ITG for Joint Phrasal Translation Modeling

Colin Cherry University of Alberta

Dekang Lin Google Inc.

April 26, 2007

The Gist

- Joint phrasal translation models (JPTM) learn a bilingual phrase table using EM
- Phrasal ITG:
 - Use synchronous parsing to replace hill climbing & sampling with dynamic programming
- Do resulting phrase tables improve translation?

Outline

- Phrasal Translation Models
- We build on:

- Phrase extraction, JPTM, ITG

- Phrasal ITG
 - Helpful constraints
- Results

• Summary & Future Work

Phrasal translation model

English	French	P(e f)	P(f e)
ethical food	alimentation éthique	0.95	0.16
ethical foreign policy	politique étrangère morale	0.23	0.01
ethical foundations	fondements éthiques	0.10	0.03

- Ultimately interested in a bilingual phrase table
 - Lists and scores possible phrasal translations

Surface Heuristic

cars				•	
red					•
likes		•			
he	•				
	il	aime	les	voitures	rouges

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs

Surface Heuristic

cars				•	
red					•
likes		•			
he	•				
	il	aime	les	voitures	rouges

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs

Surface Heuristiccars•red•likes•he•ilaimelesvoituresrouges

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs

Joint Phrasal Model (JPTM)

- Introduced by Marcu and Wong (2002)
- Trained with EM, like the IBM models
- Sentence pair built simultaneously
 Generate a bag of bilingual phrase pairs
 - Permute the phrases to form e and f

$$P(e,f) \propto \sum_{A} \left[\prod_{(\bar{e_i},\bar{f_i})\in A} p(\bar{e_i},\bar{f_i}) \right]$$

Joint Phrasal Model

Reason over an exponential number of phrasal alignments

Space is huge - task actually accomplished by sampling around high-probability point

April 26, 2007

Joint Phrasal Model

Reason over an exponential number of phrasal alignments

Space is huge - task actually accomplished by sampling around high-probability point

April 26, 2007

Joint Phrasal Model

Birch et al. (2006): Constrained JPTM

Explore only phrasal alignments consistent with high precision word alignment

Inversion Transduction Grammar

• Introduced in by Wu (1997)

Phrasal ITG

- Any phrase pair can be produced by the lexicon
- Choose between straight, inverted and now: phrasal

University of Alberta

Training Phrasal ITG $C \rightarrow \bar{e}/\bar{f}$ with probability $P\left(\bar{e}/\bar{f}|C\right)$

- All phrase pairs share mass as a joint model
- Can be trained unsupervised with inside-outside
- No more expensive than binary bracketing:
 Phrases were already being explored as constituents

The hope

- By moving to exact expectation:
 - Create more accurate statistics
 - Find a larger variety of phrase pairs

The problem - still slow: $O(n^6)$

- ITG algorithms can be pruned:
 - O(n⁴) potential constituents are considered
 - O(n²) time spent considering all ways to build each constituent
- Fixed link pruning: Eliminate constituents that are not consistent with a given word alignment
 - Skip them and treat them as having 0 probability
- One link can potentially rule out 50% of constituents

Fixed Link Speed-up

- Used GIZA++ intersection alignments
- Inside-outside on first 100 sentences of corpus
- Compared to Tic-tac-toe (Zhang & Gildea 2005)

What about the ITG constraint?

- ITG can't handle this due to discontinuous constituents
- Check fixed links used for pruning
 If they are non-ITG, drop from training set
- In our French-English Europarl set, this results in a reduction in data of less than 1%

April 26, 2007

Experiments

- Conditionalize joint tables to P(e|f) and P(f|e)
- French-English Europarl Set
 - 25 length limit, 400k sentence pairs
- SMT Workshop Baseline MT System
 Pharaoh, MERT Training on 500 tuning pairs
- Included unnormalized IBM Model 1 features for all
- Compared to:
 - JPTM constrained with GIZA++ Intersect
 - Surface Heuristic Extraction with GIZA++ GDF

Results: BLEU Scores

Results: Table Size

(in millions of entries)

Summary

- Phrasal ITG that learns phrases from bitext
 Similar to JPTM
- Complete expectations do matter
 - Other JPTMs could benefit from improving their search and sampling methods
- A new ITG pruning technique
 80 times faster inside-outside

Future: Eliminate Frequency Limits

- Must constrain any joint model to use phrases that occur with a minimum frequency
 - Otherwise sentence = phrase is ML solution

Future: Eliminate Frequency Limits

- Must constrain any joint model to use phrases that occur with a minimum frequency
 - Otherwise sentence = phrase is ML solution

Future: Eliminate Frequency Limits

 Must constrain any joint model to use phrases that occur with a minimum frequency

This isn't the whole story...

- Explored the same model as a phrasal aligner
- Needs additional constraints to work:
 - Fixed links help select phrases that are non-compositional
- Alignments work well with surface heuristic
- Details in the paper!

Questions? Comments? Suggestions?

Support provided by:

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Alberta Ingenuity Fund

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. Alberta Informatics Circle of Research Excellence

28 of 28

Along the way...

- Adapt consistency constraints from heuristic phrase extraction for ITG parsing
- Deal with the ITG constraint in large data

