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The Gist
• Joint phrasal translation models (JPTM) learn a 

bilingual phrase table using EM

• Phrasal ITG:
– Use synchronous parsing to replace hill climbing & 

sampling with dynamic programming

• Do resulting phrase tables improve translation?
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Outline
• Phrasal Translation Models

• We build on:
– Phrase extraction, JPTM, ITG

• Phrasal ITG
– Helpful constraints

• Results

• Summary & Future Work
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Phrasal translation model

• Ultimately interested in a bilingual phrase table
– Lists and scores possible phrasal translations

English French P(e|f) P(f|e)

…

ethical food alimentation éthique 0.95 0.16
ethical foreign policy politique étrangère morale 0.23 0.01
ethical foundations fondements éthiques 0.10 0.03
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Surface Heuristic

• Alignments provided by GIZA++ combination
• Surface heuristic: 

– Count each consistent phrase as occurring once
– Aggregate counts over all sentence pairs

cars

red

likes

he

il aime les voitures rouges
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Joint Phrasal Model (JPTM)
• Introduced by Marcu and Wong (2002)

• Trained with EM, like the IBM models

• Sentence pair built simultaneously
– Generate a bag of bilingual phrase pairs
– Permute the phrases to form e and f
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Joint Phrasal Model

cars

red

likes

he

il aime les voitures rouges

Reason over an exponential number of phrasal alignments

Space is huge - task actually accomplished by sampling around 
high-probability point
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Joint Phrasal Model

cars

red

likes

he

il aime les voitures rouges

Birch et al. (2006): Constrained JPTM

Explore only phrasal alignments consistent 
with high precision word alignment



12 of 28 University of AlbertaApril 26, 2007

Inversion Transduction Grammar

• Introduced in by Wu (1997)

– Transduction: 
• C → red / rouge

– Inversion:
• A → [A C]

• B → <A C> 

C

rouge

red

C
A

A
C

Straight

Inverted
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ITG Parse

il aime les voitures rouges

he

likes

red

cars
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Phrasal ITG

• Any phrase pair can be produced by the lexicon

• Choose between straight, inverted and now: 
phrasal

calm

down

calmez vous

calm

down

calmez vous

calm

down

calmez vous
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Training Phrasal ITG

• All phrase pairs share mass as a joint model 

• Can be trained unsupervised with inside-outside

• No more expensive than binary bracketing:
– Phrases were already being explored as constituents
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The hope

• By moving to exact expectation:
– Create more accurate statistics
– Find a larger variety of phrase pairs
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The problem - still slow: O(n6)
• ITG algorithms can be pruned:

– O(n4) potential constituents are considered
– O(n2) time spent considering all ways to build each constituent

• Fixed link pruning: Eliminate constituents that are not 
consistent with a given word alignment
– Skip them and treat them as having 0 probability

• One link can potentially rule out 50% of constituents
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Fixed Link Speed-up 
• Used GIZA++ intersection alignments
• Inside-outside on first 100 sentences of corpus
• Compared to Tic-tac-toe (Zhang & Gildea 2005)
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What about the ITG constraint?

• ITG can’t handle this due to discontinuous constituents

• Check fixed links used for pruning
– If they are non-ITG, drop from training set

• In our French-English Europarl set, this results in a 
reduction in data of less than 1%

12 are acceptable to the commission Mr. Burtone fully or in part

12 sont acceptables pour la commissionM. Burtone en tout ou partie
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Experiments
• Conditionalize joint tables to P(e|f) and P(f|e)

• French-English Europarl Set 
– 25 length limit, 400k sentence pairs

• SMT Workshop Baseline MT System
– Pharaoh, MERT Training on 500 tuning pairs

• Included unnormalized IBM Model 1 features for all

• Compared to:
– JPTM constrained with GIZA++ Intersect
– Surface Heuristic Extraction with GIZA++ GDF
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Results: BLEU Scores
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Results: Table Size
(in millions of entries)
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Summary
• Phrasal ITG that learns phrases from bitext

– Similar to JPTM

• Complete expectations do matter
– Other JPTMs could benefit from improving their 

search and sampling methods

• A new ITG pruning technique
– 80 times faster inside-outside
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Future: Eliminate Frequency Limits

• Must constrain any joint model to use phrases 
that occur with a minimum frequency
– Otherwise sentence = phrase is ML solution

cars

red

likes

he

il aime les voitures rouges
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• Must constrain any joint model to use phrases 
that occur with a minimum frequency
– Otherwise sentence = phrase is ML solution

Future: Eliminate Frequency Limits

Apply Bayesian 
methods (priors) to 
replace these limits 
(Goldwater et al. 2006)
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This isn’t the whole story…

• Explored the same model as a phrasal aligner

• Needs additional constraints to work:
– Fixed links help select phrases that are 

non-compositional

• Alignments work well with surface heuristic
• Details in the paper!
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Questions?  Comments?  Suggestions?

Support provided by:
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Alberta Ingenuity Fund

Alberta Informatics Circle of
Research Excellence
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Along the way…

• Adapt consistency constraints from heuristic 
phrase extraction for ITG parsing

• Deal with the ITG constraint in large data
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