Extracting Semantic Transfer Rules from Parallel Corpora with SMT Phrase Aligners

Petter Haugereid and Francis Bond Linguistics and Multilingual Studies Nanyang Technological University petterha@ntu.edu.sg bond@ieee.org

Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-6) Jeju, Korea, July 12 2012

1/46

< ロト < 同ト < ヨト < ヨ

Outline

Semantic Transfer

Two Methods of Rule Extraction

Extraction from a Lemmatized Parallel Corpus Extraction from a Parallel Corpus of Predicates

Experiment and Results

Discussion

Conclusion

Outline

Semantic Transfer

Jaen

- Jaen is a rule-based machine translation system employing semantic transfer rules
- The medium for the semantic transfer is Minimal Recursion Semantics, MRS (Copestake et al., 2005)
- The system consists of two HPSG grammars:
 - JACY parses the Japanese input (Siegel and Bender, 2002)
 - The ERG generates the English output (Flickinger, 2000)
- The third component of the system is the transfer grammar Jaen (Bond et al., 2011):

IN MRS representation produced by the Japanese grammar OUT MRS representation the English grammar can generate from

4 / 46

イロト イポト イヨト イヨ

Stochastic Models

• At each step of the translation process, the output is ranked by stochastic models

イロト 不得下 イヨト イヨト

5/46

- Only the 5 top ranked outputs at each step are kept
 ⇒ maximum number of translations: 125 (5×5×5)
- A final reranking using a combined model

Architecture

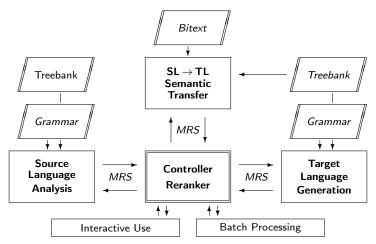


Figure 1: Architecture of the Jaen MT system

6 / 46

Transfer Rules

- Many transfer rules are simple predicate changing rules:
 - "_hon_n_rel" \Rightarrow "_book_n_1_rel"
- Other rules are more complex, and may transfer many Japanese relations into many English relations
- In all, there are 61 types of transfer rules

Most Frequent Rule Types

Rule type	Hand	Lemma	Pred	Intersect	Union	Total
noun	64	32033	31575	19100	44508	44572
n+n_n+n	0	32724	18967	13494	38197	38197
n+n_adj+n	0	22777	15406	10504	27679	27679
arg12+np_arg12+np	0	9788	1774	618	10944	10944
arg1_v	22	8325	1031	391	8965	8987
pp_pp	2	146	8584	19	8711	8713
adjective	27	4914	4034	2183	6765	6792
arg12_v	50	4720	1846	646	5920	5970
n_adj+n	1	0	4695	0	4695	4696
n+n_n	0	2591	3273	1831	4033	4033
n+n+n_n+n	0	3380	0	0	3376	3376
n+adj-adj-mtr	2	633	2586	182	3037	3039
n_n+n	1	0	2229	0	2229	2230

Table 1: Most common mtr rule types

4 日 > 4 団 > 4 国 > 4 国 > 国 の Q (
)

8/46

Handwritten and Automatically Extracted Rules

- The transfer grammar has a core set of 1,415 hand-written transfer rules:
 - function words
 - proper nouns
 - pronouns
 - time expressions
 - spatial expressions
 - the most common open class items
- The rest of the transfer rules (190,356 unique rules) are automatically extracted from parallel corpora

The full system is available from http://moin.delph-in.net/LogonTop (all components are open source, mainly LGPL and MIT)

9/46

イロト イポト イヨト イヨト

Outline

Two Methods of Rule Extraction

Extraction from a Lemmatized Parallel Corpus Extraction from a Parallel Corpus of Predicates

Parallel Corpus

- The parallel corpus we use for rule extraction is a collection of four Japanese English parallel corpora:
 - Tanaka Corpus (2,930,132 words)
 - The Japanese Wordnet Corpus (3,355,984 words)
 - The Japanese Wikipedia corpus (7,949,605 words)
 - The Kyoto University Text Corpus with NICT translations (1,976,071 words)
- Plus the dictionary Edict (3,822,642 words)
- (The word totals include both English and Japanese words)

Parallel Corpus

- The corpora were divided into into development, test, and training data
- The training data plus the bilingual dictionary was used for rule extraction
- The combined corpus used for rule extraction consists of
 - 9.6 million English words
 - 10.4 million Japanese words

Procedure 1

Lemmatizing the Corpus

- We extracted transfer rules directly from the surface lemmas of the parallel text
- The four parallel corpora were tokenized and lemmatized
 - Japanese: the MeCab morphological analyzer
 - English: the Freeling analyzer

Aligning the Lemmatized Corpus

• We then used MOSES and Anymalign to align the lemmatized parallel corpus

13/46

イロト イポト イヨト イヨト

Procedure 1

Selection of Alignments

- We selected the alignments that
 - had relatively high probability (> 0.1)
 - were known both to the parsing grammar (JACY) and the generating grammar ($_{\rm ERG})$

Procedure 1

Assigning Semantic Predicates

- The alignments were a mix of one-to-one-or-many and many-to-one-or-many
- For each lemma in each alignment, we listed the possible predicates according to the lexicons of JACY and the ERG
- Many lemmas are ambiguous
 - $\Rightarrow\,$ we often ended up with many semantic alignments for each surface alignment
- If a surface alignment contains 3 lemmas with two readings each
 - \Rightarrow 8 (2x2x2) semantic alignments

イロト イポト イヨト イヨト

Procedure 1

Filtering of Semantic Predicates

- Some lemmas have very rare readings
 - ⇒ We parsed the training corpus and made a list of 1-grams of the semantic relations of the highest ranked parses
 - \Rightarrow Predicates with probability > 0.2 were considered

Procedure 1

Types of Templates

- The semantic alignments were matched against 16 templates
- Seven templates are simple one-to-one mapping templates:
 - 1. noun \Rightarrow noun
 - 2. proper noun \Rightarrow proper noun
 - 3. adjective \Rightarrow adjective
 - 4. adjective \Rightarrow intransitive verb
 - 5. intransitive verb \Rightarrow intransitive verb
 - 6. transitive verb \Rightarrow transitive verb
 - 7. ditransitive verb \Rightarrow ditransitive verb

17/46

イロト イポト イヨト イヨ

Procedure 1

Multiword Templates

• Some multiword templates are relatively simple:

8. $n+n \Rightarrow n$

9. arg12+np \Rightarrow arg12+np_mtr

(2)
$$\frac{\mathcal{CO}}{\frac{\text{that job}}{\text{job}}} \frac{\text{the job.}}{\frac{\text{finished}}{\text{finished}}}$$
 .

イロト イポト イヨト イヨト

Procedure 1

Complex Templates

- Other rules are more complex:
 - 10. n+adj \Rightarrow adj
 - (3) 前の 冬-は <u>雪-が</u><u>多かっ-た</u>。 previous winter <u>snow</u> <u>much-be</u> *Previous winter was <u>snowy</u>* (4) <u>雪-の 多い</u>冬 だっ-た。

 $\underline{\text{snow}} \underline{\text{much}}$ winter was

It was a snowy winter.

In all, we extracted 126,964 rules with this method

Procedure 1

Problems with Filtering of Transfer Rules

- We were forced to filter semantic relations that have a low probability in order to avoid translations that do not generalize
 - \Rightarrow We failed to build rules that should have been built
 - (where an ambiguous lemma has one dominant reading, and one or more less frequent, but plausible, readings)
 - \Rightarrow We built incorrect rules
 - (where the dominant reading is used, but where a less frequent reading is correct)
- The method is not very precise
 - it is based on simple 1-gram counts
 - we are not considering the context of the individual lemma

20/46

イロト イポト イヨト イヨ

Procedure 1

Solution?

• A way to improve the quality of the assignment of the relation to the lemma would be to use a tagger or a parser

Using the Grammars as Semantic Taggers

- Instead we decided to try a different approach
 - parse the whole parallel training corpus with the parsing grammar and the generation grammar of the MT system
 - produce a parallel corpus of semantic relations instead of lemmas
 - $\Rightarrow\,$ use the linguistic grammars as high-precision semantic taggers

Procedure 2

A Parallel Corpus of Predicates

- The second rule extraction procedure is based on a parallel corpus of semantic representations
- We parsed the training corpus (1,578,602 items)
 - with the parsing grammar (JACY)
 - with the generation grammar (ERG)
 - \Rightarrow a parse with both grammars for 630,082 items
- The grammars employ statistical models trained on treebanks in order to select the most probable analysis
- For our semantic corpus, we used the semantic representation of the highest ranked analysis on either side

Semantic Transfer

r Two Methods of Rule Extraction Experiment and Results Discussion Conclusion References

Procedure 2

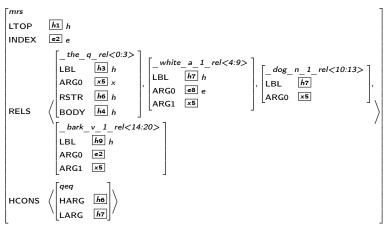


Figure 2: MRS of The white dog barks

Procedure 2

Semantic Parallel Corpus

- The resulting parallel corpus of semantic representations had:
 - 4,712,301 relations for Japanese
 - 3,806,316 relations for English
 - $\Rightarrow\,$ a little more than a third of the size of the lemmatized parallel corpus
- The grammars used for parsing are deep linguistic grammars

24 / 46

イロト イポト イヨト イヨト

Procedure 2

Using the Grammars for Disambiguation

- Transfer rules extraction from from the semantic parallel corpus is similar to the rule extraction from the lemmatized corpus
- Major difference:
 - the semantic corpus is disambiguated by the grammars

Procedure 2

Alignment of Predicates

- The semantic parallel corpus was aligned with MOSES and Anymalign
- We selected the alignments with probability > 0.01

Procedure 2

Checking Alignments against Rule Templates

- The alignments were checked against 22 rule templates
 - \Rightarrow 112,579 rules
 - (slightly fewer than the number of rules extracted from the lemmatized corpus 126,964)
- 49,187 of the rules overlap with the rules extracted from the lemmatized corpus

 \Rightarrow a total number of unique rules of 190,356

イロト イポト イヨト イヨト

Outline

Experiment and Results

Three Transfer Grammar Versions

- We made three versions of the transfer grammar:
 - Lemm: the rules extracted from the lemmatized corpus
 - Pred: the rules extracted from the corpus of semantic representations
 - Combined: the union of Lemm and Pred

Two Additional Transfer Grammar Versions

- We also made two versions of the transfer grammar including only the 15 templates used in both Lemm and Pred:
 - LemmCore
 - PredCore

Tests

• The five versions of the transfer grammar were tested on the Tanaka Corpus test data (4,500 sentences):

	Parsing	Transfer	Gener.	Overall	NEVA	Oracle	F1
LemmCore	79.8%	46.3%	56.0%	20.7%	18.65	22.99	19.61
Lemm	79.8%	46.6%	56.0%	20.8%	18.65	22.99	19.69
PredCore	79.8%	48.7%	52.9%	20.6%	20.40	24.81	20.48
Pred	79.8%	49.7%	52.6%	20.8%	21.11	25.75	20.96
Combined	79.8%	60.9%	54.7%	26.5%	19.77	24.00	22.66

Table 2: Evaluation of the Tanaka Corpus Test Data

31/46

イロト 不得下 イヨト イヨト

Results

• 644 of the test sentences were translated by all versions of the transfer grammar (Lemm, Pred, and Combined):

Version	NEVA
Lemmatized	20.44
MRS	23.55
Lemma + MRS	23.04

Table 3: NEVA scores of intersecting translations

Comparison with MOSES, Combined

BLEUMETEORHUMANJaEn First16.7728.0258MOSES30.1931.9842

Table 4: BLEU Comparison of Jaen loaded with the Combined rules, andMOSES (1194 items)

Comparison with MOSES, Pred

BLEUMETEORHUMANJaEn18.3429.0258MOSES31.3732.1442

Table 5: BLEU Comparison of Jaen loaded with the Pred rules, andMOSES (936 items)

Jaen Errors

• The output of Jaen is mostly grammatical, but it may not always make sense:

(5)	Source:	我々は魚を生で食べる。
	Ref.:	We eat fish raw.
	Moses:	We eat fish raw.
	Jaen:	We eat fish in the camcorder.

• Jaen sometimes gets the arguments wrong:

(6)	Source: Ref.:	彼 は 大統領 に 選ば れ た 。 He was elected president.
		•
	Moses:	He was elected president.
	Jaen:	The president chose him.

イロト イポト イヨト イヨト

Moses Errors 1

• The output of Moses is more likely to lack words in the translation:

(7)	Source:	カーテン が ゆっくり 引か れ た 。
	Ref.:	The curtains were drawn slowly.
	Moses:	The curtain was slowly.
	Jaen:	The curtain was drawn slowly.

- Missing words become extra problematic when a negation is not transferred:
 - (8) Source: 偏見は持つべきではない。
 Ref.: We shouldn't have any prejudice.
 Moses: You should have a bias.
 Jaen: I shouldn't have prejudice.

36 / 46

イロト イポト イヨト イヨ

Moses Errors 2

• The output of Moses is more likely to be ungrammatical:

(9)	Source: Ref.: Moses: Jaen:	私 は 日本 を 深く 愛し て いる 。 I have a deep love for Japan. I is devoted to Japan. I am deeply loving Japan.
(10)	Source: Ref.: Moses: Jaen:	彼女 は タオル を 固く 絞っ た。 She wrung the towel dry. She squeezed pressed the towel. She wrung the towel hard.

37 / 46

イロト 不得下 イヨト イヨト

Outline

Discussion

Increasing Coverage of Jaen

- In order to get a system with full coverage, Jaen could be used with Moses as a fallback
- This would combine the precision of the rule-based system with the robustness of Moses

Extending Jaen, by Using More Training Data

- The coverage and the quality of Jaen itself can be extended by using more training data
- Our experience is that this holds even if the training data is from a different domain
- By adding training data, we are incrementally adding rules to the system
- We still build the rules we built before, plus some more rules extracted from the new data
- Learning rules that are not applicable for the translation task does not harm or slow down the system

40 / 46

イロト イポト イヨト イヨト

Extending Jaen by Adding Templates

- We can also extend the system by adding more transfer templates
- So far, we are using 23 templates
- By adding new templates for multiword expressions, we can increase the precision

Using Robust Parsing Techniques

• We would also like to get more from the data we have, by making the parser more robust

Outline

Conclusion

Conclusion

- Semantic transfer rules can be learned from parallel corpora that have been aligned in SMT phrase tables
- First strategy:
 - lemmatize the parallel corpus and use SMT aligners to create phrase tables of lemmas
 - · look up the relations associated with the lemmas
 - \Rightarrow 127,000 rules
- Second strategy:
 - parse the parallel corpus
 - $\Rightarrow\,$ a parallel corpus of predicates about a third the size of the full corpus
 - align the parallel corpus of predicates with SMT aligners
 - \Rightarrow 113,000 rules

44 / 46

イロト イポト イヨト イヨ

Conclusion

• The two rule extraction methods complement each other:

- About 30% of the sentences translated with one rule set are not translated by the other
- By merging the two rule sets into one, we increased the coverage of the system to 26.6%
- A human evaluator preferred Jaen's translation to that of Moses for 58 out of a random sample of 100 translations

45 / 46

- Francis Bond, Stephan Oepen, Eric Nichols, Dan Flickinger, Erik Velldal, and Petter Haugereid. 2011. Deep open source machine translation. *Machine Translation*, 25(2):87–105. URL http://dx.doi.org/10.1007/s10590-011-9099-4, (Special Issue on Open source Machine Translation).
- Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. 2005. Minimal Recursion Semantics. An introduction. *Research* on Language and Computation, 3(4):281–332.
- Dan Flickinger. 2000. On building a more efficient grammar by exploiting types. *Natural Language Engineering*, 6(1):15–28. (Special Issue on Efficient Processing with HPSG).
- Melanie Siegel and Emily M. Bender. 2002. Efficient deep processing of Japanese. In *Proceedings of the 3rd Workshop on Asian Language Resources and International Standardization at the 19th International Conference on Computational Linguistics*, pages 1–8. Taipei.