Discriminative word alignment by learning the alignment structure and syntactic divergence between a language pair

Sriram Venkatapathy IIIT – Hyderabad

Aravind Joshi University of Pennsylvania

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results

Future Work and Conclusion

Word-Alignment

People of these islands have adopted Hindi as a means of communication.

- इन द्वीपों के लोगों ने हिंदी भाषा को एक संपर्क भाषा के रूप में अपना लिया है.
- ▶ These islands of people hindi language a commu. language in form of adopted-take-be

- Primary Observation:
 - The alignment between English-Hindi is largely non-monotonic, unlike the alignment between English-French.

Comparison

English

French

Hindi

English

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results

Future Work and Conclusion

Related approaches

Generative models

- IBM Models, HMM models (Implemented in Giza++)
- Discriminative models
 - (Taskar et al., 2005)
 - (Moore et al., 2005)

Generative models - Limitations

- Difficult to add new Parameters.
 - ► The generative story needs to be modified appropriately to incorporate the new parameters.
- Parameters are not optimized.
 - ➤ All the parameters used have equal weights. For example, translation probabilities have the same importance as distortion probabilities.
 - As more complex features are added to the model, the parameters need to be optimized appropriately.

(Taskar et al., 2005) - Limitations

- The alignment search and optimization requires that the features are local to the alignment link.
- There is 0th order correlation with other alignments links in an alignment.
- (Lacoste-Simon et al., 2006) include first-order features
 (similar to HMM Parameter) and fertility but still there isn't
 much room for more complex global features required for
 aligning diverse language pairs such as English-Hindi.

(Moore et al., 2006) - Limitations

- Structural features are applied on partial structures (ie.., every time a new alignment link is considered)
 - May lead to ruling out good alignments at an early stage.
 - Restricts us from using more complex syntactic features.
 (As it is a left to right search).

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results

Future Work and Conclusion

Discriminative Re-ranking Approach

► The best alignment â = argmax score(a | e, h)

▶ Here, **e** is the english and **h** is the hindi sentence.

 \triangleright score(a | e, h) = score_{La}(a | e, h) + score_S(a | e, h)

Alignment search (Discriminative Re-ranking)

► Three main steps

- Populate the Beam
 - ▶ Use local features to determine K-best alignments of source words with words in the target sentence.
- Re-order the Beam
 - ▶ Re-order the above alignments using structural features.
- Post-processing
 - ► Extend alignments to include other links that can be inferred using simple rules.

Alignment search (Discriminative Re-ranking)

Populate the Beam

- Obtain K-best candidate alignments using local scores.
- ► Local score is computed by looking at the features of the individual alignment links independently.
- \triangleright score_L(e_j, h_k) = W. f_L(e_j, h_k)
- \triangleright score_{La}(a | e, h) = \sum score_L(e_j, h_k)

Populate the Beam - 2

► Task: Populate the beam in the decreasing order of score_{La}(a | e, h).

- Compute the local score of each source word with every target word (including NULL).
- ► Top-k alignment links of each source word are chosen.

Populate the Beam - 2

- Populating K-best alignments
 - Implemented using Priority Queues.
- ► Initial State of Priority Queue
 - One entry representing the best alignment (set of best alignment links).
- At every iteration
 - Pop the best entry from the PQ.
 - Add it's k successor entries back into the PQ.

Re-order the Beam

Structural scores are now added to the local scores of the alignments in the beam in order to re-order the beam.

```
\blacksquare score<sub>s</sub>(a) = W . f<sub>s</sub> (a)
```

- Overall score = score_{La}(a) + score_S(a)
- Structural features look at properties of the entire alignment structure instead of individual alignment links.

Post-processing

Previous two steps produce alignments which contain one-toone and many-to-one mappings.

Goal is to include the best alignment structure from previous step to include other alignment links of one-to-many/many-tomany types.

► New alignment links are added while processing source words in the breadth first order of the **dependency structure**.

Post-processing

- Algorithm:
- ► Let w be next word considered. pw = parent (w).
 - If w , pw linked to one or more common words.
 Align w to all words already aligned with pw.
 - Else, Use simple target-specific rules to extend alignments of w.
- Recursively consider all the children of w

Post-processing

Figure 1: Inferring the many-to-many alignments of verb and auxiliaries

Figure 2: Inferring the one-to-many alignment to case-markers in Hindi

Figure 3: Inferring many-to-many alignment for source idioms

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results

Future Work and Conclusion

Features - Local

- DiceWords (Taskar et al., 2005)
- DiceRoots: Lemmatized forms of e_j and h_k.
- Dict: Whether there exists an entry from source word e_j to target word h_k.
- Null(POS): Binary feature which is active when a source word with a particular part-of-speech tag is aligned with NULL.

Overlap

This feature considers the instances in a sentence pair where a source word links to a target word which is a participant in more than one alignment link.

$$Overlap(\bar{a}) = \frac{\sum_{h_q \in T, Fert(h_q) > 1} Fert^2(h_q)}{\sum_{h \in T} Fert(h)}$$

Null Percent

 This feature measures the percentage of words in target sentence with zero fertility.

$$\textit{NullPercent} = \frac{|h_q|_{h_q \in T, \textit{Fertility}(h_q) = = 0}}{|h|_{h \in T}}$$

- Direction of Dependency Pair
 - Captures first order interdependence between the alignments links connected to two sources connected by a dependency relation.
 - One way to measure such interdependence is by noting the order of target sentence words the child and the parent of a source sentence dependency relation.
 - Three possible orders (next slide).

Direction of Dependency Pair

The feature thus captures a simple divergence between the source and target dependency structures.

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results

Future Work and Conclusion

Online large margin Training using MIRA

➤ For parameter optimization, we used online-large margin algorithm called MIRA (Crammer and Singer, 2005; McDonald et al., 2005).

▶ If T = { (x_i, y_i) }^m be gold data, where x_i is the ith sentence pair, y_i is the corresponding gold alignment. The task is to learn the weight vector W such that,

Online large margin Training using MIRA

► For a sentence pair, the weight should be optimized in the following fashion.

```
Minimize \| w_{i+1} - w_i \|

Such that

w. f(xi, yi) - w. f(xi, y'i) >= loss (yi, y'i)

For all, (xi,yi) \to T, y'i \to K-best Predictions (xi)
```

Online training algorithm.

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results
- Future Work and Conclusion

Data

Unsupervised data: 50,000 sentence pairs

Supervised data

Training : 4252 sentence pairs

Testing : 100 sentence pairs

GIZA++ results

Mode	Prec.	Rec.	F-meas.	AER
Normal: Eng-Hin	47.57	40.87	43.96	56.04
Normal: Hin-Eng	47.97	38.50	42.72	57.28
Normal: Inter:	88.71	27.52	42.01	57.99
Lemma.: Eng-Hin	53.60	44.58	48.67	51.33
Lemma.: Hin-Eng	53.83	42.68	47.61	52.39
Lemma.: Inter.	86.14	32.80	47.51	52.49

Table 3: Giza++ Results

Results using local features

<u>Features</u>	<u>Precision</u>	<u>Recall</u>	<u>F-measure</u>	<u>AER</u>
Dicewords + Diceroots	41.49	38.71	40.05	59.95
+ Null_POS	42.82	38.29	40.43	59.57
+ Dict	43.94	39.30	41.49	58.51
+ Word pairs	46.27	41.07	43.52	56.48

Results after adding Global features

<u>Features</u>	<u>Precision</u>	<u>Recall</u>	<u>F-measure</u>	<u>AER</u>
Local feats.	46.27	41.07	43.52	56.48
Local feats. + Overlap	48.17	42.76	45.30	54.70
Local feats + Direct_Deppair	47.93	42.55	45.08	54.92
Local feats + All struct. feats	48.81	43.31	45.90	54.10

Adding structural features to Giza transition probabilities

<u>Features</u>	<u>Precision</u>	<u>Recall</u>	<u>F-measure</u>	<u>AER</u>
IBM Model-4 Pars. + Local feats.	48.85	43.98	46.29	52.71
Local feats. + All struct. feats	48.95	50.06	49.50	50.50

Outline

- Word Alignment English-Hindi Language Pair
- Related approaches
- Discriminative Re-ranking approach
 - Features
 - Parameter optimization using MIRA
 - Results
- Future Work and Conclusion

Future work

Experiment with more sophisticated structural features.

Design an transducer (dependency based) which uses parameter weights learnt by our approach and the LM.

Future work

Merge the two alignment search steps to make better use of structural features.

THANK YOU

Questions and Suggestions?