
1

Comp 5311 Database Management Systems

8. Relational Database Design – 3NF - BCNF

2

Looking for a “Good” Form

• Recall that the goal of a good database design are
– Lossless decomposition - necessary in order to ensure

correctness of the data
– Dependency preservation – not necessary, but desirable in

order to achieve efficiency of updates
– Good form – desirable in order to avoid redundancy.

• But what it means for a table to be in good form?

• If the domains of all attributes in a table contain only atomic
values, then the table is in First Normal Form (1NF).

• In other words, there are no nested tables, multi-valued
attributes, or complex structures such as lists.

• Relational tables are always in 1NF, according to the definition
of the relational model.

3

Third Normal Form (3NF)

• R is a relation schema, with the set F of FDs

• R is in 3NF if and only if

– for each FD: X → {A} in F+

• Then

A  X (trivial FD), or

X is a superkey for R, or

A is prime attribute for R

• In words: For every FD that does not contain extraneous
(useless) attributes:

– the LHS is a candidate key, or

– the RHS is a prime attribute, i.e., it is an attribute that is
part of a candidate key

4

3NF Example

• R = (B, C, E)
F = {{E}→{B}, {B,C}→{E}}

• Remember that you always have to find all candidate
keys in order to determine the normal form of a table

• Two candidate keys: BC and EC

{E}→{B} B is prime attribute

{B,C}→{E} BC is a candidate key

• None of the FDs violates the rules of the previous slide.
Therefore, R is in 3NF

5

Redundancy in 3NF

• Bank-schema = (Branch B, Customer C, Employee E)
• F = {{E}→{B}, e.g., an employee works in a single branch
• {B,C}→{E}}, e.g., when a customer goes to a certain branch s/he is always

served by the same employee

Branch Customer Employee

HKUST Wong Au

HKUST Chin Au

Central Wong Jones

Central null Cheng

• A 3NF table still has problems

▪ redundancy (e.g., we repeat that Au works at HKUST branch)

▪ need to use null values (e.g., to represent that Cheng works at Central even
though he is not assigned any customers).

6

Algorithm for 3NF Synthesis

Let R be the initial table with FDs F

Compute the canonical cover Fc of F

S=

for each FD X→Y in the canonical cover Fc

If none of the tables contains X,Y
S=S(X,Y)

if none of the tables contains a candidate key for R

Choose any candidate key CN

S=S  table with attributes of CN

The algorithm always creates a lossless-join, dependency-preserving, 3NF
decomposition.

7

3NF Example

• Bank=(branch-name, customer-name, banker-name, office-number)

• Functional dependencies (also canonical cover):
{banker-name}→{branch-name, office-number}
{customer-name, branch-name}→{banker-name}

• Candidate Keys: {customer-name, branch-name} or {customer-name, banker-
name}

• {banker-name}→{office-number} violates 3NF

• 3NF tables – for each FD in the canonical cover create a table

Banker = (banker-name, branch-name, office-number)

Customer-Branch = (customer-name, branch-name, banker-name)

• Since Customer-Branch contains a candidate key for
Bank, we are done.

• Question: is the decomposition lossless and dependency preserving?

Answer: Yes – all decompositions generated by this algorithm have these
properties

8

Boyce-Codd Normal Form (BCNF)

• R is a relation schema, with the set F of FDs
• R is in BCNF if and only if

for each FD: X → {A} in F+

• Then
A  X (trivial FD), or
X is a superkey for R

• In words: For every FD that does not contain
extraneous (useless) attributes, the LHS of every FD
is a candidate key.

• BCNF tables have no redundancy.
• If a table is in BCNF it is also in 3NF (and 2NF and

1NF)

9

BCNF Example

• R = (B, C, E)
F = {{E}→{B}, {B,C}→{E}}

• Two candidate keys: BC and EC

{B,C}→{E} does not violate BCNF because BC is a key

{E}→{B} violates BCNF because E is not a key

• In order to achieve BCNF we have to decompose the
table but how?

Since the decomposition must be lossless, we only have
one option: R1(B,E), and R2(C,E). The common attribute
E should be key of one fragment, here R1.

10

BCNF Example (cont)

• Bank-schema = (Branch B, Customer C, Employee E)
• F = {{E}→{B}, {B,C}→{E}}
• Decompose into R1(B,E), and R2(C,E)

Branch Customer Employee

HKUST Wong Au

HKUST Chin Au

Central Wong Jones

Central null Cheng

Branch Employee

HKUST Au

Central Jones

Central Cheng

Customer Employee

Wong Au

Chin Au

Wong Jones• We have avoided the problems of redundancy
and null values of 3NF

11

BCNF Example (cont)

We can generate the original table by joining the two fragments, using an
outer join

Branch Cust. Empl.

HKUST Wong Au

HKUST Chin Au

Central Wong Jones

Central null Cheng

Branch Employee

HKUST Au

Central Jones

Central Cheng

Customer Employee

Wong Au

Chin Au

Wong Jones

• Is the decomposition dependency preserving?
– No. We loose {B,C}→{E}

• Can we have a dependency preserving decomposition?

– No. No matter how we break we loose {B,C}→{E} since it involves all attributes

=

12

Observations about BCNF

• Best Normal Form

• Avoids the problems of redundancy and all anomalies

• There is always a lossless decomposition that
generates BCNF tables

• However, we may not be able to preserve all
dependencies

• Next step: an algorithm for automatically generating
BCNF tables.

13

Algorithm for BCNF Decomposition

Let R be the initial table with FDs F
S={R}
Until all relation schemes in S are in BCNF

for each R in S
for each FD X → Y that violates BCNF for R

S = (S – {R})  (R-Y)  (X,Y)
enduntil

• This is a simplified version. In words:
• When we find a table R with BCNF violation X→Y we:

1] Remove R from S
2] Add a table that has the same attributes as R except for Y
3] Add a second table that contains the attributes in X and Y

14

BCNF Decomposition Example

▪ Let us consider the relation scheme R=(A,B,C,D,E)
and the FDs:

{A} → {B,E}, {C} → {D}

▪ Candidate key: AC

▪ Both functional dependencies violate BCNF because
the LHS is not a candidate key

▪ Pick {A} → {B,E}

▪ We can also choose {C} → {D} – different choices
lead to different decompositions.

▪ (A,B,C,D,E) generates R1=(A,C,D) and R2=(A,B,E)

▪ Do we need to decompose further?

15

BCNF Decomposition Example (cont)

▪ (A,C,D) and (A,B,E)

▪ {A}→{B,E}, {C}→{D}

▪ We need to decompose R1=(A,C,D) because of the FD {C}→{D}

▪ Thus (A,C,D) is replaced with R3=(A,C) and R4=(C,D).

▪ Final decomposition: R2=(A,B,E), R3=(A,C), R4=(C,D)

• Is the decomposition lossless?

• Yes the algorithm always creates lossless decompositions. In step S = (S –
{R})  (R-Y)  (X,Y) we replace R with tables (R-Y) and (X,Y) that have X as
the common attribute and X→Y, i.e., X is the key of (X,Y)

• Is the decomposition dependency preserving?

• Yes because F2={{A}→{B,E}}, F3=, F4={{C}→{D}} and (F2F3F4)+ =
F+

• But remember: sometimes we may not be able to preserve dependencies

16

Testing if a FD violates BCNF

• Important question: which dependencies to check for BCNF
violations? F or F+?

• Answer-Part 1: To check if a table R with a given set of FDs F
is in BCNF, it suffices to check only the dependencies in F

• Consider R (A, B, C, D), with F = {{A}→{B}, {B}→{C}}
– The key is {A,D}.
– R violates BCNF because the LHS of both {A}→{B} and {B}→{C}.

Neither A nor B is a key.
– We can see that by simply using F - we do not need F+ (e.g., we do

not need to check the implicit FD {A}→{C})

• We can show that if none of the dependencies in F causes a
violation of BCNF, then none of the dependencies in F+ will
cause a violation of BCNF either.

17

Testing if a FD violates BCNF (cont)

• Answer-Part 2: However, using only F is insufficient when
testing a fragment in the decomposition of R

– Consider again R(A,B,C,D), with F = {{A}→{B}, {B}→{C}}
that violates BCNF

• Decompose R into and R1(A,C,D) and R2(A,B)

• There is no FD in F that contains only attributes from R1(A,C,D)
so we might be mislead into thinking that R1 is in BCNF.

• In fact, dependency {A}→{C} in F+ shows that R1 is not in
BCNF.

• Therefore, for the decomposed relations we also need to
consider dependencies in F+

18

Different BCNF Decompositions

▪ The different possible orders in which we consider FDs violating BCNF in the
algorithm may lead to different decompositions

▪ Previous example: R(A,B,C,D), F = {{A}→{B}, {B}→{C}}

▪ Previous BCNF decomposition: R2(A,B), R3(A,D), R4(A,C)

▪ Question: is the decomposition dependency preserving?

▪ Answer: No – we lost the dependency {B}→{C}

▪ Question: Can you obtain a dependency preserving decomposition?

▪ Answer: Yes – in the first decomposition we first applied violation {A}→{B}. If,
instead, we apply {B}→{C} we obtain:

▪ R1=(A,B,D) and R2=(B,C)

▪ We decompose R1=(A,B,D) further using {A} → {B} to obtain:

▪ R3=(A,D) and R4=(A,B)

▪ The final decomposition R2=(B,C), R3=(A,D), R4=(A,B) is dependency preserving.

19

Normalization Goals

• Goal for a relational database design is:

– BCNF.

– Lossless join.

– Dependency preservation.

• If we cannot achieve this, we accept one of

– Lack of dependency preservation in BCNF

– Redundancy due to use of 3NF

20

ER Model and Normalization

• When an E-R diagram is carefully designed, the tables generated from
the E-R diagram should not need further normalization.

• However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

• E.g. employee entity with attributes department-number and
department-address, and an FD department-number → department-
address

– Good design would have made department an entity

21

Universal Relation Approach

• We start with a single universal relation and we decompose it using
the FDs (no ER diagrams)

• Assume Loans(branch-name, loan-number, amount, customer-id,
customer-name) and FDs:

– {loan-number} → {branch-name, amount, customer-id}

– {customer-id} → {customer-name}

• We apply existing decomposition algorithms to generate tables
:

– Loan(loan-number, branch-name, amount, customer-id)

– Customer(customer-id,customer-name)

22

Denormalization for Performance

• May want to use non-normalized schema for performance

• E.g. displaying customer-name along with loan-number and amount
requires join of loan with customer

• Alternative 1: Use denormalized relation containing attributes of loan as
well as customer with all above attributes

– faster lookup

– Extra space and extra execution time for updates

– extra coding work for programmer and possibility of error in extra code

• Alternative 2: use a materialized view defined as
loan JOIN customer

– Benefits and drawbacks same as above, except no extra coding work for
programmer and avoids possible errors

23

Other Design Issues

• Some aspects of database design are not caught by
normalization

• Examples of bad database design, to be avoided:

• Instead of earnings(company-id, year, amount), use
– earnings-2000, earnings-2001, earnings-2002, etc., all on the

schema (company-id, earnings).
• Above are in BCNF, but make querying across years difficult and needs

new table each year

– company-year(company-id, earnings-2000, earnings-2001,
earnings-2002)

• Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

