
A CYK+ Variant for SCFG Decoding
Without a Dot Chart

Rico Sennrich

Institute for Language, Cognition and Computation
University of Edinburgh

October 25 2014

R. Sennrich Recursive CYK+ 1 / 15



Outline

CYK+ and the role of the dot chart

Recursive variant

Evaluation

R. Sennrich Recursive CYK+ 2 / 15



Problem

CYK+ parsing
CYK+ and Earley-style variants are popular parsers for decoding with
SCFGs (Moses, cdec, SAMT, Jane, ...).

alternative: binarization and decoding with plain CYK.

problem
CYK+ parsing [with syntactic models] takes a lot of memory.

n = 20 n = 40 n = 80
0.32 GB 2.63 GB 51.64 GB

most of the memory is consumed by the dot chart.

solution

in this talk, we present a variant of CYK+ without a dot chart.

our variant requires less memory and is faster, with same result.

R. Sennrich Recursive CYK+ 3 / 15



Problem

CYK+ parsing
CYK+ and Earley-style variants are popular parsers for decoding with
SCFGs (Moses, cdec, SAMT, Jane, ...).

alternative: binarization and decoding with plain CYK.

problem
CYK+ parsing [with syntactic models] takes a lot of memory.

n = 20 n = 40 n = 80
0.32 GB 2.63 GB 51.64 GB

most of the memory is consumed by the dot chart.

solution
in this talk, we present a variant of CYK+ without a dot chart.

our variant requires less memory and is faster, with same result.

R. Sennrich Recursive CYK+ 3 / 15



CYK+

The CYK+ algorithm
bottom-up chart parser

generalization of CYK to n-ary rules
two data structures:

main chart: non-terminal symbols
dot chart: rule prefix applications (dotted items)

difference to Earley: dotted item represents all rules with same prefix

dot chart allows dynamic binarization:
rules that match span (i,j) are found by combining dotted item in (i,k)
and (non-)terminal symbol in span (k,j).

R. Sennrich Recursive CYK+ 4 / 15



CYK+

it is a trap
1

NP•

2
3

ART•

4
5

NP V•

6
7
8
9

10

it is a trap
1

NP

2

V

3

ART

4

NN

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1

NP•

2
3

ART•

4
5

NP V•

6
7
8
9

10

it is a trap
1 NP
2

V

3

ART

4

NN

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3

ART•

4
5

NP V•

6
7
8
9

10

it is a trap
1 NP
2

V

3

ART

4

NN

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3

ART•

4
5

NP V•

6
7
8
9

10

it is a trap
1 NP
2 V
3

ART

4

NN

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3

ART•

4
5

NP V•

6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4

NN

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3 ART•
4
5

NP V•

6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4

NN

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3 ART•
4
5

NP V•

6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7 NP
8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7 NP
8
9

10 S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

CYK+ steps
1 search for terminal rule of size 1.
2 combine dotted item and (non-)terminal of two subspans.
3 create new dotted item from (non-)terminal in cell.

R. Sennrich Recursive CYK+ 5 / 15



CYK+: complexity considerations

monolingual 1-best parser

main chart: O(n2)

dot chart: O(n2)

parsing steps: O(n3)

SCFG decoding
Non-locality of LM scores restricts recombination of dotted items
[Hopkins and Langmead, 2010]

main chart: O(n2) (with beam search)

dot chart: O(nscope(G))

parsing steps: O(nscope(G))

rule scope: number of choice points in rule

the NPB of NNP

on the fast jet ski of mr smith

the NPB of NNP

on the fast jet ski of mr smith

the JJ NPB of NNP

the JJ NPB of NNP

the JJ NPB of NNP

the JJ NPB of NNP

choice point

choice point choice point

Figure 2: A demonstration of application contexts for
rules with lexical anchors. There are O(n) application
contexts for CFG rule “S → the NPB of NNP”, and
O(n2) application contexts for CFG rule “S → the JJ
NPB of NNP”, if we assume that the input sentence has
length n and contains no repeated words.

ero et al., 2009) provide a relaxation of CNF called
Lexical Normal Form (LNF). LNF is a superclass of
CNF that also allows rules whose right-hand sides
have no consecutive nonterminals. The intuition is
that the terminals provide anchors that limit the ap-
plicability of a given rule. For instance, consider the
rule NP→ the NPB of NNP. See Figure 2. Because
the terminals constrain our choices, there are only
two different application contexts. The implicit as-
sumption is that input sentences will not repeat the
same word more than a small constant number of
times. If we make the explicit assumption that all
words of an input sentence are unique, then there
are O(n2) application contexts for a “no consecu-
tive nonterminals” rule. Thus under this assumption,
the running time of chart parsing is stillO(n3) when
applied to LNF grammars.

But once we make this assumption explicit, it be-
comes clear that we can go even further than LNF
and still maintain the cubic bound on the runtime.
Consider the rule NP → the JJ NPB of NNP. This
rule is not LNF, but there are still only O(n2) ap-
plication contexts, due to the anchoring effect of the
terminals. In general, for a rule of the form X→ γ,
there are at most O(np) application contexts, where
p is the number of consecutive nonterminal pairs in

the string X ·γ· X (where X is an arbitrary nontermi-
nal). We refer to p as the scope of a rule. Thus chart
parsing runs in time O(nscope(G)), where scope(G)
is the maximum scope of any of the rules in CFG G.
Specifically, any scope-3 grammar can be decoded
in cubic time.

Like (DeNero et al., 2009), the target of our in-
terest is synchronous context-free grammar (SCFG)
decoding with rules extracted using the GHKM al-
gorithm (Galley et al., 2004). In practice, it turns out
that only a small percentage of the lexical rules in
our system have scope greater than 3. By simply re-
moving these rules from the grammar, we can main-
tain the cubic running time of chart parsing without
any kind of binarization. This has three advantages.
First, we do not inflate the grammar constant. Sec-
ond, unlike (DeNero et al., 2009), we maintain the
synchronous property of the grammar, and thus can
integrate language model scoring into chart parsing.
Finally, a system without binarized rules is consid-
erably simpler to build and maintain. We show that
this approach gives us better practical performance
than a mature system that binarizes using the tech-
nique of (Zhang et al., 2006).

2 Preliminaries

Assume we have a global vocabulary of symbols,
containing the reserved substitution symbol ♦. De-
fine a sentence as a sequence of symbols. We will
typically use space-delimited quotations to represent
example sentences, e.g. “the fast jet ski” rather than
〈the, fast, jet, ski〉. We will use the dot operator to
represent the concatenation of sentences, e.g. “the
fast” · “jet ski” = “the fast jet ski”.

Define the rank of a sentence as the count
of its ♦ symbols. We will use the no-
tation SUB(s, s1, ..., sk) to denote the substitu-
tion of k sentences s1, ..., sk into a k-rank sen-
tence s. For instance, if s = “the ♦ ♦ of
♦”, then SUB(s, “fast”, “jet ski”, “mr smith”) =
“the fast jet ski of mr smith”.

To refer to a subsentence, define a span as a pair
[a, b] of nonnegative integers such that a < b. For
a sentence s = 〈s1, s2, ..., sn〉 and a span [a, b] such
that b ≤ n, define s[a,b] = 〈sa+1, ..., sb〉.

647

R. Sennrich Recursive CYK+ 6 / 15



The dot chart in SCFG decoding

purpose of dot chart
allows recombination of different dotted items
→ does not apply to SCFG decoding

allows re-use of same dotted item for different spans

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7 NP
8
9

10 S

dot chart main chart

R. Sennrich Recursive CYK+ 7 / 15



The dot chart in SCFG decoding

purpose of dot chart
allows recombination of different dotted items
→ does not apply to SCFG decoding

allows re-use of same dotted item for different spans

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7 NP
8
9

10 S

dot chart main chart

R. Sennrich Recursive CYK+ 7 / 15



The dot chart in SCFG decoding

purpose of dot chart
allows recombination of different dotted items
→ does not apply to SCFG decoding

allows re-use of same dotted item for different spans

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7 NP
8
9

10 S

dot chart main chart

R. Sennrich Recursive CYK+ 7 / 15



The dot chart in SCFG decoding

purpose of dot chart
allows recombination of different dotted items
→ does not apply to SCFG decoding

allows re-use of same dotted item for different spans

it is a trap
1 NP•
2
3 ART•
4
5 NP V•
6
7
8
9

10

it is a trap
1 NP
2 V
3 ART
4 NN
5
6
7 NP
8
9

10 S

dot chart main chart

R. Sennrich Recursive CYK+ 7 / 15



A recursive variant

Core idea
we do not initially know if rule prefix application can be extended.
→ dotted items are re-visited throughout time.

we can change chart traversal order to guarantee that when span (i,k)
is visited, all spans (k,j) have been visited before.

this eliminates need to store dotted items;
instead, they are extended recursively, then discarded.

it is a trap
1
2
3
4
5
6
7
8
9

10

it is a trap
1
2
3
4
5
6
7
8
9

10
traditional proposed

R. Sennrich Recursive CYK+ 8 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1

NN

2

ART

3

NP

4

V

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1 NN
2

ART

3

NP

4

V

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1 NN
2 ART
3

NP

4

V

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2 ART•
3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1 NN
2 ART
3 NP
4

V

5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1 NN
2 ART
3 NP
4 V
5
6
7

NP

8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1 NN
2 ART
3 NP
4 V
5
6
7 NP
8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7 NP•
8 NP V •
9

10

it is a trap
1 NN
2 ART
3 NP
4 V
5
6
7 NP
8
9

10

S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7 NP•
8 NP V •
9

10

it is a trap
1 NN
2 ART
3 NP
4 V
5
6
7 NP
8
9

10 S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

it is a trap
1
2

ART•

3
4
5
6
7

NP•

8

NP V •

9
10

it is a trap
1 NN
2 ART
3 NP
4 V
5
6
7 NP
8
9

10 S

S → NP V NP
NP → ART NN
NP → it

V → is
ART → a
NN → trap

dot chart main chart grammar

recursive CYK+ steps
1 search for terminal rule of size 1.
2 initial call to rule consume function.
3 recursive call to rule consume function.

R. Sennrich Recursive CYK+ 9 / 15



Recursive CYK+

Implementation notes
dot chart exists implicitly in stack of recursive function: O(|R|)
each rule prefix application is constructed exactly once.

rule applications may be found asynchronously; we keep (pruned) list
for each span, and perform cube pruning synchronously.
→ no difference in translation output to original CYK+ algorithm.

R. Sennrich Recursive CYK+ 10 / 15



Evaluation

Task
English→German string-to-tree SMT system [Williams et al., 2014]

grammar pruned to scope 3 [Hopkins and Langmead, 2010]

all algorithms implemented in Moses

focus on memory and speed (same translation)

we ignore memory cost and loading times of model

Baselines
CYK+

Scope-3 parser [Williams and Koehn, 2012]; inspired by
[Hopkins and Langmead, 2010]
no dot chart, but more complex algorithm that constructs lattice for
each rule and span representing all rule applications.

R. Sennrich Recursive CYK+ 11 / 15



Evaluation: memory

algorithm n = 20 n = 40 n = 80

Scope-3 0.02 0.04 0.34
CYK+ 0.32 2.63 51.64
+ recursive 0.02 0.04 0.15
+ compression 0.02 0.04 0.15

Table : Peak memory consumption (in GB) of string-to-tree SMT decoder

R. Sennrich Recursive CYK+ 12 / 15



Evaluation: speed

0 20 40 60 80
0

100

200

300

400

sentence length

de
co

di
ng

tim
e

(s
ec

on
ds

)

Scope-3 parser
CYK+
+ recursive
+ compression

algorithm
length 80 average

parse total parse total
Scope-3 74.5 81.1 1.9 2.6
CYK+ 358.0 365.4 8.4 9.1
+ recursive 33.7 40.1 1.5 2.2
+ compression 15.0 21.2 1.0 1.7

Table : Parse time and total decoding time per sentence (in seconds).

R. Sennrich Recursive CYK+ 13 / 15



Discussion

Is Recursive CYK+ ever a bad Idea?
complexity characteristics are different in monolingual case

there might be smarter ways to organize/prune dot chart
→ memory consumption will still be worse
→ pruning non-trivial because dotted item represents many rule

little effect for grammars with scope < 3
→ true for default hiero extraction heuristics

R. Sennrich Recursive CYK+ 14 / 15



Conclusion

Summary
dot chart is common, but of limited use in SCFG decoding

reordering of chart traversal eliminates need for dot chart

no speed-memory trade-off: recursive variant consumes less memory
and is faster than CYK+

in the poster: matrix compression for more efficiency gains

algorithm narrows efficiency gap between phrase-based and
syntax-based (string-to-tree) systems

new default in Moses

R. Sennrich Recursive CYK+ 15 / 15



Thank you!

R. Sennrich Recursive CYK+ 16 / 15



Bibliography I

Heafield, K., Koehn, P., and Lavie, A. (2013).
Grouping Language Model Boundary Words to Speed K-Best Extraction from Hypergraphs.
In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 958–968, Atlanta, Georgia, USA.

Hopkins, M. and Langmead, G. (2010).
SCFG Decoding Without Binarization.
In EMNLP, pages 646–655.

Williams, P. and Koehn, P. (2012).
GHKM Rule Extraction and Scope-3 Parsing in Moses.
In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages 388–394, Montréal, Canada. Association for
Computational Linguistics.

Williams, P., Sennrich, R., Nadejde, M., Huck, M., Hasler, E., and Koehn, P. (2014).
Edinburgh’s Syntax-Based Systems at WMT 2014.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 207–214, Baltimore, Maryland, USA.
Association for Computational Linguistics.

R. Sennrich Recursive CYK+ 17 / 15


