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ABSTRACT

In this paper, a distance-related unit association maxi-

mum entropy (DUAME) language modeling is proposed.

This approach can model an event (unit subsequence)

using the co-occurrence of full distance unit association

(UA) features so that it is able to pursue a functional

approximation to higher order N-gram with signi�cantly

less memory requirement. A smoothing strategy related

to this modeling will also be discussed. Preliminary ex-

perimental results have shown that DUAME modeling

is comparable to conventional N-gram modeling in per-

plexity with signi�cantly small number of parameters.

1. Introduction

Language modeling is an important component of au-

tomatic speech recognition and translation. Currently,

N-gram modeling is the most prominent approach in

language modeling. Since it regards language sequence

as a discrete stochastic process, N-gram is able to ef-

�ciently characterize possible combination of linguistic

pieces as a Markov model. Thus, this approach can pre-

dict a possible succeeding language unit by utilizing only

a few immediate preceding units. However, since fea-

tures (language constraints) used in this kind of model

are constrained to possible subsets of successive unit se-

quence, it is inexible to incorporate di�erent types of

features and it is infeasible in terms of memory to extend

to longer distance features.

Maximum entropy (ME) language modeling ap-

proaches have been discussed in many studies [1] [2] [3]

[4] [5] [6] [7]. Most schemes with ME exploit longer dis-

tance features or language dependencies. These types

of features are often fragmentary. Thus, ME model has

to be interpolated with conventional N-gram models as

a compensator of the N-gram. The smoothing problem

in ME modeling has not been well mentioned in past

publications yet.

In this paper, we present an independent distance re-

lated unit association maximum entropy language mod-

eling approach. We call it DUAME modeling for short.

In comparison with N-gram modeling, DUAME model-

ing simulates an event (unit subsequence) using the co-

occurrence of di�erent distance unit association (UA)

features. Thus, it is able to pursue functional approxi-

mation to higher order N-gram and requires less mem-

ory. In section 2, we introduce this modeling approach.

We also discuss the smoothing strategy related to DU-

AME modeling in this section. Preliminary experimen-

tal results are given in section 3.

2. DUAME Language Modeling

2.1. Principle of Maximum Entropy

Based on a given language sequence S =< x1; :::; xz >,

we can de�ne the followings.

De�nition I: an event < Hi; xi > is a contextual

window Hi =< xi�n+1; :::; xi�1 > succeeding the

current unit xi.

All such events constitute the event space E < H; x >.

For a special language corpus, events appearing in the

corpus are called observed events, and the others can be

classi�ed into the unobserved event set.

De�nition II: a feature g(hi; xi) is a kind of

global or local description for some events with

the attribute set < g(hi; xi); ai; mi; �i >.

where, g(hi; xi) is an indicator of the feature, hi is a

subset of the context under contextual window Hi, xi is

the current language unit, ai is its target expectation,

correspondingly,mi refers to its feature expectation, and

�i = e�i is an exponential feature factor related to the

probability of the feature. A feature set G can be ex-

tracted from the observed event set.

Based on the above de�nitions of event and feature,

an exponential probability distribution can be used to

evaluate the language sequence.

m
�(S) = argmaxm2M

zY
i=1

m(xijHi): (1)

where, m(xijHi) =
r(Hi;xi)
Z(Hi)

is an exponential proba-

bility given context Hi. r(Hi; xi) =
Q

k

t=1
e�igt(hi;xi) =Q

k

t=1
�
gt(hi;xi)
t

is the multiplication of feature fac-

tors activated in event < Hi; xi >, and Z(Hi) =P
x2V

r(Hi; x) is used for normalization.

For each feature g(hi; xi), there is a corresponding

exponential expectation

m(hi; xi) =
X
Hi�hi

~p(Hi) �m(xijHi) (2)

where ~p(Hi) is the observed probability of context Hi

in the training set. We can assume that this feature ex-



pectation will be approximated to its target expectation

m(hi; xi) � E(p(hi; xi)) = a(hi; xi): (3)

It has been shown [8][2] that the optimal maximum

likelihood exponential model m�(S) is identical to the

maximum entropy model

p
�(S) = argmaxp2H �

X
<Hi ;xi>

p(Hi; xi) log p(Hi; xi):

(4)

Therefore, the maximum entropy distribution p�(S)

can be replaced with the maximum likelihood exponen-

tial distribution m�(S) to estimate and evaluate the

maximum entropy of a language sequence.

2.2. General Expression of DUAME Model

The basic principle of DUAME modeling was introduced

in [9]. In DUAME modeling, a feature is de�ned as a

distance related unit association.

De�nition III: A distance-related unit associa-

tion feature is a span distance unit pair (h; x) with

the attribute < gd(h; x); ad(h; x); md(h; x); �d(h; x) >

where h denotes a contextual unit within a limited

window, x is the current unit (class,word, or phrase), d

refers to the distance between h and x, ad(h; x) denotes

the target expectation of feature gd(h; x), md(h; x) is its

feature expectation, and �d(h; x) is the factor of gd(h; x).

Thus, for an event < h1; :::; hn; x > with contex-

tual window length n, we can simulate it using the co-

occurrence of n di�erent distance unit association fea-

tures instead of the longer N-gram features.

�n(h1; x)�n�1(h2; x)::::�1(hn; x)) �n�gram(h1; :::; hn; x)

These features with distance attributes are indepen-

dent of each other and their co-occurrence is a precise

expression for this event.

And, �d(h; x) is an adjustable factor, it pursues a

trade-o� to a�ect many di�erent events and features.

It is impossible for a real N-gram to use the same

way because corresponding c(hi; x) in N-gram is a real

count value and are counted repeatedly between di�er-

ent events.

Thus, a general expression of distance-related unit as-

sociation ME modeling can be written as the following.

For a given unit sequence S =< x1; x2; :::; xz > and

contextual window n,

m
�

n�duame
(S) = argmaxm2M

zY
i=1

m(xijh1; :::; hn);

(5)

and with event < h1; :::; hn; x >,

m(xjh1; :::;hn) =
r(h1; :::;hn;x)

Z(h1; :::;Zn)
=

Qn

i=1
�
gn�i+1(hi;x)

n�i+1 (hi;x)P
xi2V

r(h1; :::;hn;xi)
:

(6)

Speci�cally, for the triplet event < h1; h2; x > with

distance n=2,

m(xjh1; h2) =

8>>><
>>>:

�2(h1 ;x)��1(h2;x)
Z(h1;h2)

if g2(h1; x); g1(h2; x)
�2(h1;x)

Z(h1;h2)
if only g2(h1; x)

�1(h2;x)

Z(h1;h2)
if only 9g1(h2; x)

�uni(x)

Z(h1;h2)
if only 9guni(x)

(7)

The function of DUAME is similar to a backo� N-

gram, because DUAME model can model N-gram fea-

tures with the co-occurrence of full distance unit asso-

ciation (UA) features and smooth the distribution of an

unobserved event with the co-occurrence of decreasing

UA features.

For distance-n DUAME model, possible memory re-

quirement is less than V n + n � V 2 + V , i.e., it takes an

order of V n memory. Here, V is denoted as the vocab-

ulary size, n is the length of the contextual window, V n

is for total context Z(h1; :::; hn), and n � V 2 + V is for

storing unit association feature factors. For a distance-

2 DUAME model, the possible memory requirement is

less than 3V 2 + V .

Correspondingly, an identical N-gram takes an order

of V n+1 memory. Therefore, the distance-n unit asso-

ciation ME modeling requires far less memory than the

N-gram modeling.

2.3. Smoothing Strategy in DUAME Modeling

According to the general ME expression, the normaliza-

tion factor Z(h1; :::; hn) =
P

x2V
r(h1; :::; hn; x) in (6)

should be calculated over all related events including

observed and unobserved events. In addition, the fea-

ture expectation m(hi; xi) in (2) is a summation over all

possible contexts Hi even though some events do not oc-

cur in the training data. The advantages with this way

are that the distribution of the unobserved event can be

smoothed automatically with decreasing features, which

are assumed to be activable in this unobserved event

and the normalization condition under limited contex-

tual window can be ensured de�nitely. However, since

unobserved events are taken into summation with the

same weight as observed events, it is possible to cause

exaggerated evaluation for these unobserved events.

At present, there is no ideal smoothing technique for

maximum entropy modeling. Here, we propose to use

the normal smoothing strategies in the maximum likeli-

hood (ML) N-gram modeling for the ME modeling. In

N-gram modeling, one smoothing approach is an abso-

lute discounting backo� approach, which was proposed

in [10]. With this approach, a small constant d can be

extracted from a signi�cantly smaller amount of N-gram

count. Then the conditional probability is calculated

with

p(zjy) =

(
c(y;z)�d

c(y)
if c(yz) > k

d �
#(y; )

c(y)
� p(z) otherwise.

(8)

where c(:) means the count of occurrences and #(:)

denotes the number of di�erent occurrences. In addition,



a suggested optimal discount ratio is:

d =
#(c(y; ) = 1)

#(c(y; ) = 1) + 2 �#(c(y; ) = 2)
:

Similarly, for DUAME modeling, we can set one dis-

count ratio for each context Hi =< h1; :::; hn > with

dHi
=

#(c(Hi; ) = 1)

#(c(Hi; ) = 1) + 2 �#(c(Hi; ) = 2)
(9)

and

�Hi
= dHi

�
#(Hi; )P
x
c(Hi; x)

: (10)

Thus, (6) can be changed into (11)

m(xjh1; :::;hn) =

(
r(h1 ;:::;hn;x)�dHi

Z(h1;:::;hn)
if 9 < h1; :::; hn; x >

�Hi

r(h1;:::;hn;x)
Z(h1;:::;hn)

otherwise.

(11)

This change should be imported into both estimation

and evaluation in DUAME modeling.

2.4. Issues on DUAME Estimation with GIS

Algorithm

As in conventional ME modeling, the generalized itera-

tive scaling (GIS) algorithm [8] has been used to train

the DUAME model. Two criteria can be used to ver-

ify convergence of the DUAME model. One is standard

perplexity

PP = 2�
1
n
log P (S)

: (12)

The other one is Kullback-Leibler divergence (minimum

discrimination information).

D(a;m) =
X

gi(h;x)

ai(h; x)log(
ai(h; x)

mi(h; x)
): (13)

This criterion is used to verify holistic discrimination

between target expectation ai(h; x) and feature expec-

tation mi(h; x) over all features.

In general, for a feature gi(h; x), the ratio � =
ai(h;x)

mi(h;x)

can be approximated to 1 with a �nite amount of vibra-

tions (as shown in Figure 1). Although the convergence

of GIS algorithm has been proved [8][2], an inappro-

priate initialization of the feature parameter �i(h; x) or

an extreme lower target expectation ai(h; x) still could

cause some accidental disturbances that make increment

� skip out of the normal vibration area; this disturbance

would be unrecoverable. In this case, we use a simple

attenuator to �lter unexpected increment in each itera-

tion.

�
t

i =

8><
>:

'i
ai

m
t

i

if ai

m
t

i

� max[�0i ; :::; �
t�1
i

]

�i
ai

m
t

i

if ai

m
t

i

� min[�0i ; :::; �
t�1
i

]
ai

mt

i

otherwise

(14)

where 'i and �i are the adjustable damping and

enlarging coe�cients, respectively. Experiments have

shown that this is helpful in ensuring the convergence

of the model estimation.
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d1(mary,phillips)
d2(good_afternoon,can_i_help_you)

Figure 1. Illustration of feature expectation mi(h; x) ap-

proximated to target expectation ai(h; x) with vibrations

3. Preliminary Experiments on DUAME

Language Modeling

Based on two corpora, the ATR travel arrangement

task English (ATR-TAT) corpus [11] and the 1994 Wall

Street Journal (WSJ'94) corpus (Table 1), we conducted

experiments on the DUAME modeling.

Table 1. Corpora

Corpus

Name ATR-TAT WSJ

Size 1M 10M

Style spoken written

Table 2. Feature extraction and selection

unit association (UA) features

cuto� d0 UA d1 UA d2 UA d3 UA

ATR > 0 8580 88752 117331 128822

-TAT > 2 24876

> 5 12596 12131 11184

> 10 6337 6390

WSJ > 0 1332554 1933543 2154013

> 2 505862

> 5 26680 184314

> 10 80008

We compared the perplexities of the distance-2 and

distance-3 DUAME model with the maximum likeli-

hood (ML) 2-ram, 3-gram, and 4-gram. In the ATR-

TAT corpus, the basic language unit was de�ned as the

extended word obtained with the variable N-gram lan-

guage modeling tool [12]. In the WSJ corpus, the basic

language unit was the normal word. The perplexities for

various N-gram models were calculated with the CMU-

Cambridge language modeling toolkit [13].

Table 3 shows that 2-DUAME models with both

corpora resulted in substantial improvement in 2-gram

models and were comparable to corresponding 3-gram

models in perplexity. However, we did not expect that

the perplexities of both 3-DUAME and 4-gram would

be a little higher than 2-DUAME and 3-gram, respec-

tively. This could be due to sparse data as a result of

an insu�cient corpus.



Some experiments on feature selection were also per-

formed. As mentioned in section 2.4, some features with

extreme lower probability can cause diverging estima-

tions. Therefore, it is necessary to select more reliable

features for robust modeling. In our preliminary experi-

ments, we chose features simply by setting some thresh-

olds of count for di�erent types of features. Table 4

shows that the reliable feature selection was helpful for

the improvement of the model.

Table 3. Comparison of N-gram and N-DUAME in per-

plexity

model ATR-TAT WSJ

LN 4-gram 45.67 235.96

3-DUAME 46.12 240.67

LN 3gram 44.95 223.22

2-DUAME 43.47 220.14

LN 2gram 59.50 270.53

*LN:linear discounting backo�

Table 4. Improvement of DUAME with feature selection

model feature cuto�s ATR-TAT WSJ

Td3 Td2 Td1

3-DUAME 0 0 0 46.12 240.67

5 5 5 45.83

10 5 2 44.67 232.21

2-DUAME 0 0 0 43.47 220.14

0 5 5 43.12

0 10 5 42.20 214.42

0 100 5 38.43

4. Discussion and Conclusion

We have presented a new distance-related unit associ-

ation maximum entropy language modeling approach.

This approach has obvious advantages such as less mem-

ory requirement and the ability of functional approxi-

mation to higher order N-gram. So, DUAME modeling

will be useful for improving the current N-gram language

modeling in speech recognition.

As in conventional ME modeling, a disadvantage of

DUAME modeling is that training takes a long time

when the vocabulary size is large. Although some com-

putational tricks mentioned in [4] have been adopted,

we still need a few weeks to train the DUAME model

on the WSJ corpus. In future works, we will address

this problem, and we will also study some more e�ec-

tive approaches for feature selection. Meanwhile, we

will continue investigating the improvement of speech

recognition accuracy with this model.
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