs

num of proposed NEs

Recall =
num of correct proposed NEs

num of gold standard NEs

F-measureβ =
(β2 + 1)× Precision× Recall

β2 × Precision+ Recall

The results in the table show that boosting already sets
the bar very high for NTPC to improve upon. Neverthe-
less, NTPC manages to achieve a performance improve-
ment onevery task/language combination. This holds
true across all languages—from English, on which the
baseline accuracy is high to begin with; to German, on
which the boosting model performs the worst.

We now identitfy and discuss some of the key charac-
teristics of NTPC that contribute to its effectiveness.

4.1 Templated Hypothesis Generation

One of the inputs to NTPC is a set of pre-defined tem-
plates. These templates are formed from conjunctions of
basic features such as part-of-speech, lexical identity and
gazetteer membership, and may be as simple as “lexical
identity of the current word AND the part-of-speech of
the previous word”, or as complex as “capitalization in-
formation of the previous, current and next words AND
the lexicon and gazetteer membership statuses of the cur-
rent word AND the current (i.e. most recent) class la-
bel of the current word.” The rule hypotheses are gener-
ated according to these templates, as such, the templates
are usually motivated by linguistically informed expecta-
tions.



Table 1: NTPC consistently yields further F-measure gains on all eight different high-accuracy NER base models,
across every combination of task and language.

Model Task Language Experiment Precision Recall F-Measure1

M1 NE Bracketing Dutch M1 87.27 91.48 89.33
M1 + NTPC 87.44 92.04 89.68

M2 NE Bracketing English M2 95.01 93.98 94.49
M2 + NTPC 95.23 94.05 94.64

M3 NE Bracketing German M3 83.44 65.86 73.62
M3 + NTPC 83.43 65.91 73.64

M4 NE Bracketing Spanish M4 89.46 87.57 88.50
M4 + NTPC 89.77 88.07 88.91

M5 NE Classification + Bracketing Dutch M5 70.26 73.64 71.91
M5 + NTPC 70.27 73.97 72.07

M6 NE Classification + Bracketing English M6 88.64 87.68 88.16
M6 + NTPC 88.93 87.83 88.37

M7 NE Classification + Bracketing German M7 75.20 59.35 66.34
M7 + NTPC 75.19 59.41 66.37

M8 NE Classification + Bracketing Spanish M8 74.11 72.54 73.32
M8 + NTPC 74.43 73.02 73.72

The advantage of using hypotheses which are
template-driven is that it allows the user to “tune” the
system by writing templates which specifically target ei-
ther the task at hand, or error patterns which are fre-
quently committed by the base learner. They can also
be used to prevent the error corrector from wasting time
and memory by excluding rule templates which would be
useless or overly trivial. In addition, these rule hypothe-
ses are also often more complex and sophisticated than
what the base models (in our case, decision stumps from
AdaBoost.MH) can handle.

Empirical Confirmation To judge the contribution of
templated hypothesis generation, we examine the top
rules learned for each language. The following shows
several example rules which are representative of those
learned by NTPC.

• German rule 2: (if the current word is currently
labeled as part of a PERSON name, but the word
“pradesh” follows in one of the succeeding three
words, make it part of a LOCATION name)

ne 0=I-PER
word:[1,3]=pradesh
=> ne=I-LOC

• Spanish rule 3: (if the current word and the previous
word are both uppercased but don’t start a new sen-
tence, and the following word is lowercased, and the
current word is not in the lexicon nor in the gazetteer
and is currently not part of a named entity, make it
part of an ORGANIZATION name)

wcaptype 0=noneed-firstupper
wcaptype -1=noneed-firstupper

wcaptype 1=alllower
captypeLex 0=not-inLex
captypeGaz 0=not-inGaz
ne 0=O
=> ne=I-ORG

• Dutch rule 1: (if the current word is “de”, labeled as
part of a PERSON’s name and is uppercased but is
the first word in a sentence, it should not be part of
a named-entity)

ne 0=I-PER
word 0=de
captype 0=need-firstupper
=> ne=O

The templates for these rules were all written with the
base learner errors in mind, and thus contain highly com-
plex conjunctions of features. It is a valid question to ask
whether it is possible to add these conjunctive features to
the base AdaBoost learner as additional decision stump
features. This was indeed attempted, but AdaBoost was
not able to handle the combinatorial explosion of feature-
value pairs generated as a result.

4.2 Sensitivity to Right Context

One of NTPC’s advantages over the base model is its abil-
ity to “look forward” to the right context. The problem
for many NLP tagging and chunking models, where the
unit of processing is a sentence, is that the text is pro-
cessed from left-to-right, with the classifier deciding on
the class label for each word before moving onto the next
one. The result is that when features are extracted from
the corpus for a particular word, the only class labels that
can be extracted as features are those from the preceding



(left-context) words. Since the words are labeled in or-
der, the words that come later in the order (those in the
right context) are not labeled yet, and as such, their labels
cannot be used as features.

NTPC deals with this problem since the base model
has already assigned a set of fairly accurate labels to all
the words in the corpus. The error corrector has access
to all these labels and can use them as word features as it
deems necessary.

Empirical Confirmation Our experiments confirmed
that NTPC’s ability to include right context features into
its rules helped it outperform the base model. On aver-
age, 2-3 of the top ten rules learned for each language
were right-context sensitive. The following shows an ex-
ample of such a rule:

• Dutch rule 6: (if the current word is currently la-
beled as part of a PERSON’s name, and the next
word does not contain any uppercase characters and
is currently not part of any named entity, take the
current word out of the PERSON’s name)

ne 0=I-PER
ne 1=O
captype 0=alllower
=> ne=O

4.3 N-fold Piping

The n-fold partitioning and “reconstitution” of the train-
ing set for NTPC’s error corrector is a crucial step for
NTPC’s error corrector. The highly accurate labels gen-
erated by the base model are not as trivial and harmless as
they appear—in fact, their presence results in very sparse
data for the error corrector to learn from, and makes it
very hard for the error corrector to generalize. If the n-
fold partitioning step were omitted from the NTPC sys-
tem, it would cause the error corrector to go astray easily.
This is unlike the case of, say, transformation-based tag-
ging, in which the training set is partitioned just once, as
the poor initial state of the data actually serves to provide
a strong bias that forces the learner to generalize across
many examples. For this reason, it is important to cor-
rectly generate the n-fold cross validation partition sets
with the base model. However, this is a time-consuming
step, which may explain why it seems to be omitted from
NLP models.

Empirical Confirmation The n-fold piping is a com-
plicated process and it is valid to ask whether this is actu-
ally necessary in practice. To test this, four experiments
were performed, where the trained base model was used
directly to relabel the training data. This data, together
with the reference labels, was then provided to the error
corrector as training data.

Figure 2 shows the results of the experiments. The
stopping point for training (whenτ (r) < τmin) is de-
noted by the short vertical bar on each NTPC perfor-
mance curve. The high performance of the base learner

Figure 2: Performance improvement is not reliably ob-
tained without n-fold partitioning. (x-axis = number of
rules learned, y-axis = F-Measure; bold = NTPC, dashed
= without n-fold partitioning)

on its own training datacreates a very smallτ (r) at the
start of training process—and as a result,zeroerror cor-
recting rules are learned. It is possible to ignore theτmin

constraint and learn rules with very lowτ (r) (the dashed
lines show the performance of these rules). However,
since these rules are mostly of dubious quality and also
apply far and few in between, in most cases, they will not
improve performance, and may even cause more errors
to result—and it is not possible to reliably predict when
a performance improvement will happen. In contrast,
NTPC will alwaysgive a performance improvement.

4.4 Zero Error Tolerance

One of the most extreme decisions in the NTPC was
the ε (r) = 0 condition inError Corrector Learner. In
effect, this means that NTPC allows zero tolerance for
noise and is overwhelmingly conservative about making
any changes. The reason for this is, as an errorcorrector,
NTPC has to be extremely careful not to introduce new
errors. Since we have no information on the certainty of
the base model’s predictions, we assume that the training
and testing corpora are drawn from the same distribution.
This would mean that if a rule makes a mistake on the
training corpus, it would be similarly likely to make one
on the test corpus. Thus, to avoid over-eagerly miscor-
recting the base model’s predictions, the error corrector
was designed to err on the side of caution and not make
any corrections unless it has extremely high confidence
that whatever it does will not cause any additional harm.

There are some structural similarities between NTPC
and methods such as decision list learning (Rivest, 1987)
and transformation-based learning (Brill, 1995), and
some of the design decisions of NTPC may seem extreme
when compared to them. However, these methods were
not designed to be run on top of high-performing base
models. A traditional rule list which is working on a very



Figure 3: NTPC’s zero tolerance condition yields less
fluctuation and generally higher accuracy than the relaxed
tolerance variations, in bracketing experiments. (x-axis
= number of rules learned, y-axis = F-Measure; bold =
NTPC, dashed = relaxed tolerance)

Figure 4: NTPC’s zero tolerance condition yields less
fluctuation and generally higher accuracy than the relaxed
tolerance variations, in bracketing + classification exper-
iments. (x-axis = number of rules learned, y-axis = F-
Measure; bold = NTPC, dashed = relaxed tolerance)

poorly labelled data set may be able to justify trading off
some corrections with some mistakes, provided that the
overall change in accuracy is positive. NTPC, on the
other hand, is designed for situations in which the base
accuracy of the initial data is already very high to begin
with. With errors so few and far at hand, the sparse data
problem is exacerbated. Furthermore, an error correction
algorithm should, at the very least, not create more errors
than it started out with, which is a valid argument on the
side of being conservative. Overall, NTPC’s approach
and design decisions are well-justified when the details
of the task at hand are considered.

Empirical Confirmation The final issue behind
NTPC’s design is theε (r) = 0 condition in Er-

ror Corrector Learner. Considering that algorithms such
as decision lists and transformation-based larning allow
for some degree of error in their decisions, this seems
like an overly extreme decision. Figures 3 and 4 show
results of experiments which compare NTPC against four
other systems that allow relaxedε (r) ≤ εmax conditions
for various εmax ∈ {1, 2, 3, 4,∞}. The system that
only considers net performance improvement—i.e.
εmax = ∞, as transformation-based learning would
have done—gets the worst performance in every case.
Overall, the most accurate results are achieved by keep-
ing ε (r) = 0—which also achieves the most consistent
results over time (number of rules learned). This bears
out our hypothesis for keeping a zero error tolerance
design.

5 Conclusion

We have introduced a general conservative error-
correcting model,N-fold Templated Piped Correction
(NTPC) that, unlike other existing models, can reliably
deliver small but consistent gains on the accuracy of even
high-performing base models on high-dimensional tasks,
with little risk of accidental degradation. We have given
theoretical rationales and empirical evidence to show that
the various design parameters underlying NTPC are es-
sential, including (1) easily customizable template-driven
hypothesis generation, (2) sensitivity to right context, (3)
n-fold piping, and (4) zero error tolerance. The resulting
method is robust and should be well suited for a broad
range of sequential and classification NLP tasks such as
bracketing and disambiguation.
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