
16
Alignment

Dekai Wu
The Hong Kong University of
Science and Technology

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
16.2 Definitions and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Alignment • Constraints and Correlations • Classes of Algorithms
16.3 Sentence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Length-Based Sentence Alignment • Lexical Sentence Alignment •
Cognate-Based Sentence Alignment • Multifeature Sentence Alignment •
Comments on Sentence Alignment

16.4 Character, Word, and Phrase Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Monotonic Alignment for Words • Non-Monotonic Alignment for
Single-Token Words • Non-Monotonic Alignment for Multitoken Words
and Phrases

16.5 Structure and Tree Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Cost Functions • Algorithms • Strengths and Weaknesses of Structure
and Tree Alignment Techniques

16.6 Biparsing and ITG Tree Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Syntax-Directed Transduction Grammars (or Synchronous CFGs) •
Inversion Transduction Grammars • Cost Functions • Algorithms •
Grammars for Biparsing • Strengths and Weaknesses of Biparsing and
ITG Tree Alignment Techniques

16.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

16.1 Introduction

In this chapter, we discuss the work done on automatic alignment of parallel texts for various purposes.
Fundamentally, an alignment algorithm accepts as input a bitext and produces as output a bisegmentation
relation that identifies corresponding segments between the texts. A bitext consists of two texts that are
translations of each other.∗ Bitext alignment fundamentally lies at the heart of all data-driven machine
translation methods, and the rapid research progress on alignment since 1990 reflects the advent of
statistical machine translation (SMT) and example-based machine translation (EBMT) approaches. Yet
the importance of alignment extends as well to many other practical applications for translators, bilingual
lexicographers, and even ordinary readers.

∗ In a “Terminological note” prefacing his book, Veronis (2000) cites Alan Melby pointing out that the alternative term
parallel text creates an unfortunate and confusing clash with the translation theory and terminological community, who
use the same term instead to mean what NLP and computational linguistics researchers typically refer to as non-parallel
corpora or comparable corpora—texts in different languages from the same domain, but not necessarily translations of each
other.
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Automatically learned resources for MT, NLP, and humans.
Bitext alignment methods are the core of many methods for machine learning of language
resources to be used by SMT or other NLP applications, as well as human translators and
linguists. The side effects of alignment are often of more interest than the aligned text itself.
Alignment algorithms offer the possibility of extracting various sorts of knowledge resources,
such as (a) phrasal bilexicons listing word or collocation translations; (b) translation examples
at the sentence, constituent, and/or phrase level; or (c) tree-structured translation patterns such
as transfer rules, translation frames, or treelets. Such resources constitute a database that may
be used by SMT and EBMT systems (Nagao 1984), or they may be taken as training data for
further machine learning to mine deeper patterns. Alignment has also been employed to infer
sentence bracketing or constituent structure as a side effect.

Biconcordances.
Historically, the first application for bitext alignment algorithms was to automate the production
of the cross-indexing for bilingual concordances (Warwick and Russell 1990; Karlgren et al.
1994; Church and Hovy 1993). Such concordances are consulted by human translators to
find the previous contexts in which a term, idiom, or phrase was translated, thereby helping
the translator to maintain consistency with preexisting translations, which is important in
government and legal documents. An additional benefit of biconcordances is a large increase
in navigation ease in bitexts.

Bitext for readers.
Aligned bitexts, in addition to their use in translators’ concordances, are also useful for bilingual
readers and language learners.

Linked biconcordances and bilexicons.
An aligned bitext can be automatically linked with a bilexicon, providing a more effective inter-
face for lexicographers, corpus annotators, as well as human translators. This was implemented
in the BICORD system (Klavans and Tzoukermann 1990).

Translation validation.
A word-level bitext alignment system can be used within a translation checking tool that
attempts to automatically flag possible errors, in the same way that spelling and style checkers
operate (Macklovitch 1994). The alignment system in this case is primed to search for deceptive
cognates (faux amis) such as library/librarie in English and French.

A wide variety of techniques now exist, ranging from the most simple (counting characters or words)
to the more sophisticated, sometimes involving linguistic data (lexicons) that may or may not have
been automatically induced themselves. Some techniques work on precisely translated parallel corpora,
while others work on noisy, comparable, or nonparallel corpora. Some techniques make use of apparent
morphological features, while others rely on cognates and loan-words; of particular interest is work
done on languages that do not have a common writing system. Some techniques align only shallow,
flat chunks, while others align compositional, hierarchical structures. The robustness and generality of
different techniques have generated much discussion.

Techniques have been developed for aligning segments at various granularities: documents, para-
graphs, sentences, constituents, collocations or phrases, words, and characters, as seen in the examples
in Figure 16.1. In the following sections, we first discuss the general concepts underlying alignment
techniques. Each of the major categories of alignment techniques are considered in turn in subsequent
sections: document-structure alignment, sentence alignment, alignment for noisy bitexts, word alignment,
constituent and tree alignment, and biparsing alignment.

We attempt to use a consistent notation and conceptual orientation throughout. Particularly when
discussing algorithms, we stick to formal data constructs such as “token,” “sequence,” and “segment,”
rather than linguistic entities. Many algorithms for alignment are actually quite general and can often
be applied at many levels of granularity. Unfortunately, this is often obscured by the use of linguistically
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Kâtip dan miş gösleri mahmur

(b) Turkish–English character/word/phrase alignment

Uyku Uyan

The scribe had woken up from his sleep ,

,

with sleepy eyes

10

11 7 22
(a) Sentence/paragraph alignment

14 15 4

30 15 12

?

1 to 1 1 to 2 1 to 1 1 to 1

0 to 1

?

FIGURE 16.1 Alignment examples at various granularities.

loaded terms such as “word,” “phrase,” or “sentence.” For these reasons, some techniques we discuss may
appear superficially quite unlike the original works from which our descriptions were derived.

16.2 Definitions and Concepts

16.2.1 Alignment

The general problem of aligning a parallel text is, more precisely, to find its optimal parallel segmentation
or bisegmentation under some set of constraints:

Input.
A bitext (e, f). Assume that the vector e contains a sequence of T tokens e0, . . . , eT−1 and E is
the set {0, 1, 2, . . . , T − 1}. Similarly, the vector f contains a sequence of V tokens f0, . . . , fV−1
and F is the set {0, 1, 2, . . . , V − 1}.∗ When the direction of translation is relevant, f is the input
language (foreign) string, and e is the output language (emitted) string.†

∗ We use the following notational conventions: bold letters are vectors, calligraphic letters are sets, and capital (non-bold)
letters are constants.

† The e and f convention dates back to early statistical MT work where the input foreign language was French and the output
language emitted was English.



370 Handbook of Natural Language Processing

S΄

V˝
V΄

N΄
N

PP

S

English–Chinese character/word/phase tree alignment(d)

The

The authority will be accountable to

English–Chinese character/word/phase alignment(c)

the financial secretary .

 authority will be accountable to the financial secretary .

FIGURE 16.1 (continued)

Output.
A bisegmentation of the bitext, designated by a set A of bisegments, where each bisegment
(p, r) couples an emitted segment p to a foreign segment r and often can instead more con-
veniently be uniquely identified by its span pair (s, t, u, v). Any emitted segment p has a span
span(p) = (s, t) that bounds the passage es..t formed by the subsequence of tokens es, . . . , et−1
where 0 ≤ s ≤ t ≤ T. Similarly, any foreign segment r has a span span(r) = (u, v), which
bounds the passage fu..v formed by the subsequence of tokens fu, . . . , fv−1 where 0 ≤ u ≤ v ≤ V .
Conversely, we write p = seg(s, t) and r = seg(u, v) when the span uniquely identifies
a segment. Otherwise, for models that permit more than one segment to label the same
span, we instead write segs(s, t) or segs(u, v) to denote the set of segments that label the
span.

Note that a bisegmentation inherently defines two monolingual segmentations, on both of the
monolingual texts e and f .
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Where is

English–Chinese character/word/phase alignment(e)

secretarythe of finance when needed ?

(f) English–Chinese character/word/phase tree alignment

Where secretarythe of finance when needed ?is

FIGURE 16.1 (continued)

16.2.1.1 Monotonic Alignment

The term “alignment” has become something of a misnomer in computational linguistics. Technically, in
an alignment the coupled passages must occur in the same order in both texts, that is, with no crossings.
Many alignment techniques have their roots in speech recognition applications, where acoustic waveforms
need to be aligned to transcriptions that are of course in the same order. In bitext research, the term
“alignment” originally described the reasonable approximating assumption that paragraph and sentence
translations always preserve the original order.

However, “word alignment” was subsequently co-opted to mean coupling of words within sentences,
even when word-coupling models do not assume that order is monotonically preserved across translation.
Since this permits permutations where the word segments are reordered in translation, properly speaking,
such a non-monotonic “alignment” is rather a bisegmentation, which can be seen as a (partial) binary
relation from the segments es..t to the segments fu..v. To avoid confusion, we will use the term monotonic
alignment or monotone alignment whenever we mean “alignment” in its proper sense.
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16.2.1.2 Disjoint (Flat) Alignment

As shown in Figure 16.1a through c and e, a common type of alignment is the simple, flat case of
disjoint alignment where all segments are restricted to be disjoint in both languages, meaning that no two
segments es..t and es′ ..t′ participating in the alignment overlap and, likewise, no two segments es..t and es′ ..t′
participating in the alignment overlap. That is, for any two bisegments (s, t, u, v) and (s′, t′, u′, v′), either
s ≤ t′ or t ≤ s′, and either u ≤ v′ or v ≤ u′.

In the simplest case of disjoint alignment where every segment is exactly one token long, i.e., where
t − s = 1 and v − u = 1, then A can represent a non-total many-to-many map from E to F .

16.2.1.3 Compositional (Hierarchical) Tree Alignment

Another common type of alignment is the more general, hierarchical case of compositional alignment or
tree alignment where smaller bisegments may be nested within larger bisegments, as shown in Figure 16.1d
and f. The simplest case is to align sentences within paragraphs that are themselves aligned. A more
complex case is to couple nested constituents in sentences.

More precisely, two segments es..t and es′ ..t′ participating in the alignment may be either disjoint or
nested, i.e., for any two bisegments q = (s, t, u, v) and q′ = (s′, t′, u′, v′), either q and q′ are disjoint in E
so that s ≤ t′ or t ≤ s′, or they are nested so that s ≤ s′ ≤ t′ ≤ t or s′ ≤ s ≤ t ≤ t′; and similarly for F .

A compositional alignment forms a tree, where the external leaf nodes are a set of disjoint (bi)segments,
and internal nodes are bisegments whose children are nested (bi)segments.

16.2.1.4 Subtokens and Subtokenization

Some models are designed to align tokens primarily at one granularity, yet the tokens can be further
broken into even finer pieces for secondary purposes. Tokens, after all, are just segments at a specific
level of disjoint flat segmentation that has been designated as primitive with respect to some algorithm.
Subtokenization is especially common with compositional and hierarchical alignments, in applications
such as paragraph/sentence alignment or tree-structured word alignment.

Intuitively, e′ is a subtokenization of e if it refines the tokens in e into finer-grained subtokens (Guo
1997). More precisely, let the tokens in e and e′ be both defined on some primitive alphabet �. Let G(e)
be the string generation operation that maps any token es into the string in �∗ that the token represents,
and assume both e and e′ generate the same string, i.e., G(e0..T) = G(e′

0..T′). Then e′ is a subtokenization
of e if every token es corresponds to the concatenation of one or more tokens e′

s′ ..t′ , i.e., G(es) = G(e′
s′ ..t′).

16.2.1.5 Bijective, Injective, Partial, and Many-to-Many Alignments

When we are speaking with respect to particular monolingual disjoint segmentations of (both sides of) a
bitext, a few other concepts are often useful.

Where the pair of monolingual segmentations comes from depends on our assumptions. In some
situations, we might assume monolingual segmentations that are fixed by monolingual preprocessors
such as morphological analyzers or word/phrase segmenters.

In other situations, we may instead assume whatever monolingual segmentations result from aligning
a bitext. In the trivial case, we can simply assume the two monolingual segmentations that are inher-
ently defined by the alignment’s output bisegmentation. A more useful case, under compositional tree
alignment, is to assume the monolingual segmentations imposed by the leaf nodes of the tree.

Whatever assumptions we use to arrive at a pair of monolingual segmentations, then, in a 1-to-1
alignment or bijective alignment, every segment in each text is coupled to exactly one segment in the
other text. A bijective alignment is total, meaning that no segment remains uncoupled. In practice,
bijective alignments are almost never achievable except at the chapter/section granularity, or perhaps at
the paragraph granularity for extremely tight translations. Ordinarily, we aim for a partial alignment, in
which some segments remain uncoupled singletons; and/or we aim for a many-to-many alignment, in
which segments may be coupled to multiple segments. Another often-useful approximating assumption
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is that the alignment is a (partial) function from a language-0 position to a language-1 position (but not
necessarily vice versa). Such a relation is a many-to-1 or right-unique alignment and is written v = a′(t).
Similarly, a 1-to-many or left-unique or injective relation is written t = a(v). A bijective 1-to-1 alignment
is injective in both directions, i.e., both left-unique and right-unique. For convenience, we will sometimes
freely switch between the set notation A and the function notation a(·) to refer to the same injective
alignment.

Unless we specify otherwise, “alignments” are non-monotonic, many-to-many, partial, and non-
compositional.

16.2.2 Constraints and Correlations

Every alignment algorithm inputs a bitext and outputs a set of couplings. The techniques are nearly all
statistical in nature, due to the need for robustness in the face of imperfect translations. Much of the
variation between techniques lies in the other kinds of information—constraints and correlations—that
play a role in alignment. Some alignment techniques require one or more of these as inputs, and bring
them to bear on the alignment hypothesis space. Others derive or learn such kinds of information as
by-products. In some cases the by-products are of sufficient quality as to be taken as outputs in their own
right, as mentioned above. Important kinds of information include the following.

Bijectivity constraint
Bijectivity is the assumption that the coupling between passages is 1-to-1 (usually in the sense
of partial bijective maps, which allow some passages to remain uncoupled). This assumption
is inapplicable at coarser granularities than the sentence-level. However, it is sometimes useful
for word-level alignment, despite being clearly inaccurate. For example, consider the case
where the words within a sentence pair are being aligned (Melamed 1997). If only one word
in the language-0 sentence remains uncoupled and similarly for the language-1 sentence, then
the bijectivity assumption implies a preference for coupling those two words, by the process
of elimination. Such benefits can easily outweigh errors caused by the inaccuracies of the
assumption.

Monoticity constraint
This assumption reduces the problem of coupling bitext passages to a properly monotonic
alignment problem: coupled passages occur in the same order in both sides of the bitext.

Segment constraints (disjoint and compositional)
A segment constraint prevents an alignment algorithm from outputting any bisegment that
crosses the monolingual segment’s boundaries. That is, if a segment es..t is taken as a constraint,
then for any bisegmentation (s′, t′, u′, v′) that forms part of an alignment, either (s, t) and
(s′, t′) are disjoint in e so that s ≤ t′ or t ≤ s′, or they are nested so that s ≤ s′ ≤ t′ ≤ t or
s′ ≤ s ≤ t ≤ t′.

Two cases of monolingual segment constraints are very common. A disjoint segmentation
lets algorithms for disjoint (flat) alignment focus on a coarser granularity than the raw token
level; for example, for sentence alignment it is usual to first break the input texts into sentence
segments. On the other hand, a compositional segmentation of one or both of the monolingual
texts can be obtained by monolingually parsing the text(s), imposing the resulting nested
segments as constraints.

Bisegment constraints (anchor and slack constraints)
An anchor is a known bisegment, i.e., a pair of segments (or boundaries, in the case of zero-
length segments) that is a priori known to be coupled, and is a hard constraint. As shown in
Figure 16.2, anchor constraints are bisegment constraints that can be thought of as confirmed
positions within the matrix that represents the alignment candidate space. The special boundary
cases of the bisegments (0, 0, 0, 0) and (T, T, V , V) are the origin and terminus, respectively.
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Language 1
passages

Language 2
passages
D

C

Terminus

Origin

FIGURE 16.2 Anchors.

Language 1
passages

Language 2
passages

D

C
FIGURE 16.3 Slack bisegments between anchors.

When taken together with the monotonicity constraint, a set of anchors divides the problem
into a set of smaller, independent alignment problems. Between any two anchors are passages
whose alignment is still undetermined, but whose segment couplings must remain inside
the region bounded by the anchors. As shown in Figure 16.3, the correct alignment could
take any (monotonic) path through the rectangular region delimited by the anchors. We call
the candidate subspace between adjacent anchors a slack bisegment. A set of slack bisegments
can be used either as bisegment constraints (slack constraints), as for example described below,
or to define features.

There are two common cases of anchor/slack bisegment constraints:

1. End constraints. Most techniques make the assumption that the origin and terminus are
anchor boundaries. Some techniques also assume a coupling between the first and last
passages.

2. Incremental constraints. A previous processing stage may produce an alignment of a
larger passage size. If we are willing to commit to the coarser alignment, we obtain a set
of anchor boundaries and/or slack bisegments.

The latter kind of anchor occurs in compositional alignment methods based on iterative refine-
ment schemes, which progressively lay down anchors in a series of passes that gradually restrict
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Language 1
passages

Language 2
passages

D

C

FIGURE 16.4 Banding the slack bisegments using variance.

the alignment candidate space. At the outset, candidate couplings may lie anywhere in the
global (root) slack bisegment comprising the entire rectangular matrix; eventually, they are
restricted to fall within many small local (leaf) slack bisegments. Each slack bisegment between
adjacent anchors is a smaller alignment subproblem that can be processed independently. A
variation on this scheme is hierarchical iterative refinement, which produces a compositional
alignment by performing one pass at each level in a predefined hierarchy of token granularities.
The first pass aligns segments at the coarsest token level (commonly, sections or paragraphs);
this level is chosen so that the total numbers (T and V) of tokens (commonly, paragraphs or
sentences) are small. Committing to the output of this stage yields a bisegmentation that is taken
as the slack bisegment constraints for the next pass, which aligns segments at the next finer
token level (commonly, paragraphs or sentences). This approach is taken so that the alignment
subproblem corresponding to any slack bisegment has small T and V values. The alignment is
refined on each pass until the sentence-level granularity is reached; at each pass, the quadratic
cost is kept in check by the small number of tokens within each slack bisegment (between
adjacent anchors).

Bands
A common heuristic constraint is to narrow the shape of the rectangular slack bisegments
instead into slack bands that more closely resemble bands, as shown in Figure 16.4. We call
this banding. Banding relies on the assumption that the correct couplings will not be displaced
too far from the average, which is the diagonal between adjacent anchors. Different narrowing
heuristics are possible.

One method is to model the variance assuming the displacement for each passage is inde-
pendently and identically distributed. This means the standard deviation at the midpoint of a
T : V bitext is O

√
(T) for the language-0 axis and O

√
(V) for the language-1 axis. Kay and

Röscheisen (1993) approximate this by using a banding function such that the maximum width
of a band at its midpoint is O

√
(T).∗

Another method, due to Simard and Plamondon (1996), is to prune areas of the slack biseg-
ment that are further from the rectangle’s diagonal than some threshold, where the threshold
is proportional to the distance between the anchors. This results in slack bands of the shape in
Figure 16.5.

∗ They do not give the precise function.
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Language 1
passages

Language 2
passages
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C

FIGURE 16.5 Banding the slack bisegments using width thresholds.

Banding has the danger of overlooking correct couplings if there are large differences in
the translations. Kay and Röscheisen (1993) report a maximum displacement of 10 sentences
from the diagonal, in a bitext of 255:300 sentences. However, most bitext, especially in larger
collections, contains significantly more noise. The width of the band can be increased, but at
significant computational expense.

Guides
A heuristic constraint we call guiding, due to Dagan et al. (1993), is applicable when a rough
guide alignment already exists as the result of some earlier heuristic estimate. The preexisting
alignment can be used as a guide to seek a more accurate alignment. Assuming the preexisting
alignment is described by the mapping function a0(v), a useful alignment range constraint is to
define an allowable deviation from a0(v) in terms of some distance d: a language-0 position t is
a possible candidate to couple with a language-1 position v iff

a0(v) − d ≤ t ≤ a0(v) + d (16.1)

This is depicted in Figure 16.6. We denote the set of (s, s + 1, t, t + 1) couplings that meet all
alignment range constraints as B.

Alignment range constraints
Monotonicity, anchors, banding, and guiding are all special cases of alignment range con-
straints. There are many other possible ways to formulate restrictions on the space of allowable
alignments. In general, alignment range constraints play an important role. Some alignment
techniques are actually computationally infeasible without strong a priori alignment range
constraints. Other techniques employ an iterative modification of alignment range constraints,
similar to iterative refinement with anchors.

Bilexicon constraints
A bilexicon holds known translation pairs or bilexemes. In general, machine translation models
work with phrasal bilexicons, that may contain characters, tokens, words, phrases, compounds,
multi-word expressions, or collocations—particularly for non-alphabetic languages where the
difference is not so clear.

The strongest lexeme-coupling constraints come from lexemes (or tokens, including punctua-
tion) that have 1-to-1 deterministic translations. These in effect provide anchors if monotonicity
is assumed. However, the rarity of such cases limits their usefulness.
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Language 1
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Language 2
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FIGURE 16.6 Guiding based on a previous rough alignment.

A bilexicon usually supplies lexical translations that are 1-to-many or many-to-many. The
set of known translations can be used to cut down on the space of candidate couplings. Clearly,
whatever pruning method is used must still allow for unknown word translations, since trans-
lation is not always word-by-word, and since bilexicons have Imperfect coverage (especially in
methods that learn a bilexicon as they perform the alignment).

A weighted bilexicon stores additional information about the degree of correlation or associa-
tion in word pairs. This can be particularly clean in probabilistic alignment techniques. Various
other statistical or ad hoc scores can also be employed.

Cognates
Cognates are word pairs with common etymological roots, for example, the bilexemes
financed:financier or government:gouvernement in English and French. For alphabetic lan-
guages that share the same (or directly mappable) alphabets, it is possible to construct heuristic
functions that compare the spelling of two words or passages. In the simplest case, the func-
tion returns true or false (a decision function), acting like a low-accuracy, easily constructed
bilexicon with low memory requirements. Alternatively, a function that returns a score acts
like a weighted bilexicon. In either case, a cognate function can be used either in place of or in
addition to an alignment bilexicon.

Segment lengths
The lengths of passages at or above the sentence granularity can be strong features for deter-
mining couplings. Most reported experiments indicate that the correlation is relatively strong
even for unrelated languages, if the translation is tight. This means that the utility of this
feature is probably more dependent on the genre than the language pair. Segment lengths are
typically measured in bytes, characters, or simple word tokenizations. Length-based methods
are discussed in Section 16.3.1.

Syntactic parses
Using syntactic information from automatic parsers to improve word alignment accuracy is
increasingly common, for example, as discussed in Sections 16.5 and 16.6.

Language universals
Outside of the relatively superficial features just discussed, relatively little attempt has been made
to bring to bear constraints from theories about language-universal grammatical properties.
One exception is discussed in Section 16.6. Language-universal constraints apply to all (or a
large class) of language pairs, without making language-specific assumptions, and apply at the
sentence and word granularities.
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16.2.3 Classes of Algorithms

Broadly speaking, alignment techniques search for an optimal bisegmentation using (1) dynamic
programming, (2) greedy best-first, (3) discriminative, or (4) heuristic algorithms for constrained
optimization.

Although authors vary greatly on notations and descriptions, the majority of alignment algorithms can
in fact be formulated as search algorithms that attempt to minimize the total cost of A, the entire set of
couplings, subject to some set of constraints:

Cost(A) =
∑

(p,r)∈A
Cost(p, r) (16.2)

Search techniques can be heuristic or exhaustive, and can employ greedy, backtracking, beam, or
exhaustive strategies.

16.3 Sentence Alignment

Sentence level techniques generally adopt a restriction to monotonic alignment, and are applicable to
larger units as well, such as paragraphs and sections. Taking advantage of this, hierarchical iterative
refinement usually works rather well, by first aligning paragraphs, yielding biparagraphs whose internal
sentences can subsequently be aligned.

Broadly speaking, sentence alignment techniques rely on sentence lengths, on lexical constraints and
correlations, and/or on cognates. Other features could no doubt be used, but these approaches appear to
perform well enough.

16.3.1 Length-Based Sentence Alignment

The length-based approach examines the lengths of the sentences. It is the most easily implemented tech-
nique, and performs nearly as well as lexical techniques for tightly translated corpora such as government
transcripts. The overall idea is to use dynamic programming to find a minimum cost (maximum probabil-
ity) alignment, assuming a simple hidden generative model that emits sentences of varying lengths. Purely
length-based techniques do not examine word identities at all, and regard the bitext as nothing more
than a sequence of sentences whose lengths are the only observable feature; Figure 16.7 depicts how the
alignment algorithm sees the example of Figure 16.1a. The length-based approach to sentence alignment
was first introduced by Gale and Church (1991a) and Brown et al. (1991), who describe essentially similar
techniques; a more thorough evaluation is found in Gale and Church (1993).

This is a first example of the most common successful modeling paradigm for all sorts of alignment tasks:
search for an optimal cost alignment that explains the bitext, assuming it was emitted by some underlying
generative model of transduction. The generative model is usually stochastic, so the costs being minimized

Lengths of sentences in the bitext

Language 1: 10

12 14 15 12 11 2

30 15 12

Language 2:

FIGURE 16.7 Example sentence lengths in an input bitext.



Alignment 379

are simply weights representing negative log probabilities. In most cases, the generative models are most
clearly described as transducers (procedural automata) or equivalent transduction grammars∗ (declarative
rule sets), which can be viewed in three ways:

Generation. A transducer or transduction grammar generates a transduction, which is a set of string
translation pairs or bistrings, just as an ordinary (monolingual) language grammar generates a
language, which is a set of strings. In the bilingual case, a transduction grammar simultaneously
generates two strings (e, f) at once, which are translation pairs. The set of all bistrings that can
be generated defines a relation between the input and output languages.

Recognition. A transducer or transduction grammar accepts or biparses all bistrings of a
transduction, just as a language grammar parses or accepts all strings of a language.

Transduction. A transducer or transduction grammar translates or transduces foreign input strings
f to emitted output strings e.

As we shall see, there is a hierarchy of equivalence classes for transductions—just as there is Chomsky’s
hierarchy of equivalence classes for languages. Just as in the monolingual case, there is a tradeoff between
generative capacity and computational complexity: the more expressive classes of transductions are orders
of magnitude more expensive to biparse and train:

MONOLINGUAL BILINGUAL
(Chomsky hierarchy)

regular or finite-state languages regular or finite-state transductions
FSA O(n2) FST O(n4)

or or
CFG SDTG (or synchronous CFG)

that is that is
right regular or left regular right regular or left regular

context-free languages inversion transductions
CFG O(n3) ITG O(n6)

or
SDTG (or synchronous CFG)

that is
binary or ternary or inverting

syntax-directed transductions
SDTG O(n2n+2)

or
(or synchronous CFG)

Fortunately, for length-based sentence alignment, it suffices to model one of the simplest bilingual
classes—finite-state transductions—which can be generated by a finite-state transducer or FST as depicted
in Figure 16.8, or by an equivalent finite-state transduction grammar or FSTG, written as a transduction
grammar that is right regular.† For sentence alignment, the natural tokens that are being aligned are
sentences, but for length-based models, there is a also useful subtokenization at the byte, character, or
simple word level. The model emits bitext as a monotonic series of bisegments, each bisegment being a
short sequence of E emitted sentence tokens in language 0 coupled with a short sequence of F foreign

∗ Also recently called “synchronous grammars.”
† FSTGs may also be written in left regular form.
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1-to-0

Different bisegment output distributions

0-to-1

1-to-1

2-to-1 1-to-2

2-to-2

Different bisegment output distributions

(a) FST model using transition network notation.

...
1-to-1 → [ ei/ε 1-to-0 ] for all segments of subtoken length i in language-0
1-to-1 → [ ε/fj 0-to-1 ] for all segments of subtoken length j in language-1
1-to-1 → [ ei/fj 1-to-1 ] for all 1-to-1 bisegments of subtoken lengths i,j
1-to-1 → [ ei/fj 1-to-2 ] for all 1-to-2 bisegments of subtoken lengths i,j
1-to-1 → [ ei/fj 2-to-1 ] for all 2-to-1 bisegments of subtoken lengths i,j
1-to-1 → [ ei/fj 2-to-2 ] for all 2-to-2 bisegments of subtoken lengths i,j

...
(b) Alternative notation for the same model using FSTG transduction rule notation;

same pattern for 1-to-0, 0-to-1, 2-to-1, 1-to-2, and 2-to-2 rules.

FIGURE 16.8 Equivalent stochastic or weighted (a) FST and (b) FSTG notations for a finite-state bisegment
generation process. Note that the node transition probability distributions are often tied to be the same for all
node/nonterminal types.

sentence tokens in language 1.∗ For example, Figure 16.1a shows one sequence of 1-to-1, 1-to-2, and
0-to-1 bisegments that could have generated the bitext length sequences of Figure 16.7.

Formally, we denote a transducer or transduction grammar by G = (N ,W0, W1,R, S), where N is a
finite set of nodes (states) or nonterminals, W0 is a finite set of words (terminals) of language 0, W1 is a
finite set of words (terminals) of language 1, R is a finite set of transduction rules (which can be written
as either transition rules or rewrite rules), and S ∈ N is the start node (state) or nonterminal. The space
of bisegments (terminal-pairs) X = (W0 ∪ {ε}) × (W1 ∪ {ε}) contains lexical translations denoted x/y
and singletons denoted x/ε or ε/y, where x ∈ W0 and y ∈ W1.

Each node (state) or nonterminal represents one type of bisegment. The usual practice is to allow
bisegment types representing at least the following E-to-F configurations: 0-to-1, 1-to-0, 1-to-1, 1-to-2,
and 2-to-1. Allowing 2-to-2 bisegments in addition is reasonable. It can be convenient to think of these
bisegment types as operations for translating language-0 passages into language-1 passages, respectively:
insertion, deletion, substitution, expansion, contraction, and merger. Bisegments with three or more
sentences in one language are not generally used, despite the fact that 1-to-3, 2-to-3, 3-to-3, 3-to-2, and
3-to-1 sentence translations are found in bitext once in a while. This is because alignment of such passages
using only the sentence length feature is too inaccurate to make the extra parameters and computation
worthwhile. Similarly, it generally suffices to ignore the state history, by tying all states so they share the
same outgoing transition probability distribution, a simple multinomial distribution over the bisegment

∗ Brown et al. (1991) describe this FST as a single-state hidden Markov model (HMM) that emits bisegments (which they
call “beads”). However, the type of bisegment must be stochastically selected each time the state is reached, and then its
output probabilities must be conditioned on the bisegment type. This effectively splits the single state into separate states
for each bisegment type, as described here.
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types that can be estimated from a small hand-aligned corpus. Alternatively, EM can be used to estimate
this distribution simultaneously with the segment length distributions.

The output distribution for each state (i.e., bisegment type) is modeled as a function of its monolingual
segments’ lengths as measured in subtokens (typically bytes, characters, or word subtokens). Given the
bisegment type, the length l0 = t − s of its emitted segment es..t is determined. The length of each
sentence token in the emitted segment is assumed to be independent, and to follow some distribution.
This distribution is implicitly Poisson in the case of Gale and Church (1991b). In Brown et al. (1991),
relative frequencies are used to estimate probabilities for short sentence lengths (up to approximately 80
simple English and French words), and the distribution for longer sentences is fit to the tail of a Poisson.
Since the empirical distribution for short sentences is fairly Poisson-like,∗ these variations do not appear
to have a significant impact.

Finally, the length l1 = v − u of the foreign segment fu..v is determined, by assuming that its difference
from the length of the emitted segment follows some distribution, usually a normal distribution. The
following difference functions are used by Gale and Church (1991b) and Brown et al. (1991), respectively:

δ(l0, l1) = (l1 − l0c)
√

l0s2
(16.3)

δ(l0, l1) = log
l1
l0

(16.4)

Aside from normalizing the mean and variance to one’s arbitrary preference, the only decision is whether
to take the logarithm of the sentence length difference, which sometimes produces a better fit to the
empirical distribution.

These assumptions are sufficient to compute the probability of any bisegment. It is convenient to write
a candidate bisegment as (bisegment-type, s, u) where its emitted segment begins with the sth passage in
e and its foreign segment begins with the uth passage in f (since we assume total disjoint segmentations
in both languages, t and v can be inferred). For instance, a candidate 1-to-2 bisegment that hypothesizes
coupling e31..32 with f36..38 has the estimated probability P̂(1-to-2, 31, 36).

Given this generative model, the actual alignment algorithm relies on dynamic programming (Bellman
1957) to find the maximum probability alignment. For each bisegment, we take Cost(p, r) to be its
negative log probability, and we minimize Equation 16.2 subject to the constraint that the bisegmentation
is bijective, and is a total cover of all sentence tokens in both languages. The recurrence has the structure
of dynamic time-warping (DTW) models and is based on the fact that the probability of any sequence of
bisegments can be computed by multiplying the probability of last bisegment with the total probability
of all the bisegments that precede it. Let the minimum cost (maximum log probability) up to passages
(t, v) be δ(t, v) = logP(e0..t , f0..v) where 0 ≤ t ≤ T and 0 ≤ v ≤ V . The recurrence chooses the best
configuration over the possible types of the last bisegment.

1. Initialization.
δ(0, 0) = 0 (16.5)

2. Recursion.

δ(t, v) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(t,v−1)−log P̂(0-to-1,t,v−1)

δ(t−1,v)−log P̂(1-to-0,t−1,v)
δ(t−1,v−1)−log P̂(1-to-1,t−1,v−1)

δ(t−1,v−2)−log P̂(1-to-2,t−1,v−2)

δ(t−2,v−1)−log P̂(2-to-1,t−2,v−1)

δ(t−2,v−2)−log P̂(2-to-2,t−2,v−2)

(16.6)

Note that the form of the recurrence imposes a set of slope constraints on the time warping.

∗ For example, see Figure 16.4 in Brown et al. (1991).
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The most significant difference between the methods is that the Gale and Church (1991b) method
measures sentence token lengths in terms of number of character subtokens, whereas the Brown et al.
(1991) method uses number of simple English/French word subtokens (as determined by European
language specific heuristics relying primarily on whitespace and punctuation separators). Gale and
Church (1993) report that using characters instead of words, holding all other factors constant, yields
higher accuracy (in their experiment, an error rate of 4.2% for characters as compared to 6.5% for words).
The reasons are not immediately obvious, though Gale and Church (1993) use variance measures to
argue that there is less uncertainty since the number of characters is larger (117 characters per sentence,
as opposed to 17 words). However, these experiments were conducted only on English, French, and
German, whose large number of cognates improve the character length correlation.

Wu (1994) showed that for a large English and Chinese government transcription bitext, where the
cognate effect does not exist, the Gale and Church (1991b) method is somewhat less accurate than for
English, French, and German, although it is still effective. Church et al. (1993) show that sentence lengths
are well correlated for the English and Japanese AWK manuals, but do not actually align the sentences.
We know of no experimental results comparing character and word length methods on non-cognate
languages; the lack of such experiments is in part because of the well-known difficulties in deciding word
boundaries in languages such as Chinese (Chiang et al. 1992; Lin et al. 1992; Chang and Chen 1993; Lin
et al. 1993; Wu and Tseng 1993; Sproat et al. 1994; Wu and Fung 1994).

Bitexts in some language pairs may exhibit highly dissimilar sentence and clause structures, leading to
very different groupings than the simple bisegments we have been considering. For example, although
the sentence byte length correlations are strong in the English–Chinese government transcriptions used
by Wu (1994), Xu and Tan (1996) report that the CNS English–Chinese news articles they use have
very different clause and sentence groupings, and therefore suggest generalizing the bisegments to allow
many-clause-to-many-clause couplings.

In general, length-based techniques perform well for tightly translated bitexts. However, they are
susceptible to misalignment in the case where the bitext contains long stretches of sentences with roughly
equal length, as for example in dialogues consisting of very short utterances, or in itemized lists. One
possible solution is discussed in the section on lexical techniques.

The basic algorithm is O(TV) in both space and time, that is, approximately quadratic in the number
of segments in the bitext. This is prohibitive for reasonably large bitexts. Three basic methods for
circumventing this problem are banding, the hierarchical variant of iterative refinement, and thresholding.

Banding is often a feasible approach since the true alignment paths in many kinds of bitexts lie close
enough to the diagonal as to fall within reasonable bands. However, banding is not favored when the
other two approaches can be used, since they make fewer assumptions about the alignment path.

Hierarchical iterative refinement appears to work well for tightly translated bitexts such as government
transcripts, which are typically organized as one document or section per session. Generally, only a few
passes are needed: document/section (optional), paragraph, speaker (optional), and sentence.

Thresholding techniques prune the δ matrix so that some alignment prefixes are abandoned during
the dynamic programming loop. Many variants are possible. Relative thresholding is more appropriate
than absolute thresholding; the effect is to prune any alignment prefix whose probability is excessively
lower than the most probable alignment prefix of the same length. Beam search approaches are similar,
but limit the number of “live” alignment prefixes for any given prefix length. It is also possible to define
the beam in terms of a upper/lower bounded range (v−, v+), so that the loop iteration that computes the
tth column of δ(t, v) only considers v− ≤ v ≤ v+. This approach is similar to banding, except that the
center of the band is dynamically adjusted during the dynamic programming loop.

Thresholding can cause large warps (deletions, insertions) to be missed. Chen (1993) suggests a resyn-
chronization method to improve the robustness of relative thresholding schemes against large warps,
based on monitoring the size of the “live” prefix set during the dynamic programming loop. If this set
reaches a predetermined size, indicating uncertainty as to the correct alignment prefix, the presence
of a large warp is hypothesized and the alignment program switches to a resynchronization mode. In
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this mode, both sides of the bitext are linearly scanned forward from the current point, seeking rare
words. When corresponding rare words are found in both sides, a resynchronization point is hypothe-
sized. After collecting a set of possible resynchronization points, the best one is selected by attempting
sentence alignment for some significant number of sentences following the candidate resynchronization
point, taking the resulting probability as an indication of the goodness of this resynchronization point.
Resynchronization can improve error rates significantly when the bitext contains large warps.

16.3.2 Lexical Sentence Alignment

The prototypical lexically based sentence alignment technique was proposed by Kay and Röscheisen
(1988) in the first paper to introduce a heuristic iterative refinement solution to the bitext alignment
problem.∗ The method employs banding, and has the structure shown in Algorithm 1.†

Algorithm 1 Lexical Sentence Align
1: Initialize the set of anchor (sentence) alignments A
2: repeat
3: Compute the (sentence alignment) candidate space by banding between each adjacent pair of

anchors
4: Collect word-similarity statistics from the candidate space
5: Build a bilexicon containing sufficiently similar words
6: Collect sentence-similarity statistics from the candidate space, with respect to the bilexicon
7: Add sufficiently confident candidates to the set of alignments A
8: until no new candidates were added to A
9: return A

Although this algorithm can easily be implemented in a straightforward form, its cost relative to lexicon
size and bitext length is prohibitive unless the data structures and loops are optimized. In general, efficient
implementations of the length-based methods are easier to build and yield comparable accuracy, so this
lexical algorithm is not as commonly used.

A notable characteristic of this algorithm is that it constructs a bilexicon as a by-product. Various
criteria functions for accepting a candidate bilexeme are possible, rating either the word pair’s degree of
correlation or its statistical significance. For the correlation between a candidate bilexeme (w, x), Kay and
Röscheisen (1988) employ Dice’s coefficient (van Rijsbergen 1979),

2N(w, x)

N(w) + N(x)
(16.7)

whereas Haruno and Yamazaki (1996) employ mutual information (Cover and Thomas 1991),

log
NN(w, x)

N(w)N(x)
(16.8)

For the statistical significance, Kay and Röscheisen (1988) simply use frequency, and Haruno and
Yamazaki (1996) use t-score:

P(w, x) − P(w)P(x)√
P(w, x)/N

(16.9)

∗ A simplified version of the method was subsequently applied to a significantly larger corpus by Catizone et al. (1989).
† For the sake of clarifying the common conceptual underpinnings of different alignment techniques, our description uses

different terms from Kay and Röscheisen (1988). Roughly, our A is the Sentence Alignment Table, our candidate space is
the Alignable Sentence Table, and our bilexicon is the Word Alignment Table.
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In either case, a candidate bilexeme must exceed thresholds on both correlation and significance scores
to be accepted in the bilexicon.

The bilexicon can be initialized with as many pre-existing entries as desired; this may improve alignment
performance significantly, depending on how accurate the initial anchors are. Even when a good pre-
existing bilexicon is available, accuracy is improved by continuing to add entries statistically, rather than
“freezing” the bilexicon. Haruno and Yamazaki (1996) found that combining an initial seed bilexicon
(40,000 entries from a commercial machine-readable translation dictionary) with statistical augmentation
significantly outperformed versions of the method that either did not employ the seed bilexicon or froze
the bilexicon to the seed bilexicon entries only. Results vary greatly depending on the bitext, but show
consistent significant improvement across the board. Precision and recall are consistently in the mid-90%
range, up from figures in the range of 60.

With respect to applicability to non-Indo-European languages, the Haruno and Yamazaki (1996)
experiments show that the algorithm is usable for Japanese–English bitexts, as long as the Japanese side is
presegmented and tagged. Aside from the variations already discussed, two other modified strategies are
employed. To improve the discriminativeness of the lexical features, an English–Japanese word coupling
is only allowed to contribute to a sentence-similarity score when the English word occurs in only one of
the candidate sentences to align to a Japanese sentence. In addition, two sets of thresholds are used for
mutual information and t-score, to divide the candidate word couplings into high-confidence and low-
confidence classes. The high-confidence couplings are weighted three times more heavily. This strategy
attempts to limit damage from the many false translations that may be statistically acquired, but still
allow the low-confidence bilexicon entries to influence the later iterations when no more discriminative
leverage is available from the high-confidence entries.

It is possible to construct lexical sentence alignment techniques based on underlying generative models
that probabilistically emit bisegments, similar to those used in length-based techniques. Chen (1993)
describes a formulation still using bisegment types with 0-to-1, 1-to-0, 1-to-1, 1-to-2, and 2-to-1 sentence
tokens, but at the same time, a subtokenization level where each bisegment is also viewed as a multiset
of bilexemes. Instead of distributions that govern bisegment lengths, we have distributions governing
the generation of bilexemes. Word order is ignored,∗ since this would be unlikely to improve accuracy
significantly despite greatly worsening the computational complexity. Even with this concession, the
cost of alignment would be prohibitive without a number of additional heuristics. The basic method
employs the same dynamic programming recurrence as Equation 16.6, with suitable modifications to
the probability terms; the quadratic cost would be unacceptable, especially since the number of bilexeme
candidates per bisegment candidate is exponential in the bisegment length. Chen employs the relative
thresholding heuristic, with resynchronization. The probability parameters, which are essentially the
same as for the length-based methods except for the additional bilexeme probabilities, are estimated using
the Viterbi approximation to EM.

Like the Kay and Röscheisen (1988) method, this method induces a bilexicon as a side effect. For the
method to be able to bootstrap this bilexicon, it is important to provide a seed bilexicon initially. This can
be accomplished manually, or by a rough estimation of bilexeme counts over a small manually aligned
bitext. The quality of bilexicons induced in this manner has not been investigated, although related
EM-based methods have been used for this purpose (see below).

The alignment precision of this method on Canadian Hansards bitext may be marginally higher than
the length-based methods. Chen (1993) reports 0.4% error as compared with 0.6% for the Brown et al.
(1991) method (but this includes the effect of resynchronization that was not employed by Brown et al.
(1991)). Alignment recall improves by roughly 0.3%. Since the accuracy and coverage of the induced
bilexicon has not been investigated, it is unclear how many distinct bilexemes are actually needed to
obtain this level of performance improvement. The running time of this method is “tens of times” slower
than length-based methods, despite the many heuristic search approximations.

∗ Similarly, in spirit, to IBM word alignment Model 1, discussed elsewhere.
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To help reduce the running time requirements, it is possible to use a cheaper method to impose an
initial set of constraints on the coupling matrix. Simard and Plamondon (1996) employ a cognate-based
method within a framework similar to SIMR (discussed later) to generate a set of anchors, and then apply
banding.

The word_align method (Dagan et al. 1993) may also be used for lexical sentence alignment, as discussed
in Section 16.4.2.

16.3.3 Cognate-Based Sentence Alignment

For some language pairs like English and French, the relatively high proportion of cognates makes it
possible to use cognates as the key feature for sentence alignment. Simard et al. (1992), who first proposed
using cognates, manually analyzed approximately 100 English-French bisentences from the Canadian
Hansards, and found that roughly 21% of the words in bisentences were cognates. In contrast, only 6% of
the words in randomly chosen non-translation sentence pairs were cognates.

Cognate-based alignment can in fact be seen as a coarse approximation to lexical alignment, where
the bilexemes are based on a heuristic operational definition of cognates, rather than an explicitly listed
lexicon. The Simard et al. (1992) method’s cognate identification heuristic considers two words w, x to be
cognates if

1. w, x are identical punctuation characters;
2. w, x are identical sequences of letters and digits, with at least one digit; or
3. w, x are sequences of letters with the same four-character prefix.

This heuristic is clearly inaccurate, but still discriminates true from false sentence pairs fairly well: it
considers 30% of the words in bisentences to be cognates, versus only 9% in non-translation sentence
pairs.

Given such a definition, any of the lexical alignment methods could be used, simply by substituting the
heuristic for lexical lookup. The techniques that require probabilities on bilexemes would require that a
distribution of suitable form be imposed. Simard et al. (1992) use the dynamic programming method;
however, for the cost term, they use a scoring function based on a log-likelihood ratio rather than a
generative model. The score of a bisegment containing c cognates and average sentence length n is

− log
(

P(c|n, t)
P(c|n, ¬t)

· P(bisegment-type)
)

(16.10)

The pure cognate-based method does not perform as well as the length-based methods for the Canadian
Hansards. In tests on the same bitext sample, Simard et al. (1992) obtain a 2.4% error rate, where the
Gale and Church (1991b) method yields a 1.8% error rate. The reason appears to be that even though the
mean number of cognates differs greatly between coupled and non-coupled sentence pairs, the variance
in the number of cognates is too large to separate these categories cleanly. Many true bisentences share
no cognates, while many non-translation sentence pairs share several cognates by accident.

Cognate-based methods are inapplicable to language pairs such as English and Chinese, where no
alphabetic matching is possible.

16.3.4 Multifeature Sentence Alignment

Higher accuracy can be obtained by combining sentence length, lexical, and/or cognate features in a
single model. Since a length-based alignment algorithm requires fewer comparison tests than a lexical
alignment algorithm, all other things being equal, it is preferable to employ length-based techniques
when comparable accuracy can be obtained. However, as mentioned earlier, length-based techniques
can misalign when the bitext contains long stretches of sentences with roughly equal length. In this
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case, it is possible to augment the length features with others. One method of combining features is by
incorporating them into a single generative model. Alternatively, the less expensive length-based feature
can be used in a first pass; afterward, the uncertain regions can be realigned using the more expensive
lexical or cognate features. Uncertain regions can be identified either using low log probabilities in the
dynamic programming table as indicators of uncertain regions, or using the size of the “live” prefix set
during the dynamic programming loop.

The method of Wu (1994) uses a single generative model that combines sentence length with lexical
(bi)subtoken features, which in their case were English words and Chinese characters. A very small
translation lexicon of subtokens is chosen before alignment; to be effective, each subtoken should occur
often in the bitext and should be highly discriminative, i.e., the translation of each chosen subtoken should
be as close to deterministic as possible. The total set of chosen subtokens should be small; otherwise, the
model degenerates into full lexical alignment with all the computational cost. The model assumes that
all subtokens in a bisegment, except for those that belong to the set of chosen subtokens, are generated
according to the same length distribution as in the basic length-based model. The dynamic programming
algorithm is generalized to find the maximum probability alignment under this hybrid model. Significant
performance improvement can typically be obtained with this method, though the degree is highly
dependent upon the bitext and the bitoken vocabulary that is chosen.

Simard et al. (1992) combine sentence length with cognate features using a two-pass approach. The
first pass is the Gale and Church (1991b) method which yields a 1.8% error rate. The second pass employs
the cognate-based method, improving the error rate to 1.6%.

16.3.5 Comments on Sentence Alignment

Sentence alignment can be performed fairly accurately regardless of the corpus length and method used.
Perhaps surprisingly, this holds even for lexicon-learning alignment methods, apparently because the
decreased lexicon accuracy is offset by the increased constraints on alignable sentences.

The advantages of the length-based method are its ease of implementation and speed. Although it is
sometimes argued that the asymptotic time complexity of efficiently implemented lexical methods is the
same as length-based methods, even then the constant factor for would be significantly costlier than the
length-based methods.

The advantages of the lexical methods are greater robustness, and the side effect of automatically
extracting a lexicon.

Multifeature methods appear to offer the best combination of running time, space, accuracy, and ease
of implementation for aligning sentences in tightly translated bitexts.

16.4 Character, Word, and Phrase Alignment

We now consider the case where the vectors e and f denote sentences that are sequences of lexical
units or lexemes—character or word/phrase tokens—to be aligned (rather than documents, sections, or
paragraphs that are sequences of sentence tokens, as in the preceding section).

The first new difficulty is how to define the input “word” tokens. Compared to paragraph or sentence
tokens, it is significantly more slippery to define what a word token is. The frequently used, but simplistic,
tokenization assumption that whitespace and punctuation separates “words” does not really hold even
for Western European languages—as for example, in the multi-“word” words put off, by the way, inside
out, thank you, roller coaster, break a leg, and so on. For many other major languages, the simplifying
assumption is even less workable.

In Chinese, for example, which has tens of thousands of unique characters and is written without
any spaces, any attempt to heuristically guess where “word” boundaries might lie is inherently highly
error-prone. Premature commitment to artificial “word” boundaries significantly impacts alignment and
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translation accuracy, since the tokens may have been wrongly segmented to begin with. For this reason,
a conservative approach is to avoid a priori word tokenization altogether, and assume character tokens
instead.

Many simpler word alignment models in fact perform only token alignment, where all bisegments are
one token or zero tokens long, in both languages. Other models tackle the more realistic general case of
multitoken alignment where the lexemes being aligned may be words/phrases spanning multiple tokens.

For convenience, we will often use “word” and “lexeme” to refer generally to multitoken lexical units
that may be characters, phrases, compounds, multi-word expressions, and/or collocations.

16.4.1 Monotonic Alignment for Words

For languages that share very similar constituent ordering properties, or simply to obtain a very rough
word alignment as a bootstrapping step toward more sophisticated word alignments, it is possible to
apply many of the techniques discussed for sentence alignment and noisy bitext alignment. For such
applications, we may make the simplifying assumption that word order is more or less monotonically
preserved across translation. The same dynamic programming algorithms for monotonic alignment of
Section 16.3.1 can be used, for example, to perform multitoken alignment yielding bisegments that couple
0-to-1, 1-to-0, 1-to-1, 1-to-2, or 2-to-1 lexeme tokens.

Unless the languages are extremely similar, however, length-based features are of low accuracy. In
general, useful features will be the lexical features, and for some language pairs also the cognate features.

16.4.2 Non-Monotonic Alignment for Single-Token Words

For true coupling of words (as opposed to simple linear interpolation up to the word granularity),
generally speaking, we must drop the monotonicity constraint. Realistically, translating a sentence
requires permuting (or reordering) its component lexemes. Motivations to move to a more accurate
lexical coupling model include

Alignment accuracy.
In principle, lexical coupling without false monotonicity assumptions leads to higher accuracy.

Sparse data.
Smaller bitexts should be alignable, with bilexicons automatically extracted in the process. The
lexical alignment models discussed above require large bitexts to ensure that the counts for
good bilexemes are large enough to stand out in the noisy word-coupling hypothesis space.

Translation modeling.
Accurate lexical coupling is necessary to bootstrap learning of structural translation patterns.

Complexity of coupling at the word level rises as a result of relaxing the monotonicity constraint. Partly
for this reason, the assumption is usually made that the word coupling cannot be many-to-many. On the
other hand, models that permit one-to-many couplings are feasible. The TM-Align system (Macklovitch
and Hannan 1996) employs such a model, namely IBM Model 3 (Brown et al. 1988, 1990, 1993). This
model incorporates a fertility distribution that governs the probability on the number of language-1 words
generated by a language-0 word. Macklovitch and Hannan (1996) report that 68% of the words were
correctly aligned. Broken down more precisely, 78% of the content words are correctly aligned, compared
to only 57% of the function words.∗

The word_align method (Dagan et al. 1993) employs a dynamic programming formulation similar to
that discussed in Section 16.3.1, but has slope constraints that allow the coupling order to move slightly

∗ Although the IBM statistical translation models are all based on word alignment models, they themselves have not reported
accuracy rates for word alignment.
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backward as well as forward. The method does not involve any coarser (section, paragraph, sentence)
segmentation of the bitexts. The output of the basic algorithm is a partial word alignment.

The method requires as input a set of alignment range constraints, to restrict the search window
to a feasible size inside the dynamic programming loop. Dagan et al. (1993) employ char_align as a
preprocessing stage to produce a rough alignment a0(·), and then use guiding to restrict the alignments
considered by word_align.

An underlying stochastic channel model is assumed, similar to that of the IBM translation model
(Brown et al. 1990, 1993). We assume each language-1 word is generated by a language-0 word. Insertions
and deletions are permitted, as in the sentence alignment models. However we can no longer simplis-
tically assume that bisegments describe both sides of the bitext in linear order,∗ since the monotonicity
assumption has been dropped: the language-1 words do not necessary map to language-0 words in order.
To model this, a new set of offset probabilities o(k) are introduced. The offset k of a pair of coupled word
positions t, v is defined as the deviation of the position t of the language-0 word from where it “should
have been” given where v is

k(t, v) = t − a′(v) (16.11)

where a′(v) is where the language-0 word “should have been.” We determine this by linear extrapolation
along the slope of the diagonal, from the language-0 position a(v−) corresponding to the previous
language-1 word:

a′(v) = a(v−) + (v − v−)
T
V

(16.12)

where v− is the position of the most recent language-1 word to have been coupled to a language-0 word (as
opposed to being an insertion). Given a language-0 string w, the channel model generates the language-1
translation x with the probability

P(x|w) =
∑

a
K

V−1∏

v=0
P(xv|wa(v)) · o(a(v) − a′(v)) (16.13)

In theory this is computed over all possible alignments a, but we approximate by considering only those
within the alignment range constraints:†

P(x|w) =
∑

A⊂B
K

∏

(t,v)∈A
P(xv|wt) · o(t − a′(v)) (16.14)

Assuming we have estimated distributions P̂(x|w) and ô(k), the alignment algorithm searches for the
most probable alignment A∗:

A∗ = arg max
A⊂B

∏

(t,v)∈A
P(xv|wt) · o(t − a′(v)) (16.15)

The dynamic programming search is similar to the sentence alignment cases, except on the word granu-
larity and with different slope constraints. It considers all values of v proceeding left-to-right through the
words of the language-1 side, maintaining a hypothesis for each possible corresponding value of t. The

∗ There are no strings of “beads” as in Brown et al. (1991).
† Remember that A and a refer to the same alignment.
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recurrence is as follows. Let δ(t, v) denote the minimum cost partial alignment up to the vth word of the
language-1 side, such that the vth word is coupled to the tth position of the language-0 side.

δ(t, v) = min

{
mint− :(t− ,v−)⊂B∧t−−d≤t≤t−+d δ(t− ,v−1)−log P̂(xv|wt)−log ô(t−a′(v))

δ(t,v−1)−log P̂(xv|ε)
δ(t−1,v)−log P̂(ε|wt)

(16.16)

= min

{
mint− :(t− ,v−)⊂B∧t−−d≤t≤t−+d δ(t− ,v−1)−log P̂(xv|wt)−log ô(t−(t−+(v−v−) C

D ))

δ(t,v−1)−log P̂(xv|ε)
δ(t−1,v)−log P̂(ε|wt)

(16.17)

(16.18)

The t− values that need to be checked are restricted to those that meet the alignment range constraints,
and lie within d of t. In practice, the probabilities of word insertion and deletion, P̂(xv|ε) and P̂(ε|wi),
can be approximated with small flooring constants.

The offset and bilexeme probability estimates, ô(k) and P̂(x|w), are estimated using EM on the bitext
before aligning it. The expectations can be accumulated with a dynamic programming loop of the same
structure as that for alignment. An approximation that Dagan et al. (1993) make during the EM training
is to use the initial rough alignment a0(v) instead of a′(v).

An experiment performed by Dagan et al. (1993) on a small 160,000-word excerpt of the Canadian
Hansards produced an alignment in which about 55% of the words were correctly aligned, 73% were
within one word of the correct position, and 84% were within three words of the correct position.

Quantitative performance of word_align on non-alphabetic languages has not been extensively eval-
uated, but Church et al. (1993) align the English and Japanese AWK manuals using the technique. The
Japanese text must first be segmented into words, which can lead to an incorrectly segmented text.

It is possible to use word_align as a lexical sentence alignment scheme, simply by post-processing its
output down to the coarser sentence granularity. The output set of word couplings can be interpreted as a
set of candidate anchors, of higher credibility than the usual set of possible word couplings. Using dynamic
programming again, the post-processor may choose the set of sentence bisegments that maximizes the
(probabilistically weighted) coverage of the candidate anchor set. However, it is not clear that the
additional word-order model would significantly alter performance over a model such as that of Chen
(1993).

Many single-token word alignment methods, particularly the IBM models [See Section 17.7.1] are
inherently asymmetric, leading to artifacts in the alignments that can degrade translation accuracy. To
compensate, symmetrization methods are commonly used to improve the alignments (Och and Ney
2003). IBM models are first trained in both directions, giving two different token alignments Aef and
Afe for any sentence pair. A family of various types of symmetrization heuristics can then be applied, for
example,

• Intersection: A = Aef ∩ Afe
• Union: A = Aef ∪ Afe
• Grow: Start with intersection. Iteratively extend A by adding token couplings (t, t, v, v) that are

found in only one of Aef or Afe, providing that neither et nor fv has a coupling in A, or the
alignment (t, t, v, v) has a horizontal neighbor (t − 1, t − 1, v, v) or (t + 1, t + 1, v, v) or a vertical
neighbor (t, t, v − 1, v − 1) or (t, t, v + 1, v + 1).

• Grow-diag: Same as grow, but allow diagonal neighbors as well (Koehn et al. 2003).
• Grow-diag-final-and: Same as Grow-diag but as a final step, also add non-neighbor token couplings

of words that otherwise meet the requirements (Koehn et al. 2003).

A simple variant of the ITG model of Wu (1997) restricted to 1-to-1 token alignment can also be trained
via EM Wu (1995d) to produce highly accurate single-token bisegmentations (Section 16.6).
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[.... graphical examples including a complete m-to-n coupling
plus various sparse and medium-density couplings, all attempting
to describe exactly the same coupling of an m-token lexeme to an
n-token lexeme ....]

FIGURE 16.9 Multitoken lexemes of length m and n must be coupled in awkward ways if constrained to using only
1-to-1 single-token bisegments.

16.4.3 Non-Monotonic Alignment for Multitoken Words and Phrases

The techniques of the previous section make the simplifying assumption that a word/lexeme is a single
token, i.e., that bisegments couple only single tokens. When confronted with the more realistic case where
an m-token lexeme needs to be coupled to an n-token lexeme, such models must resort to using some
subset of the m × n possible 1-to-1 single-token couplings, as for example in Figure 16.9. Ultimately,
this becomes problematic, because it forces models to make artificial, meaningless distinctions between
the many arbitary variations like those exemplified in Figure 16.9. By failing to capture straightfor-
ward sequence patterns, the 1-to-1 single-token simplification wastes probability mass on unnecessary
alignment ambiguities, and creates needless computational complexity.

These problems do not arise in word alignment with m-to-n bisegments that couple multiple tokens
(such as we also used for aligning sentences). Because this impacts translation quality significantly,
increasingly, alignment is seen in terms of finding segmentations of multitoken words/lexemes to align.
This is commonly emphasized by terms like “multi-word expression,” “phrase,” and “phrase alignment.”

The key to multitoken alignment is to integrate the segmentation decisions into the alignment cost
optimization, since the optimal coupling of segments depends on how e and f are segmented, and vice
versa.

IBM Models 4 and 5 support a limited asymmetric form of 1-to-n bisegments (Brown et al. 1993), but
still do not cope well with multitoken words/lexemes since they cannot occur on the e side.

In contrast, the general ITG model introduced by Wu (1997) fully integrates alignment and seg-
mentation, producing multitoken m-to-n word/phrase alignments subject to compositionally structured
constraints on lexeme and segment permutations, using an underlying generative model based on a
stochastic transduction grammar (Section 16.6).

Generally speaking, multitoken alignment is best performed with respect to some bilexicon that
enumerates possible translations for multitoken lexemes—i.e., a list of all legal bisegment types.∗ Thus,
there are two steps to multitoken alignment: (1) induce a bilexicon, and (2) compute a minimum-cost
bisegmentation of the bitext using the induced bilexicon.

In practice, very simple methods for inducing a (phrasal) bilexicon perform surprisingly well, if a
good 1-to-1 token alignment is available to bootstrap from. A commonly used method is simply to
take as a bilexeme every possible bisegment that is consistent with the 1-to-1 token alignment seen in
training sentence pairs, up to some maximum token length. Bilexeme probabilities are estimated simply
using relative frequency, and (optionally) very low-frequency bilexemes may be discarded. Although
the accuracy of multitoken alignment was not directly evaluated, experimental results from Koehn et al.
(2003) indicate that when evaluated on translation accuracy, this approach outperforms more complicated
methods that filter out bisegments violating syntactic constituent boundaries.

On the other hand, the quality of the induced bilexicon has proven to be fairly sensitive to the quality
of the initial 1-to-1 token alignment. The method of Koehn et al. (2003) employs the intersection of
IBM alignments trained via EM in both directions, supplemented with the grow-diag-final-and family
of heuristics discussed in Section 16.4.2. However, comparative experiments by Saers and Wu (2009)
indicate that higher accuracy is obtained by using ITG alignments trained via EM and restricted to 1-to-1
token alignment.

∗ Often referred to as a phrase table in work on phrase-based SMT.
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Given an induced bilexicon, multitoken alignment of any sentence pair can then be obtained by
computing a minimum-cost bisegmentation, for example by using the dynamic programming method of
the ITG biparsing model (Section 16.6) or greedy or heuristic variants.

16.5 Structure and Tree Alignment

A structure alignment algorithm produces an alignment between constituents (or sentence substructures)
within sentence pairs of a bitext. The segments to be aligned are labeled by the nodes in the constituent
analyses of the sentences; the output set A contains pairs of labeled segments (p, r) corresponding to the
coupled nodes. All existing techniques process the bitext one bisentence at a time, so sentence alignment
always precedes structure alignment. Coupled constituents may be useful in translators’ concordances,
but they are usually sought for use as examples in EBMT systems (Nagao 1984), phrase-based SMT
systems (Koehn et al. 2003), and tree-based SMT systems like those of Wu (1997) and Chiang (2005).
Alternatively, the examples constitute training data for machine learning of transfer patterns.

Tree alignment is the special case of structure alignment where the output A must be a strictly
compositional, hierarchical alignment. (The same constraint is applicable to dependency tree models.)
This means that tree alignment obeys the following:

Crossing constraint
Suppose two nodes in language-0 p0 and p1 correspond to two nodes in language-0 r0 and r1
respectively, and p0 dominates p1. Then r0 must dominate r0.

In other words, couplings between subtrees cannot cross each another, unless the subtrees’ immediate
parent nodes are also coupled to each other. Most of the time this simplifying assumption is accurate, and
it greatly reduces the space of legal alignments and thereby the search complexity. An example is shown
in Figure 16.10, where both Security Bureau and police station are potential lexical couplings to 公安局,

station .The security Bureau granted authority to the police

FIGURE 16.10 The crossing constraint.
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but the crossing constraint rules out the dashed-line couplings because of the solid-line couplings. The
crossing constraint reflects an underlying cross-linguistic hypothesis that the core arguments of frames
tend to stay together over different languages. A special case of the crossing constraint is that a constituent
will not be coupled to two disjoint constituents in the other language, although it may be coupled to
multiple levels within a single constituent subtree.

Structure alignment is usually performed using a parse-parse-match strategy. Tree alignment methods
require as input the constituent analysis of each side of the bitext (with the exception of the biparsing
methods described later). Unfortunately, it is rarely possible to obtain bitext in which the constituent
structures of both sides have been marked. However, if suitable monolingual grammars for each of the
languages are available, each side can (independently) be parsed automatically, yielding a low-accuracy
analysis of each sides, before the tree alignment begins. A variant on this is to supply alternative parses for
each sentence, either explicitly in a list (Grishman 1994) or implicitly in a well-formed substring table (Kaji
et al. 1992). Note that the parsed bitext is not parallel in the sense that corresponding sentences do not
necessarily share a parallel constituent structure. It is difficult, if not impossible, to give an interpretation
based on some underlying generative model.

The kind of structures that are to be coupled clearly depend on the linguistic theory under which the
sides are parsed. The simplest approach is to use surface structure, which can be represented by bracketing
each side of the bitext (Sadler and Vendelmans 1990; Kaji et al. 1992). Another approach was described
by Matsumoto et al. (1993), who use LFG-like (Bresnan 1982) unification grammars to parse an English–
Japanese bitext. For each side, this yields a set of candidate feature-structures corresponding to the
constituent structures. The feature-structures are simplified to dependency trees. Structural alignment
is then performed on the dependency trees, rather than the original constituent trees. (Alignment of
dependency trees can be performed in essentially the same way as alignment of constituent trees.)

16.5.1 Cost Functions

Various cost functions may be employed. Some of the qualitative desiderata, along with exemplar cost
functions, are as follows.

Couple leaf nodes (words/lexemes) that are lexical translations.
This is simply word alignment, recast here as the special case of structure alignment at the leaf
level. A bilexicon is assumed. Filtering heuristics may be employed, for example, to ignore any
words that are not open-class or content words. The simplest cost function of this type is

Cost(p, r) =
⎧
⎨

⎩

−1 if (w, x) ∈ Bilexicon
where w = espan(p), x = fspan(r)

0 otherwise
(16.19)

where, in other words, the pair of leaf nodes p, r holds the words w and x.
Alternatively, if a probabilistic bilexicon is available, a soft version of the cost function may be
used, in which the negative log probability of a word pair is taken as its cost (instead of −1).

Couple leaf nodes (words/lexemes) that are similar.
To overcome the spotty coverage of most bilexicons, thesauri may be employed. One approach
(Matsumoto et al. 1993) employs a single language-0 thesaurus to estimate the cost (dissimi-
larity) between a word pair w, x. All possible translations of the language-1 word x are looked
up in the language-0 thesaurus, and the length l of the shortest path from any one of them to
w is taken as the cost. Matsumoto et al. (1993) use an additional biasing heuristic that always
subtracts a constant d from the path length to get l (if the path length is less than the d, then l is
assumed to be zero).



Alignment 393

Cost(p, r) =
⎧
⎨

⎩

−6 if (w, x) ∈ Bilexicon
where w = espan(p), x = fspan(r)

l otherwise
(16.20)

Couple internal nodes that share coupled leaf nodes (words/lexemes).
Let Awords denote the subset of A that deals with coupling of leaf nodes (usually this subset
is precomputed in an earlier stage, according to one of the criteria above and possibly with
additional constraints). Let Keywords(p) be the set of leaves of p that are deemed important, for
example, all the content words. The simplest cost function of this type is

Cost(p, r) =
⎧
⎨

⎩

−1 if (w, x) ∈ Awords
for all w ∈ Keywords(p), x ∈ Keywords(r)

0 otherwise
(16.21)

This cost function is what Kaji et al. (1992) in effect use, permitting nodes to be matched only
if they share exactly the same set of coupled content words.
A softer approach is to maximize the number of shared coupled leaf nodes.

Cost(p, r) =
∑

w∈Keywords(p),x∈Keywords(r)

Cost(w, x) (16.22)

Again, probabilistic versions of these cost functions are straightforward, if a probabilistic
bilexicon is available.

Couple nodes that share as many coupled children/descendants as possible.
Similar ad hoc cost functions to those above can be formulated. The idea is to maximize
structural isomorphism. Through the recursion, this also attempts to share as many coupled
leaf nodes as possible.

16.5.2 Algorithms

Alignment still optimizes Equation 16.2, but the bisegments may now be either compositional or disjoint.
In general, constituent alignment has lower complexity than tree alignment, as there is no need to

enforce the crossing constraint. Kaji et al. (1992) describe a simple bottom-up greedy strategy. Suppose
that a bracketed sentence pair contains P language-0 nodes and R language-1 nodes. The algorithm simply
considers all P × R possible couplings between node pairs p, r, starting with the smallest spans. Any pair
whose cost is less than a preset threshold is accepted. Thus, as many pairs as possible are output, so long
as they meet the threshold.

For tree alignment as opposed to constituent alignment, bottom-up greedy search is still possible but
performance is likely to suffer due to the interaction of the coupling hypotheses. Crossing constraints
deriving from early miscouplings can easily preclude later coupling of large constituents, even when the
later coupling would be correct. For this reason, more sophisticated strategies are usually employed.

Matsumoto et al. (1993) employ a branch-and-bound search algorithm. The algorithm proceeds
top-down, depth-first. It hypothesizes constituent couplings at the highest level first. For each coupling
that is tried, a lower bound on its cost is estimated. The algorithm always backtracks to expand the
hypothesis with the lowest expected cost. The hypothesis is expanded by further hypothesizing couplings
involving the constituent’s immediate children (subconstituents).

Grishman (1994) employs a beam search. Search proceeds bottom-up, hypothesizing couplings of
individual words first. Only hypotheses whose cost is less than a preset threshold are retained. Each step
in the search loop considers all couplings involving the next larger constituents consistent with the current
set of smaller hypotheses. The costs of the larger hypotheses depend on the previously computed costs of
the smaller hypotheses.
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Dynamic programming search procedures can be constructed. However, the worst case complexity is
exponential, since it grows with the number of permutations of constituents at any level. The procedure
of Kaji et al. (1992) employs two separate well-formed substring tables as input, one for each sentence of
the input sentence pair, that are computed by separate dynamic-programming chart parsing processes.
However, the actual coupling procedure is greedy, as described above. A true dynamic programming
approach (Wu 1995c) is described later in Section 16.6.4 on biparsing alignment (in which permutation
constraints guarantee polynomial time complexity).

16.5.3 Strengths and Weaknesses of Structure and Tree Alignment
Techniques

The most appropriate application of constituent alignment approaches appears to be for EBMT models.
Given the same bitext, constituent alignment approaches can produce many more examples than strict
tree alignment approaches (driving up recall), though many of the examples are incorrect (driving down
precision). However, the nearest-neighbor tactics of EBMT models have the effect of ignoring incorrect
examples most of the time, so recall is more important than precision.

Strict tree alignment approaches tend to have higher precision, since the effects of local disambiguation
decisions are propagated to the larger contexts, and vice versa. For this reason, these methods appear to
be more suitable for machine learning of transfer patterns.

Constituent alignment has three main weaknesses stemming from the parse-parse-match approach:

Lack of appropriate, robust, monolingual grammars.
This condition is particularly relevant for many low-resource languages. A grammar for this
purpose must be robust since it must still identify constituents for the subsequent coupling
process even for unanticipated or ill-formed input sentences.

Mismatch of the grammars across languages.
The best-matching constituent types between the two languages may not include the same core
arguments. While grammatical differences can make this problem unavoidable, there is often
a degree of arbitrariness in a grammar’s chosen set of syntactic categories, particularly if the
grammar is designed to be robust. The mismatch can be exacerbated when the monolingual
grammars are designed independently, or under different theoretical considerations. For exam-
ple, the negative results of Och et al. (2004) were widely interpreted to be due to the mismatch
between independent parsers for the different languages.

Inaccurate selection between multiple possible constituent couplings.
A constituent in one sentence may have several potential couplings to the other, and the coupling
heuristic may be unable to discriminate between the options.

16.6 Biparsing and ITG Tree Alignment

Bilingual parsing approaches use the same grammar to simultaneously parse both sides of a bitext (Wu
1995a). In contrast to the parse-parse-match approaches discussed in Section 16.5.3, biparsing approaches
readily admit interpretations based on underlying generative transduction grammar models. Recall from
Section 16.3.1 that a single transduction grammar governs the production of sentence pairs that are
mutual translations. The most useful biparsers are the probabilistic versions, which work with stochastic
transduction grammars that in fact constitute structured bilingual language models.

Biparsing approaches unify many of the concepts discussed above. The simplest version accepts
sentence-aligned, unparsed bitext as input. The result of biparsing includes parses for both sides of the
bitext, plus the alignment of the constituents.
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There are several major variants of biparsing. It is possible to perform biparsing alignment without a
linguistic grammar of either language, using the BITG technique discussed below. On the other hand,
biparsing can make use of a monolingual grammar if one exists. If any a priori brackets on the input bitext
are available, biparsing can accept them as constraints.

16.6.1 Syntax-Directed Transduction Grammars (or Synchronous CFGs)

Aside from the finite-state transductions considered in Section 16.3.1, the other major equivalence class
of transductions from classic compiler theory is the class of syntax-directed transductions, which are
transductions that can be generated by a syntax-directed transduction grammar or SDTG (Lewis and
Stearns 1968; Aho and Ullman 1969,b; Aho and Ullman 1972), which have also recently been called
“synchronous context-free grammars.”∗

As with the finite-state models in Section 16.3.1, formally G = (N ,W0,W1,R, S), the only difference
being that the transduction rules in R are more expressive. The transduction rules in SDTGs superficially
resemble the production rules in CFGs, except for generating terminal symbols on two streams instead
of one, and allowing the right-hand-side symbols to be reordered by any permutation for language-1, as
for example in A → a0a1a2a3 :: a1a3a0a2 or simply A → a0a1a2a3 :: 1 3 0 2.

However, the similarity ends upon closer inspection. Unlike monolingual CFGs, bilingual SDTGs (or
synchronous CFGS) do not form a single primary equivalence class. As seen in Section 16.3.1, in the
Chomsky (1957) hierarchy, all CFGs form a single equivalence class, independent of the rank, which is
the maximum number k of nonterminals in the rules’ right-hand-sides. However, in the bilingual case of
SDTGs, the hierarchy shatters into an infinite number of classes—for any k > 4, the class of SDTGs of
rank k has strictly greater generative capacity than the class of SDTGs of rank k − 1. (The cases of k = 2
and k = 3 are suprisingly different, however, as in the discussion of ITGs below.)

In SDTGs (or synchronous CFGs), segment order variation (for words or phrases) between languages
is accommodated by letting the symbols on each rule’s right-hand-side appear in different order for
language-0 and language-1. Any permutation of the right-hand-side symbols is allowed.

Any SDTG trivially implements the crossing constraint. This is because in the generative model, at
any time the rewrite process only substitutes for a single constituent, which necessarily corresponds to
contiguous spans in (both of) the sentences.

The main issue for alignment models based on transduction grammars is how much flexibility to allow.
It is obvious that finite-state transductions are insufficiently expressive at a subsentential granularity,
since they do not allow reordering of words and phrases across languages. SDTGs were widely used in
rule-based MT, as well as example-based MT (Nagao 1984). However, computational complexity for
SDTGs (or synchronous CFGs) is excessively expensive. No polynomial-time biparsing or parameter
training algorithm is known for the general case, since growth in a number of possible alignments follows
the number of permutations of right-hand-side symbols, which is exponential—resulting in algorithms
that are O(n2n+2), as seen in the hierachy in Section 16.3.1.

16.6.2 Inversion Transduction Grammars

In current state-of-the-art machine translation models, an intermediate equivalence class of transductions
that offers a balance of generative capacity and computational complexity falling in between that of FSTGs
and SDTGs (or synchronous CFGs) has become widely used, namely that of inversion transduction
grammars or ITGs. Theoretical analyses and numerous empirical results have accumulated indicating
a better fit of inversion transductions to modeling translation and alignment between many human

∗ The motivation for the standard term “syntax-directed” stems from the roots of SDTGs in compiler theory, where the
input–output connotation of the term reflects a transduction view, but the theory of course remains compatible with the
generation or recognition (biparsing) views as well. Also, “transduction” and “translation” are often used interchangeably,
as are “grammar” and “schema.”
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language pairs, despite the fact that ITGs do not attempt to fully model so-called free word order
languages and “second-order” phenomena such as raising and topicalization (Wu 1995b, 1997). Given
that the polynomial-time biparsing and training algorithms for ITGs are much less expensive than for
SDTGs—no more than O(n6), as seen in the hierachy in Section 16.3.1—and translation accuracy is at
the same time empirically higher using ITGs, it is often worth accepting the restricted expressiveness of
ITG constraints upon the space of permitted reordering permutations.

For ITGs the transduction rules inR are more expressive than in finite-state models, but less expressive
than in SDTGs (or synchronous CFGs). For example, inversion transductions do not permit the permu-
tation described by the transduction rule example in Section 16.6.1. A simple example of a permutation
allowed in inversion transductions is shown in Figure 16.1c and d. However, inversion transductions are
surprisingly flexible; even the extreme reordering shown in Figure 16.1e and f falls within the class.

Inversion transductions can be described in at least three equivalent ways, as follows.

ITGs are transduction grammars with only straight or inverted rules.
This means the order of right-hand-side symbols for language-1 is either the same as
language-0 (straight orientation) or exactly the reverse (inverted orientation). A straight rule
is written A → [a0a1 . . . ar−1], and an inverted rule is written A → 〈a0a1 . . . ar−1〉, where
ai ∈ N ∪ X and r is the rank of the rule.∗

ITGs are the closest bilingual analogue of monolingual CFGs in that any ITG can be
converted to a 2-normal form—which is not true for SDTGs (or synchronous CFGs) in general.
In particular, a theorem in Wu (1995c) shows that for any inversion transduction grammar G,
there exists an equivalent inversion transduction grammar G′ where all rules are either lexi-
cal rules or binary rank syntactic rules (analogous to Chomsky normal form for monolingual
CFGs), such that every rule takes one of the following forms:

S → ε/ε

A → x/y
A → x/ε

A → ε/y
A → [B C]
A → 〈B C〉

where as before x and y are segments of one or more tokens (so the bisegments are typically
phrasal), and A, B, and C are any nonterminals. The theorem leads directly to the second
characterization of ITGs.

ITGs are transduction grammars with rules of rank ≤ 2.
That is, any SDTG whose rules are all binary-branching is an ITG. The equivalence follows
trivially from the fact that the only two possible permutations of a rank-2 right-hand-side are
straight and inverted. This means that any SDTG (or synchronous CFG) of binary rank—having
at most two nonterminals on the right-hand-side of any rule—is an ITG. (Similarly, any SDTG
(or synchronous CFG) that is right regular is a FSTG.)

Thus, for example, any grammar computed by the binarization algorithm of Zhang et al.
(2006) is an ITG. Similarly, any grammar induced following the hierarchical phrase-based trans-
lation method, which always yields a binary transduction grammar (Chiang 2005), is an ITG.

ITGs are transduction grammars with rules of rank ≤ 3.
It can be shown that all six possible permutations of a rank-3 right-hand-side can be generated
using only straight and inverted rules in combination.

∗ This notation is a useful shorthand for the straight rule that can also be written in other forms such as A → a0a1 . . . ar−1 ::
a0a1 . . . ar−1 or A → a0a1 . . . ar−1 :: 0 1 . . . r − 1, and the inverted rule that can also be written in other forms such as
A → a0a1 . . . ar−1 :: ar−1 . . . a1a0 or A → a0a1 . . . ar−1 :: r − 1 . . . 1 0.
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FIGURE 16.11 The 24 complete alignments of length four, with ITG parses for 22. All nonterminal and terminal
labels are omitted. A horizontal bar under a parse tree node indicates an inverted rule.

The expressiveness of ITG constraints on reordering words, phrases, and constituents in different
natural languages is not straightforward to characterize formally. Some light is shed by Figure 16.11,
which enumerates how ITGs can deal with the transposition of four adjacent constituents. This case is
important because the number of core arguments of a frame is normally less than four, in nearly all
linguistic theories. There are 4! = 24 possible permutations of four adjacent constituents, of which 22
can be produced by combining straight and inverted rules. The remaining two permutations are highly
distorted “inside-out” alignments, which are extremely rare in (correctly translated) bitext.∗ For more
than four adjacent constituents, many permutations cannot be generated and do not appear necessary.

The ITG hypothesis posits a language universal, namely that the core arguments of frames, which exhibit
great ordering variation between languages, are relatively few and surface in syntactic proximity. Of course,
this assumption over-simplistically blends syntactic and semantic notions, but the ITG hypothesis has
held true empirically to a remarkably large extent. That semantic frames for different languages share
common core arguments is more plausible than syntactic frames, but ITGs depend on the tendency of
syntactic arguments to correlate closely with semantics. If in particular cases this assumption does not
hold, the biparsing algorithm can attempt to contain the damage by dropping some word couplings (as
few as possible). For more detailed analyses see Wu (1997) and Saers and Wu (2009).

16.6.3 Cost Functions

A cost function can be derived naturally from the generative model. First a stochastic version of the ITG is
created by associating a probability with each rule. Just as for ordinary monolingual parsing, probabilizing
the grammar permits ambiguities to be resolved by choosing the maximum likelihood parse. For example,
the probability of the rule NN 0.4→ [A N] is aNN→[A N] = 0.4. The probability of a lexical rule A 0.001→ x/y

∗ In fact, we know of no actual examples in any parallel corpus for languages that do not have free word order.
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is bA(x, y) = 0.001. Let W0, W1 be the vocabulary sizes of the two languages, and N = {A0, . . . , AN−1}
be the set of nonterminals with indices 0, . . . , N − 1. (For conciseness, we sometimes abuse the notation
by writing an index when we mean the corresponding nonterminal symbol, as long as this introduces
no confusion.) As with stochastic CFGs, the probabilities for a given left-hand-side symbol must sum to
unity: ∑

1≤j,k≤N

(ai→[jk] + ai→〈jk〉) +
∑

1≤x≤W0
1≤y≤W1

bi(x, y) = 1

The same constituent structure applies to both sides of the sentence pair unlike the earlier structure/tree
alignment cases. This means the alignment A is more naturally thought of in terms of a single shared
parse tree, rather than a set of couplings between constituents. We denote the parse tree by a set Q of
nodes {q0, . . . , qQ−1}. Note that Q can always be transformed back into a set of couplings A.

The natural cost function to be minimized is the entropy (negative log probability) of the parse tree Q:

Cost(Q) =
∑

q∈Q

{
aRule(q) if q is an internal node
bRule(q) otherwise (16.23)

16.6.4 Algorithms

The biparsing algorithm searches for the minimum cost parse tree on the input sentence pair, and selects
the optimal segmentation at the same time. Empirically, this integrated translation-driven segmentation is
highly effective at taking advantage of the phrasal terminals of ITGs to avoid alignment errors commonly
caused by word segmenters that prematurely commit to inappropriate segmentations during prepro-
cessing. The probabilistic cost function optimizes the overlap between the structural analysis of the two
sentences. The algorithm resembles the recognition algorithm for HMMs (Viterbi 1967) and CKY parsing
(Kasami 1965; Younger 1967).

Let the input English sentence be e0, . . . , eT−1 and the corresponding input Chinese sentence be
f0, . . . , fV−1. As an abbreviation we write es..t for the sequence of words es, es+1, . . . , et−1, and similarly
for fu..v; also, es..s = ε is the empty string.

Assuming an ITG in 2-normal form, it is convenient to use the 4-tuple (s, t, u, v) to uniquely identify
each node of the parse tree q = seg(s, t, u, v), where the substrings es..t and fu..v both derive from the
node q. Denote the nonterminal label on q by �(q). Then for any node q = seg(s, t, u, v), define

δq(i) = δstuv(i) = max
subtrees of q

P[subtree of q, �(q) = i, i ∗⇒ es..t/fu..v]

as the maximum probability of any derivation from i that successfully parses both es..t and fu..v. Then the
best parse of the sentence pair has probability δ0,T,0,V(S).

The algorithm computes δ0,T,0,V(S) using the following recurrences. Note that optimal segmentation
in both languages is integrated into the algorithm: s..t and u..v are spans delimiting segments of one
or more tokens; if s = t or u = v, the span length is zero, meaning that the segment is the empty
string ε. The argmax notation is generalized to the case where maximization ranges over multiple
indices, by making the argument vector-valued. Note that [ ] and 〈〉 are just constants. The condition
(S − s)(t − S) + (U − u)(v − U) �= 0 is a way to specify that the substring in one but not both languages
may be split into an empty string ε and the substring itself; this ensures that the recursion terminates, but
permits words that have no match in the other language to map to an ε instead.

1. Initialization

δ0
stuv(i) = bi(es..t/cu..v), 0 ≤ s ≤ t ≤ T

0 ≤ u ≤ v ≤ V (16.24)
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2. Recursion

For all i, s, t, u, v such that

{
1≤i≤N

0≤s<t≤T
0≤u<v≤V

t−s+v−u>2

δstuv(i) = max
[
δ[ ]

stuv(i), δ〈〉
stuv(i), δ0

stuv(i)
]

(16.25)

θstuv(i) =

⎧
⎪⎨

⎪⎩

[ ] if δ
[ ]
stuv(i) > δ

〈〉
stuv(i) and δ

[ ]
stuv(i) > δ0

stuv(i)
〈〉 if δ

〈〉
stuv(i) > δ

[ ]
stuv(i) and δ

〈〉
stuv(i) > δ0

stuv(i)
0 otherwise

(16.26)

where

δ[ ]
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t

u≤U≤v
(S−s)(t−S)+(U−u)(v−U)�=0

ai→[jk] δsSuU(j) δStUv(k) (16.27)

⎡

⎢⎢⎢
⎣

ι
[ ]
stuv(i)
κ

[ ]
stuv(i)

σ
[ ]
stuv(i)

υ
[ ]
stuv(i)

⎤

⎥⎥⎥
⎦

= argmax
1≤j≤N
1≤k≤N
s≤S≤t

u≤U≤v
(S−s)(t−S)+(U−u)(v−U)�=0

ai→[jk] δsSuU(j) δStUv(k) (16.28)

δ〈〉
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t

u≤U≤v
(S−s)(t−S)+(U−u)(v−U)�=0

ai→〈jk〉 δsSUv(j) δStuU(k) (16.29)

⎡

⎢⎢⎢
⎣

ι
〈〉
stuv(i)
κ

〈〉
stuv(i)

σ
〈〉
stuv(i)

υ
〈〉
stuv(i)

⎤

⎥⎥⎥
⎦

= argmax
1≤j≤N
1≤k≤N
s≤S≤t

u≤U≤v
(S−s)(t−S)+(U−u)(v−U)�=0

ai→〈jk〉 δsSUv(j) δStuU(k) (16.30)

3. Reconstruction
Initialize by setting the root of the parse tree to q1 = (0, T, 0, V) and its nonterminal label to
�(q1) = S. The remaining descendants in the optimal parse tree are then given recursively for any
q = (s, t, u, v) by

LEFT(q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

NIL if t−s+v−u≤2(
s, σ [ ]

q (�(q)), u, υ[ ]
q (�(q))

)
if θq(�(q)) = [ ] and t−s+v−u>2

(
s, σ 〈〉

q (�(q)), υ〈〉
q (�(q)), v

)
if θq(�(q)) = 〈〉 and t−s+v−u>2

NIL otherwise

(16.31)

RIGHT(q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

NIL if t−s+v−u≤2(
σ

[ ]
q (�(q)), t, υ[ ]

q (�(q)), v
)

if θq(�(q)) = [ ] and t−s+v−u>2
(
σ

〈〉
q (�(q)), t, u, υ〈〉

q (�(q))
)

if θq(�(q)) = 〈〉 and t−s+v−u>2

NIL otherwise

(16.32)



400 Handbook of Natural Language Processing

�(LEFT(q)) = ι
θq(�(q))
q (�(q)) (16.33)

�(RIGHT(q)) = κ
θq(�(q))
q (�(q)) (16.34)

The time complexity of this algorithm in the general case is �(N3T3V3) where N is the number
of distinct nonterminals and T and V are the lengths of the two sentences. (Compare this to the case
monolingual parsing, which is faster by a factor of V3.) The complexity is acceptable for corpus analysis
that does not require real-time parsing.

16.6.5 Grammars for Biparsing

Biparsing techniques may be used without a specific grammar, with a coarse grammar, or with detailed
grammars.

No language-specific grammar (the BITG technique).
In the minimal case, no language-specific grammar is used (this is particularly useful when
grammars do not exist for both languages). Instead, a generic bracketing inversion transduction
grammar or BITG is used:

A
a[]→ [A A]

A
a〈〉→ 〈A A〉

A
bij→ ei/fj for all i, j lexical translation pairs

A
biε→ ei/ε for all i language-0 vocabulary

A
bεj→ ε/fj for all j language-1 vocabulary

This grammar is sufficient to cover the full range of word-order transpositions that can be
generated under any ITG (because the 2-normal form implies that rules with rank > 2 are not
needed). The unlabeled tree in Figure 16.1f is an example of a BITG biparse tree.

All probability parameters may be estimated by EM (Wu 1995d). However, in practice
alignment performance is not very sensitive to the exact probabilities, and rough estimates are
adequate. The bij distribution can be estimated through simpler EM-based bilexicon learning
methods, as discussed later. For the two singleton rules, which permit any word in either
sentence to be unmatched, a small ε-constant can be chosen for the probabilities biε and bεj, so
that the optimal bracketing resorts to these rules only when it is otherwise impossible to match
the singletons. Similarly, the parameters a[] and a〈〉 can be chosen to be very small relative
to the bij probabilities of lexical translation pairs. The result is that the maximum-likelihood
parser selects the parse tree that best meets the combined lexical translation preferences, as
expressed by the bij probabilities.

BITG biparsing can be seen as being similar in spirit to word_align, but without positional
offsets. The maximum probability word alignment is chosen, but with little or no penalty
for crossed couplings, as long as they are consistent with constituent structure (even if the
coupled words have large positional offsets). The assumption is that the language-universal
core-arguments hypothesis modeled by ITGs is a good constraint on the space of alignments
allowed. The word_align bias toward preferring the same word order in both languages can be
imitated to a large extent by choosing a〈〉 to be slightly smaller than a[] and thereby giving
prefering the straight orientation.

Empirically, the BITG technique is fairly sensitive to the bilexicon accuracy and coverage.
This is due to the fact that a missed word coupling can adversely affect many couplings of its
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dominating constituents. Also, in practice, additional heuristics are useful to compensate for
ambiguities that arise from the underconstrained nature of a BITG. (The extreme case is where
both sides of a sentence pair have the same word order; in this case there is no evidence for any
bracketing.) A number of heuristics are discussed in Wu (1997).

Coarse grammar.
Performance over the BITG technique may often be improved by introducing a small number
of rules to capture frequent constituent patterns. This can be done by writing a very small
grammar either for one of the languages (Wu 1995d) or for both languages simultaneously.
The generic bracketing rules should still be retained, to handle all words that do not fit the
constituent patterns. The labeled tree in Figure 16.1f is an example of a biparse tree with a
linguistic grammar.

Detailed grammar.
A detailed monolingual grammar for one of the languages can be augmented to convert it into
an ITG. A simple but effective heuristic for doing this simply mirrors each rule into straight
and inverted versions (Wu and Wong 1998). This biases the constituents that will be aligned to
fit the selected language, at the expense of degraded parsing of the other language. Again, the
labeled tree in Figure 16.1f is an example of a biparse tree with a linguistic grammar.

16.6.6 Strengths and Weaknesses of Biparsing and ITG Tree Alignment
Techniques

Biparsing models have a stronger theoretical basis for selecting alignments, as they are clearly formulated
with respect to a generative bilingual language model. This permits probabilistic trading-off between the
amount of information in the monolingual parses versus the lexical correspondences.

Biparsing techniques may be used with pre-bracketed bitext, just as with parse-parse-match tree
alignment techniques, by including the brackets as a priori constraints in the dynamic programming
search (Wu 1997). Performance in this case is similar, except that the ordering constraints are slightly
stronger with ITGs. Otherwise, the exhaustive dynamic programming search is more reliable than the
heuristic search used by tree alignment methods.

The BITG technique can be used to produce a rough bracketing of bitext where no other parsers or
grammars are available. It is the only approach under circumstances where no grammar is available for
one or both of the languages (thereby precluding the possibility of preparsing the sides of the bitext).
Clearly it is the weakest of all the structure/tree/biparsing alignment methods in terms of parsing accuracy.
The flip side is that the BITG technique infers new bracketing hypotheses, which can be used for grammar
induction. In fact, Zhang and Gildea (2004) show that unsupervised BITG alignments empirically produce
significantly better AER scores than a supervised tree-to-string model that depends on the output of a
monolingual parser, due to the “impedance mismatch” between the syntactic structure of Chinese and
English.

Similarly, if a grammar is available for only one of the languages, a biparsing approach can use just
the single grammar whereas parse-parse-match techniques do not apply. The biparsing technique is also
useful if two grammars are available but use very different constituent structures (as mentioned earlier,
structure/tree alignment methods may be unable to come up with good constituent couplings under these
circumstances).

One issue with (non-BITG) biparsing techniques is that it can be difficult and time-consuming to write
a single grammar that parses both sides well. It is relatively easy to parse one side well, by using a grammar
that fits one of the languages. However, the more language-specific details in the grammar, the more
nonterminals it requires to keep the rules in sync with both languages. For this reason, it is important to
retain backup generic rules for robustness.

To avoid the manual construction of transduction grammars, a great deal of recent research has
focused on automatic methods for inducing transduction grammars—generally ITGs of one form or



402 Handbook of Natural Language Processing

another, and occasionally SDTGs.∗ One popular approach is the hierarchical phrase-based translation
method of Chiang (2005), which learns a highly lexicalized ITG in a binary-rank normal form with either
straight rules like A → a0A1a2A3a4 :: a0A1a2A3a4 (or simply A → [a0A1a2A3a4]) or inverted rules like
A → a0A1a2A3a4 :: a4A3a2A1a0 (or simply A → 〈a0A1a2A3a4〉), where ai is any sequence of lexical
translations x/y or singletons x/ε or ε/y, and there is only one undifferentiated nonterminal category A (as
in BITGs). Various other lexicalized and headed variants of ITGs—including dependency models—have
also been shown to improve SMT accuracy (Alshawi et al. 2000; Cherry and Lin 2003; Zhang and Gildea
2005).

Neither biparsing, nor structure/tree alignment techniques that work on surface constituency struc-
tures, can accommodate the general case of “second-order transformations” such as raising, topicalization,
wh-movement, and gapping. Such transformations can cause the surface constituency structure to lose
its isomorphism with the “deep” structure’s frames and core arguments. No consistent set of couplings is
then possible between the surface tree structures of the two languages. For these phenomena, working on
the feature-structure tree instead of the constituency tree may hold more hope.

Nevertheless, a large body of empirical research has shown that inversion transductions appear optimal
for the vast majority of statistical MT models (e.g., Lu et al. 2001; Lu et al. 2002; Simard and Langlais 2003;
Zhao and Vogel 2003). Zens and Ney (2003) show a significantly higher percentage of word alignments
are covered under BITG constraints than under IBM constraints, for German–English (96.5% vs. 91.0%),
English–German (96.9% vs. 88.1%), French–English (96.1% vs. 87.1%), and English–French (95.6% vs.
87.6%). Wu et al. (2006) find similar results for Arabic–English (96.2%) and English–Arabic (97.0%).

Furthermore, a comparison of IBM versus (Bracketing) ITG constraints on Japanese–English transla-
tion by Zens et al. (2004) found significantly higher MT accuracy measured via BLEU, NIST, WER, and
PER scores.

The excellent fit of BITG reordering permutations to naturally occurring sentence translations has
led to the development of automated MT evaluation metrics that correlate well with human judgment,
such as invWER (Leusch et al. 2003) based on interpreting ITG constraints as a compositional block
generalization of Levenshtein string edit distance, and its successor, CDER (Leusch et al. 2006).

The biparsing algorithms for ITG alignment have moreover been successfully applied to numerous
other tasks including paraphrasing and textual entailment (Wu 2006) and mining parallel sentences from
very nonparallel comparable corpora (Wu and Fung 2005).

For languages without explicit word boundaries, particularly Asian languages, the biparsing techniques
are particularly well suited. With segmentation integrated into the biparsing algorithm, the word segmen-
tation of the text can be chosen in tandem with choosing the bracketing and couplings, thereby selecting
a segmentation that optimally fits the alignment (Wu 1995c).

16.7 Conclusion

The alignment of matching passages can be performed at various granularities: document-structure,
sentence, word, or constituent. A variety of techniques are available for each granularity, with trade-
offs in speed and memory requirements, accuracy, robustness to noisy bitext, ease of implementation,
and suitability for unrelated and non-alphabetic languages. Sources of leverage include lexical transla-
tions, cognates, end constraints, passage lengths, syntactic parses, and assumptions about monotonicity,
approximate monotonicity, and word order.

New approaches to alignment in SMT are continually being developed. Recent perspectives on the
tremendous amount of research on syntax and tree-structured models can be seen, for example, in the
“Syntax and Structure in Statistical Translation” (SSST) series of workshops (Wu and Chiang 2007; Chiang

∗ Recall that any SDTG (or synchronous CFG) that is binary rank, ternary rank, or only allows straight/inverted permutations
is an ITG; and any SDTG that is right-regular or left-regular is an FSTG.
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and Wu 2008; Wu and Chiang 2009). Heuristic association-based models are easier to implement than
generative models, and can provide reasonable performance (Melamed 2000; Moore 2005a). Recently,
discriminative training methods have been applied to word alignment (Callison-Burch et al. 2004; Moore
2005b; Liu et al. 2005; Klein and Taskar 2005; Fraser and Marcu 2007; Lambert et al. 2007; Ma et al. 2009);
one potential advantage is to directly train model parameters to maximize some translation accuracy
objective function such as BLEU (Papineni et al. 2002), rather than measures such as alignment error rate
or AER (Och and Ney 2003). Empirically, AER does not necessarily correlate with translation quality
(Ayan and Dorr 2006); merely improving AER can reduce translation accuracy (Liang et al. 2006) and
vice versa (Vilar et al. 2006).

Alignment models are the core of all modern SMT and EBMT models. They are also tremendously
useful in supporting a broad range of functionality in tools such as translators’ and lexicographers’ work-
stations, as is well surveyed in the volume edited by Veronis (2000) and the seminal ARCADE project
on evaluating alignment (Veronis and Langlais 2000). Increasingly today, alignment algorithms that are
faster, more accurate, and more robust are being used for automatic and semi-automatic resource acqui-
sition, especially the extraction of phrasal translation lexicons as well as compositional and hierarchical
tree-structured translation examples.
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