### Generation in Machine Translation from Deep Syntactic Trees

#### Keith Hall Johns Hopkins University

#### Petr Němec

Charles University in Prague





## Outline



- Transfer-based MT
- Tectogrammatical Representation (TR) (deep syntax)
- Generation from English TR trees
  - process
  - models
- Empirical results





Source (Czech) Target (English)



























- Allows us to explore deep syntactic representations
- Factored models are clear
- Need not be greedy one-best process
  - although we present one-best generation/results

## Tectogrammatical Representation



## Tectogrammatical Representation





#### Tectogrammatical Representation 🥼 "Now the network has opened a news bureau in the Hungarian capital" FORM: #2 LEMM: #、 FUNC: SENT functor LEMM: open-FUNC: PRED POS: 'VBN' T M: 'SIM' `'IND' LEMM: network LEMM: now LEMM: bureau LEMM: capital FUNC: ACT FUNC: TWHEN FUNC: PAT FUNC: LOC POS: 'NN' POS: 'RB' POS: 'NN' POS: 'NN'

LEMM: news

FUNC: RSTR POS: 'NN' LEMM: hungarian FUNC: RSTR

POS: 'JJ'

# Tectogrammatical Representation 🖗 🖓



## Tectogrammatical Representation (1)



#### **Generation Process**

- I. Insert syn-semantic (function) words
- 2. Subtree reordering
- Intermediary surface syntax ?
- Reordering constraints?
  - maximum subtree size
  - coordination



#### **Generation Model**



 $\arg \max_{A,f} P(A, f|T)$   $= \arg \max_{A,f} P(f|A, T) P(A|T)$   $\approx \arg \max_{f} P(f|T, \arg \max_{A} P(A|T))$ 

- tecto nodes:  $T = \{t_1, \ldots, t_i, \ldots, t_n\}$
- insertion string:  $A = \{a_1, \ldots, a_i, \ldots, a_k\}$   $n \leq k \leq 2n$
- order mapping:  $f : \{A \cup T\} \rightarrow \{1, \dots, 2n\}$

#### Generation Model



 $\arg \max_{A,f} P(A, f|T) \qquad \text{Insertion} \\ = \arg \max_{A,f} P(f|A, T) P(A|T) \\ \approx \arg \max_{f} P(f|T, \arg \max_{A} P(A|T))$ 

- tecto nodes:  $T = \{t_1, \ldots, t_i, \ldots, t_n\}$
- insertion string:  $A = \{a_1, \ldots, a_i, \ldots, a_k\}$   $n \leq k \leq 2n$
- order mapping:  $f : \{A \cup T\} \rightarrow \{1, \dots, 2n\}$

#### Generation Model



$$\arg \max_{A,f} P(A, f|T) \operatorname{Reordering}_{A,f}$$

$$= \arg \max_{A,f} P(f|A, T) P(A|T)$$

$$\approx \arg \max_{f} P(f|T, \arg \max_{A} P(A|T))$$

- tecto nodes:  $T = \{t_1, \ldots, t_i, \ldots, t_n\}$
- insertion string:  $A = \{a_1, \ldots, a_i, \ldots, a_k\}$   $n \leq k \leq 2n$
- order mapping:  $f : \{A \cup T\} \rightarrow \{1, \dots, 2n\}$





#### Insertion Model



- P(A|T)  $= \prod_{i} P(a_i|a_1, \dots, a_{i-1}, T)$   $\approx \prod_{i} P(a_i|t_i, t_{g(i)})$
- Insertion is dependent on local context:
  - tecto node (includes: lemma, functor, POS)
  - parent node
- Three independent models:
  - articles
  - prepositions and subordinating conjunctions
  - modals (deterministic, given functor)



### **Reordering Process**





"Now the network has opened a news bureau in the Hungarian capital"



### **Reordering Process**



"Now the network has opened a news bureau in the Hungarian capital"



#### Surface Order Model



- I. child order:  $P(c_i \prec c_{i+1} | c_i, c_{i+1}, g)$ 
  - $= (c_i \prec c_{i+1} | f_i, t_i, f_{i+1}, t_{i+1}, f_g, t_g)$
- 2. gov. position:  $P(c_i \prec g \prec c_{i+1} | c_i, c_{i+1}, g)$ =  $P(c_i \prec g \prec c_{i+1} | f_i, t_i, f_{i+1}, t_{i+1}, t_g, f_g)$
- Greedy procedure (there is an alternative DP solution)
- Factored models can be estimated separately
- Constraint on reorderings: maximum 5 children
- Features: functors & POS tags

#### Intermediate Syntax

- Insertion from Tectogrammatical Trees
- Convert deep functors to syntactic functions
  - P(VERB | PRED)
  - P(SBJ | ACT)
- Reordering based on syntactic features
  - should be a closer match to surface-syntax transfer



#### Evaluation



#### Training

• ~50k WSJ treebank automatically converted

- Training & Eval: PCEDT Corpus 1.0:
  - Penn WSJ treebank translated to Czech
     4 retranslations back to English
  - ~ 20k sentences of automatic TR
  - ~ 500 sentences of manual TR
- History based modes
  - smoothed via linear-backoff EM-smoothing

#### **Evaluation: Insertion**



| Model          | Manual Data |           |          |           | Synthetic Data |           |          |           |
|----------------|-------------|-----------|----------|-----------|----------------|-----------|----------|-----------|
|                | Ins. Rules  |           | No Rules |           | Ins. Rules     |           | No Rules |           |
| Model          | Articles    | Prep & SC | Articles | Prep & SC | Articles       | Prep & SC | Articles | Prep & SC |
| Baseline       | N/A         | N/A       | 77.93    | 76.78     | N/A            | N/A       | 78.00    | 78.40     |
| w/o g. functor | 87.29       | 89.65     | 86.25    | 89.31     | 88.07          | 91.83     | 87.34    | 91.06     |
| w/o g. lemma   | 86.77       | 89.48     | 85.68    | 89.02     | 87.53          | 90.95     | 86.55    | 91.16     |
| w/o g. POS     | 87.29       | 89.45     | 86.10    | 89.14     | 87.68          | 91.86     | 86.89    | 92.07     |
| w/o functor    | 86.10       | 85.02     | 84.86    | 84.56     | 86.01          | 85.60     | 84.79    | 85.65     |
| w/o lemma      | 81.34       | 89.02     | 80.88    | 88.91     | 81.28          | 91.03     | 81.42    | 91.33     |
| w/o POS        | 84.81       | 88.01     | 84.01    | 87.29     | 85.53          | 91.08     | 84.69    | 90.98     |
| All Features   | 87.49       | 89.68     | 86.45    | 89.28     | 87.87          | 91.83     | 87.24    | 92.02     |

#### Manual data - hand annotated

- Synthetic data automatically produced (matches training data)
- "Rules" Small set of deterministic rules
  - applied if no majority prediction (all < .5)</li>

#### Article Insertion



| % Errors | Reference | e→F           | Iypothesis |
|----------|-----------|---------------|------------|
| 41       | the       | $\rightarrow$ | NULL       |
| 19       | a/an      | $\rightarrow$ | NULL       |
| 16       | NULL      | $\rightarrow$ | the        |
| 11       | a/an      | $\rightarrow$ | the        |
| 11       | the       | $\rightarrow$ | a/an       |
| 2        | NULL      | $\rightarrow$ | a/an       |

- Conservative model
  - 60% of the error is do to NULL insertion
- Assume equivalence of 'a' and 'an'

#### **Evaluation: Reordering**



| Model           | Manual Data  |          |          |          | Synthetic Data |          |          |          |
|-----------------|--------------|----------|----------|----------|----------------|----------|----------|----------|
|                 | Coord. Rules |          | No Rules |          | Coord. Rules   |          | No Rules |          |
|                 | All          | Interior | All      | Interior | All            | Interior | All      | Interior |
| Baseline        | N/A          | N/A      | 68.43    | 21.67    | N/A            | N/A      | 69.00    | 21.42    |
| w/o g. functor  | 94.51        | 86.44    | 92.42    | 81.27    | 94.90          | 87.25    | 93.37    | 83.42    |
| w/o g. tag      | 93.43        | 83.75    | 90.89    | 77.50    | 93.82          | 84.56    | 91.64    | 79.12    |
| w/o c. functors | 91.38        | 78.70    | 89.71    | 74.57    | 91.91          | 79.79    | 90.41    | 76.04    |
| w/o c. tags     | 88.85        | 72.44    | 82.29    | 57.36    | 88.91          | 72.29    | 83.04    | 57.60    |
| All Features    | 94.43        | 86.24    | 92.01    | 80.26    | 95.21          | 88.04    | 93.37    | 83.42    |

• Evaluation based on Hajič et al. 2002

- Percentage of correct subtrees (no credit for partial order)
- Reordering correct trees (no insertion errors)

### **Evaluation: Full**



| Model        | Manual | Synthetic |
|--------------|--------|-----------|
| TR w/ Rules  | .4614  | .4777     |
| TR w/o Rules | .4532  | .4657     |
| AR           | .2337  | .2451     |

- Morphological insertion by Morphg (Carroll)
- BLEU score against original + 4 retranslations
  - "bound" on performance of MT system using this generation component
- AR intermediate syntax
  - lost information in mapping (valency ordering!)

#### Related work



- Amalgam (Corston-Oliver et al. '02)
  - Generation from a logical form
  - Assumes more information than impoverished TR
- Halogen (Langkilde-Geary '02)
  - minimally specified results closest to ours

#### Conclusions



- Simple generative models capable of recovering knowledge from deep structure
  - limited history, simple smoothing
- Greedy decoding procedure is fast, but joint decoder would likely help
  - insertion/reordering not conditionally independent