Three models for discriminative machine translation using Global Lexical Selection and Sentence Reconstruction

Sriram Venkatapathy IIIT – Hyderabad Srinivas Bangalore AT & T Research Labs

Complexity of the task

People of these islands have adopted Hindi as a means of communication.

- इन द्वीपों के लोगों ने हिंदी भाषा को एक संपर्क भाषा के रूप में अपना लिया है.
- ▶ These islands of people hindi language a commu. language in form of adopted-take-be

- Primary Observation:
 - There are long distance word order variations in English-Hindi unlike English-French.

Outline

- Previous Work
- Global Lexical Selection
- ▶ Three models
 - Bag-of-Words Lexical Choice Model
 - Sequential Lexical Choice Model
 - Hierarchical Lexical association and Reordering Model
- Results
- Conclusion and Future Work

Previous work on Stat MT.

- Local associations between source and target phrases are obtained.
 - 1. GIZA++ is used to align source words to target words.
 - 2. These alignments augmented with target-to-source alignments.
 - 3. Word-alignments are extended to obtain phrase level local associations.

Previous work on Stat MT.

- Translation is done in two steps
 - Local associations of phrases of source sentence are selected.

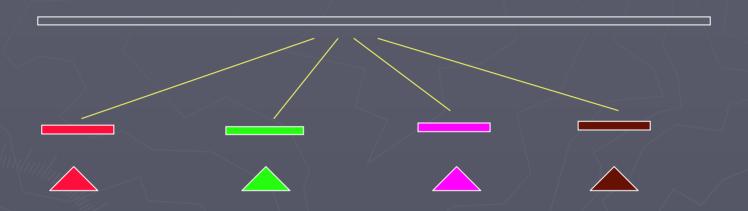
2. Re-ordering the target language phrases.

Outline

- Previous Work
- Global Lexical Selection
- ▶ Three models
 - Bag-of-Words Lexical Choice Model
 - Sequential Lexical Choice Model
 - Hierarchical Lexical association and Reordering Model
- Results
- Conclusion and Future Work

Global Lexical Selection

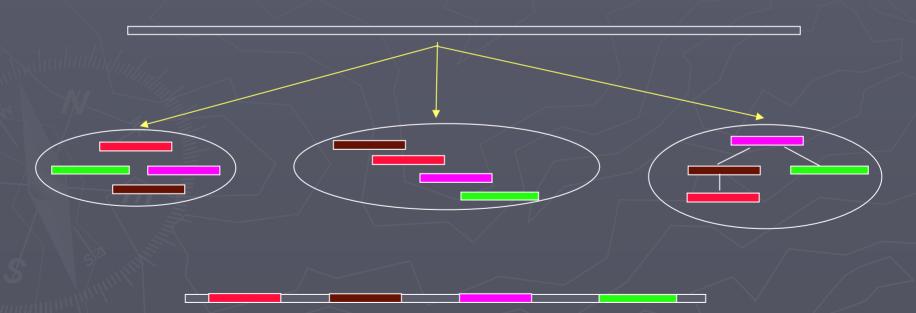
In contrast, the target words are associated to the entire source sentence.



- Intutions
 - 1. Lexico-syntactic features (not necessarily single words) in source sentence might trigger the presence of target words.
 - Also predict syntactic cues along with lexical/phrasal units.

Global Lexical Selection

- No longer tight association between source language words/phrases.
- During translation,



Outline

- Previous Work
- Global Lexical Selection
- ▶ Three models
 - Bag-of-Words Lexical Choice Model
 - Sequential Lexical Choice Model
 - Hierarchical Lexical association and Reordering Model
- Results
- Conclusion and Future Work

Bag of words model

Learn: Given a source sentence S, what is the probability that a target word t is in its translation?

i.e., estimate p (true | t , S) and p (false | t, S)

- Binary classifiers are built for all words in target language vocabulary.
- Maximum entropy model is used for learning.

Bag of words model - Training

- Training binary classifier for target language word t.
- Example sentences:

Number of training sentences for each target language word are total number of sentence pairs.

Bag of words model — Lexical selection

- For an input sentence S, first the target sentence bag is obtained.
- Source sentence features considered : N-grams
 - Let, BOgrams(S) be N-grams of source sentence S.
- ► The bag contains a target word w, if

```
p (true | t, BOgrams(S) ) > τ (threshold)
```

 \triangleright BOW (T) = { t | p (true | t, S) > τ)

Bag of words model

Sentence Reconstruction

Various permutations of words in BOW (T) considered and then ranked by a target language model.

All possible permutations -- computationally not feasible.

- Reduced by constraining permutations to be within local window of adjustable size (perm) . (Kanthak et al., 2005)
- During decoding, some words can be deleted. Parameter
 (δ) can be used to adjust length of translated outputs.

Outline

- Previous Work
- Global Lexical Selection
- ▶ Three models
 - Bag-of-Words Lexical Choice Model
 - Sequential Lexical Choice Model
 - Hierarchical Lexical association and Reordering Model
- Results
- Conclusion and Future Work

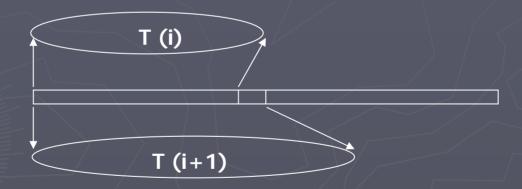
Sequential lexical choice model

- In Previous approach we begin permuting with an arbitrary order of words as start point.
- Better to start with a more definite string.

- During lexical selection, target words are first placed in an order faithful to source sentence words.
- Training same as bag of words model.

Sequential model - Decoding

- Goal: Associate sets of target words with every position in source sentence (S).
- Predict bags of words (T_i) for all prefixes of S.



Associate a target word t to source position (i+1) if it is present in T_{i+1} but not in T_i .

Sequential model - Decoding

Intution:

Word t associated with position i if some information at ith position triggered it.

Example:

▶ Pay a : दो

Pay a visit : मिलो

Associate मिलो with the position of visit in source sentence.

Limitation

 Using moving permutation window can explore only local word reordering.

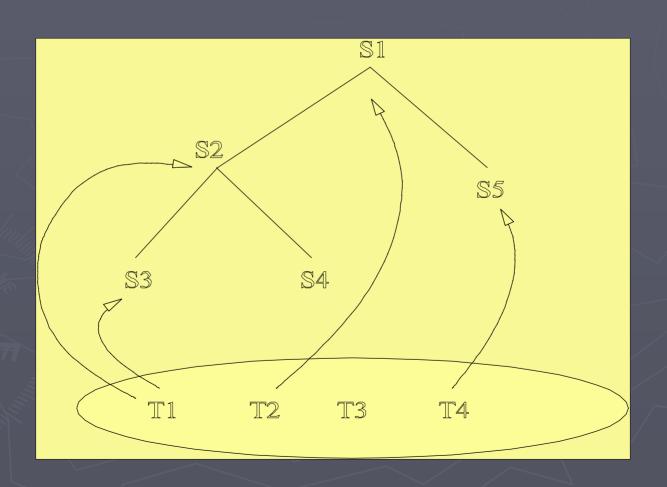
Outline

- Previous Work
- Global Lexical Selection
- ▶ Three models
 - Bag-of-Words Lexical Choice Model
 - Sequential Lexical Choice Model
 - Hierarchical Lexical association and Reordering Model
- Results
- Conclusion and Future Work

Hierarchical model

- Sequential model expected to work better for language pairs with only local word order variations.
 - May perform poorly for language pairs (English-Hindi) with significant word order variation.
- Previous approach: Associated target words with source positions.
- This approach: Associate target words with nodes of source dependency tree.

Hierarchical model - attachment

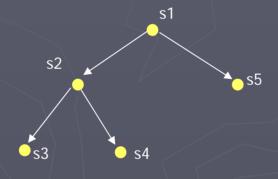


Hierarchical model - decoding

- 1. Predict the bag-of-words (same as previous models)
 - ▶ Given source sentence S and its dependency structure.
- 2. Attachment to source nodes.
 - Attach words from previous step to various nodes of source dependency structure.
- 3. Ordering target language words
 - Traverse source dependency structure in bottom-up fashion to obtain best target string.

Predict Bag-of-words

- Same as bag-of-words model except that both n-gram features and dependency features are used.
 - Include t if, p (true | t, f (S)) $> \tau$
- Features f(S)



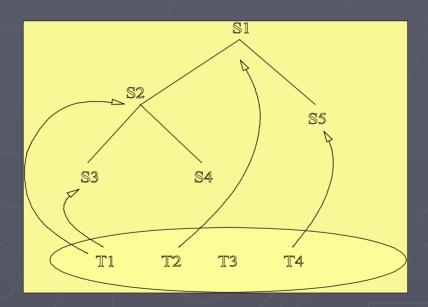
N-gram features

- 's1' 's2' 's3 s2' 's2 s4 s1'
- Dependency pairs

- 's2 s1' 's4 s2'
- Dependency Treelet
- 's3 s2 s5' 's2 s1 s5'

Hierarchical model - attachment

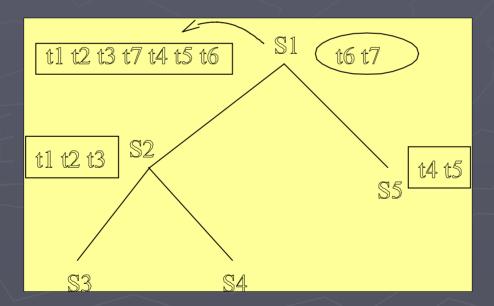
Every target word t is attached to the source node whose local features give the best positive probability for word t.



- ► If s_t is source node to which target word t is attached to
 - $s_t = argmax_s p(true | t, f_L(s))$.

Hierarchical model - ordering

- Source sentence dependency tree is traversed in a bottomup fashion.
- The best target string for every sub-tree is determined.



Outline

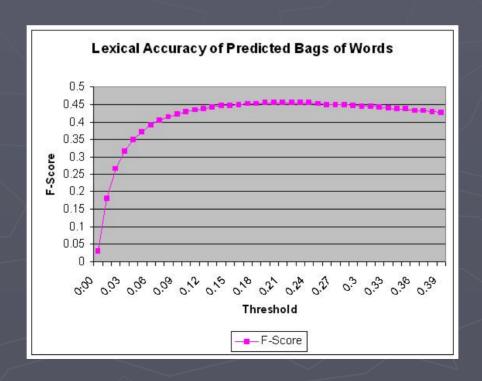
- Previous Work
- Global Lexical Selection
- ▶ Three models
 - Bag-of-Words Lexical Choice Model
 - Sequential Lexical Choice Model
 - Hierarchical Lexical association and Reordering Model
- > Results
- Conclusion and Future Work

Experiments - Dataset

- Language pair: English Hindi (large word-order variations)
- Training set: 37967 pairs
- Development : 819 pairs
- Test: 699 pairs
- Maximum sentence length = 30
- Unseen tokens in target side of devel corpus: 13.48%
- Unseen tokens in source side of devel corpus: 10.77%

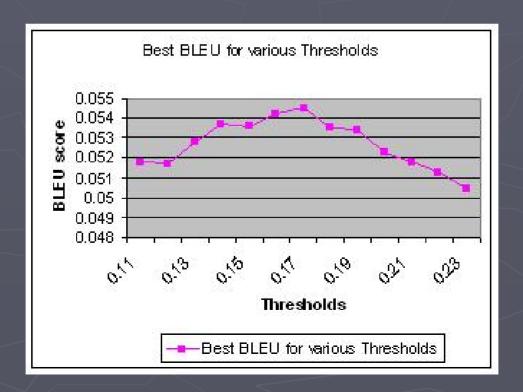
Results — Bag of words model

- Need to determine the best value of τ , perm and δ .
- Quality of bags (Lexical accuracy/F-score) determined by threshold τ. Best LexAcc = 0.455.



Results - Bag of words model

- All the bags obtained using various thresholds are now permuted.
- Best Bleu scores for various thresholds. Best Bleu = 0.0545



Results

		Devel. Set	Test. Set	
		BLEU	LexAcc	BLEU
Bag of words		0.0545	46.20	0.0428
Sequential		0.0586	45.24	0.0473
Hierarchical		0.0650	46.20	0.0498
	\rangle			
MOSES ($3 \rightarrow 1$)			34.42	0.0381
MOSES $(3 \rightarrow 3)$			32.18	0.0440
MOSES $(7 \rightarrow 7)$ (Untuned)			28.23	0.0222

Conclusion

- Global Lexical selection
 - To Make use of lexico-syntactic features on source.
 - Predict syntactic cues along with lexical/phrasal units.
- Predicted units are semi-aligned with source structures for better target sentence re-construction.
 - Alignment is an inferred step and not a primary step.
- These models give scope for obtaining entirely different structures in target language.

Future work

- Improve hierarchical reordering model.
 - Take K-best target strings for every sub-tree during traversal.

Handling cases of structural non-isomorphism between source and target sentences

Consider phrases on target sentence instead of just words.

Three models for discriminative machine translation using Global Lexical Selection and Sentence Reconstruction

Sriram Venkatapathy IIIT – Hyderabad Srinivas Bangalore AT & T Research Labs