
1

Comp 5311 Database Management Systems

15. Timestamp-based Protocols

2

Timestamps

• Each transaction is issued a timestamp when it enters the

system. If an old transaction Ti has time-stamp TS(Ti), a

new transaction Tj is assigned time-stamp TS(Tj) such that

TS(Ti) <TS(Tj).

• The protocol manages concurrent execution such that the

time-stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains

for each data Q two timestamp values:

– W-timestamp(Q) is the largest time-stamp of any transaction

that executed write(Q) successfully.

– R-timestamp(Q) is the largest time-stamp of any transaction that

executed read(Q) successfully.

3

Timestamp-Based Protocols – Read operation

• The timestamp ordering protocol ensures that any
conflicting read and write operations are executed in
timestamp order.

Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) < W-timestamp(Q), then Ti needs to read a
value of Q that was already overwritten. Hence, the
read operation is rejected, and Ti is rolled back.

– Ti will restart with a new (larger) timestamp TS’(Ti)

2. If TS(Ti) W-timestamp(Q), then the read operation
is executed, and R-timestamp(Q) is set to the maximum
of R-timestamp(Q) and TS(Ti).

4

Timestamp-Based Protocols – Write operation

Suppose that transaction Ti issues write(Q).

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was needed previously, and the system
assumed that that value would never be produced.
Hence, the write operation is rejected, and Ti is rolled
back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write
an obsolete value of Q. Hence, this write operation is
rejected, and Ti is rolled back.

Otherwise, the write operation is executed, and W-
timestamp(Q) is set to TS(Ti).

5

Example of TS Protocol

A partial schedule for several data items for transactions
with timestamps 1, 2, 3, 4, 5

T1=1 T2=2 T3=3 T4=4 T5=5

read(Y)-

RTS(Y)=2

read(X)

RTS(X)=5
read(Y)

RTS(Y)=2 write(Y)

W/RTS(Y)=3

write(Z)

W/RTS(Z)=3 read(Z)

RTS(Z)=5read(Z or Y)

abort
read(X)

RTS(X)=5 write(Z)
abort

write(Y)

write(Z)

6

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees
serializability since all the arcs in the precedence graph
are of the form:

• Thus, there will be no cycles in the precedence graph

• Timestamp protocol ensures freedom from deadlock as
no transaction ever waits.

• But the schedule may not recoverable.

transaction

with smaller

timestamp

transaction

with larger

timestamp

7

Recoverability and Cascade Freedom

• Problem with timestamp-ordering protocol:

– Suppose Ti aborts, but Tj has read a data item written by Ti

– Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

– Further, any transaction that has read a data item written by Tj

must abort

– This can lead to cascading rollback --- that is, a chain of rollbacks

• Solution:

– A transaction is structured such that its writes are all performed
at the end of its processing

– All writes of a transaction form an atomic action; no transaction
may execute while a transaction is being written

– A transaction that aborts is restarted with a new timestamp

8

Multiversion Schemes

• Multiversion schemes keep old versions of data item to
increase concurrency.

– Multiversion Timestamp Ordering

– Multiversion Two-Phase Locking

• Each successful write results in the creation of a new
version of the data item written.

• Use timestamps to label versions.

• When a read(Q) operation is issued, select an
appropriate version of Q based on the timestamp of the
transaction, and return the value of the selected version.

• reads never fail as an appropriate version can always be
found.

9

Multiversion Timestamp Ordering

• Each data item Q has a sequence of versions <Q1,
Q2,...., Qm>. Each version Qk contains three data fields:

– Content -- the value of version Qk.

– W-timestamp(Qk) -- timestamp of the transaction that
created (wrote) version Qk

– R-timestamp(Qk) -- largest timestamp of a transaction that
successfully read version Qk

• when a transaction Ti creates a new version Qk of Q,
Qk's W-timestamp and R-timestamp are initialized to
TS(Ti).

• R-timestamp of Qk is updated whenever a transaction Tj

reads Qk, and TS(Tj) > R-timestamp(Qk).

10

Multiversion Timestamp Ordering Read and Write

Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let
Qk be the version of Q whose write timestamp is the largest write
timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the
content of version Qk. Reads always succeed.

2. If transaction Ti issues a write(Q),
if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back. Some
other transaction Tj that (in the serialization order defined by the
timestamp values) should read Ti's write, has already read a version
created by a transaction older than Ti.
If TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten; Qk

was written before also by Ti.
If TS(Ti) > W-timestamp(Qk) a new version of Q is created.

Conflicts are resolved through aborting transactions.

11

Summary

• All protocols that we have seen (e.g., 2PL, TS Ordering,
Multiversion protocols) ensure correctness.

• However, a correct schedule may not be permitted by a
protocol.

• The more correct schedules allowed by a protocol, the
more the degree of concurrency

• Multiversion TS protocols also allow schedules that are not
conflict serializable, but generate correct results.

• The protocols also differ on the way they handle conflicts:
(i) Lock-based protocols make transactions wait (thus they
can result in deadlocks); (ii) TS ordering protocols make
transactions abort (thus there are no deadlocks but
aborting a transaction may be more expensive).

12

Summary (cont)

• Recoverability is a necessary property of a schedule,
which means that a transaction that has committed
should not be rolled back.

• In order to ensure recoverability, a transaction Ti can
commit only after all transactions that wrote items
which Ti read have committed.

• A cascading rollback happens when an uncommitted
transaction must be rolled back because it read an item
written from a transaction that failed.

• It is desirable to have cascadeless schedules. In order
to achieve this property a transaction should only be
allowed to read items written by committed operations.

13

Summary (cont)

• If a schedule is cascadeless, it is also recoverable.

• Strict 2PL ensures cascadeless schedules by releasing
all exclusive locks of transaction Ti after Ti commits
(therefore other transactions cannot read the items
locked by Ti at the same time)

• TS ordering protocols can also achieve cascadeless
schedules by performing all the writes at the end of
the transaction as an atomic operation.

