
Secure and Efficient In-Network Processing of
Exact SUM Queries

Stavros Papadopoulos1, Aggelos Kiayias2, Dimitris Papadias3

1Department of Computer Science and Engineering
The Chinese University of Hong Kong

stavros@cse.cuhk.edu.hk

2Department of Informatics and Telecommunications
University of Athens
aggelos@di.uoa.gr

3Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

dimitris@cse.ust.hk

Abstract— In-network aggregation is a popular methodology
adopted in wireless sensor networks, which reduces the energy
expenditure in processing aggregate queries (such as SUM, MAX,
etc.) over the sensor readings. Recently, research has focused on
securein-network aggregation, motivated (i) by the fact that the
sensors are usually deployed in open and unsafe environments,
and (ii) by new trends such asoutsourcing, where the aggregation
process is delegated to an untrustworthy service. This new
paradigm necessitates the following key security properties:
data confidentiality, integrity, authentication, and freshness. The
majority of the existing work on the topic is either unsuitable
for large-scale sensor networks, or provides onlyapproximate
answers for SUM queries (as well as their derivatives, e.g.,
COUNT, AVG, etc). Moreover, there is currently no approach
offering both confidentiality and integrity at the same time.
Towards this end, we propose a novel and efficient scheme
called SIES. SIES is the first solution that supports Secure
In-network processing of Exact SUM queries, satisfying all
security properties. It achieves this goal through a combination of
homomorphic encryptionand secret sharing. Furthermore, SIES is
lightweight (it relies on inexpensive hash operations and modular
additions/multiplications), and features a very small bandwidth
consumption (in the order of a few bytes). Consequently, SIES
constitutes an ideal method for resource-constrained sensors.

I. I NTRODUCTION

Wireless sensor networks are nowadays deployed in a
plethora of applications, such as factory monitoring, wildlife
surveillance, environmental monitoring, battlefield operations,
fire and burglar alarms, etc. The sensor nodes form a network
topology by connecting to other sensors that reside within
their vicinity. Communication between nodes is dictated bya
multi-hop routing protocol. The sensors generate and transmit
stream data (e.g., environmental readings, information about
moving objects, etc.). A querier (e.g., a corporate organization,
a laboratory, etc.) poses long-running queries on the sensor
readings, and periodically receives data from the network
(typically via a single node, called thesink).

Aggregate queries (e.g., SUM, MAX, etc.) constitute a wide
and important query class in sensor networks. In the naive

case, the querier collects all the raw data from the sensors and
performs the aggregation locally. Although this may be a vi-
able solution in small networks, it leads to an excessive energy
expenditure in large-scale networks. Specifically, the nodes sit-
uated closer to the querier route a considerable amount of data,
which originate from farther nodes in the network topology.
Therefore, their battery is depleted fast, since its lifespan is
mainly impacted by data transmission. Moreover, the above
solution introduces a significant bandwidth consumption and
computational cost at the querier.In-network aggregation[1],
[2] is a popular paradigm that tackles these drawbacks, by
spreading more computation within the network. In particular,
some sensors play the role ofaggregators, which fuse the data
as they flow in the network. The querier eventually receives
only the final result from a single aggregator.

Recently, research has focused onsecurein-network aggre-
gation, which is motivated by the following two facts. First,
sensor networks are usually deployed in open and hostile en-
vironments (e.g., in battlefield grounds), or in security-critical
applications (e.g., in factory monitoring, burglar alarms),
where adversarial activity must be averted (examples include
[3], [4], [5], [6]). Second,outsourced aggregation[7], [8] has
started to gain populararity. Under this new trend, the tasks
of organizing/tuning the aggregation network and conducting
the aggregation process are delegated to a third-party service
provider with a well provisioned distributed infrastructure
(e.g., Microsoft’s SenseWeb [9]). Nevertheless, the provider
may beuntrustworthyand possiblymalicious.

Secure in-network aggregation mandates the following key
security properties:

• Data Confidentiality: The adversary must not be able to
read the raw data transmitted by the sensors.

• Data Integrity: The adversary must not be able to alter
the result, i.e., the querier should be able to verify that
all the raw data were included in the aggregation process,
and no spurious data were injected.

• Data Authentication: The adversary must not be able
to impersonate the querier and/or the sensors, i.e., these
parties must be able to verify the origin of a received
message.

• Data Freshness:The reported result must reflect the most
recent instance of the system, i.e., the adversary must not
be able to replay old results to the querier.

Next, we outline the weaknesses of existing work on secure
in-network aggregation, and present our contributions.

Prior work. The majority of the schemes are either
unsuitable for large-scale networks, or support only
approximate answers to SUM queries. More specifically,
several methods follow thecommit-and-attest model[6],
[10], [11], [12], [13] that involves an expensive broadcasting
phase, during which the sensors actively participate in the
verification process. The performance of these solutions
deteriorates drastically with the number of sensors. On the
other hand, more efficient methods [7], [8] associate small
proofs of integrity with the transmitted raw data, which
can be aggregated in-network and easily verified by the
querier. Nevertheless, they are based on sketches and, thus,
cannot offer exact results. Finally, currently no approachcan
support both confidentiality and integrity at the same time.
For example, [5] provides confidentiality but not integrity,
whereas [8] focuses on integrity without being able to support
confidentiality.

Our contributions. Motivated by the shortcomings of
the related work, we introduce SIES, the first solution
for Secure In-network processing ofExact SUM queries
(as well as their derivatives, e.g., COUNT, AVG, etc.),
satisfying all four security properties. SIES achieves this
goal through a combination ofhomomorphic encryption
and secret sharing. It is scalable as it does not involve the
participation of the sensors in the verification process. It
entails a small constant communication cost per network
edge (in the order of a few bytes). Moreover, it requires
few and inexpensive cryptographic operations (hashes and
modular additions/multiplications) at each party involved.
The above render SIES lightweight and, thus, an ideal
solution for resource-constrained sensors. We analytically and
experimentally confirm our performance claims.

The rest of the paper is organized as follows. Section II
surveys the related work, Section III contains preliminary
information, Section IV explains SIES in detail, Section V
includes cost models, Section VI experimentally evaluatesour
scheme and, finally, Section VII concludes our paper.

II. RELATED WORK

In Section II-A we describe the basic cryptographic tools
that are necessary for our presentation. In Section II-B we
survey the prior work on secure in-network aggregation. In
Section II-C we discuss the aggregation methods appearing in

the Outsourced Database (ODB) model. Finally, in Section II-
D we select suitable benchmark solutions for our experimental
evaluation, and present them in detail.

A. Cryptographic Primitives

Homomorphic Encryption. Let m1 and m2 be two
plaintexts, and⊙ a binary operation over the plaintext
space. An encryption functionE is homomorphic if
it allows the generation ofE(m1 ⊙ m2), given only
ciphertextsE(m1) and E(m2) and without requiring their
decryption. For example, the RSA cryptosystem [14] is
homomorphic; supposing that the public key is(e, n),
it holds that ERSA(m1) · ERSA(m2) mod n = me

1
· me

2

mod n = (m1 ·m2)
e mod n = ERSA(m1 ·m2). This scheme

is also calledmultiplicatively homomorphic, since operation
⊙ is multiplication. The methods that support the addition
operation, such as the Paillier cryptosystem [15], are called
additively homomorphic. For instance, in the symmetric
encryption setting, one can use a variant of the one-time pad
to achieve an additively homomorphic encryption: we define
Ek(m) = k ·m, where the plaintext space is a finite field and
keys are assumed to satisfyk 6= 0. It is easy to verify thatEk
is homomorphic with respect to the field addition.

HMAC. The HMAC (hash-based message authentication
code) is a short piece of information used to prove the
origin of a messagem, as well as its integrity [16]. It is
implemented by combining a one-way, collision-resistant hash
functionH(·) with a secret keyK. It entails two applications
of H(·), and consumes the same space as the hash digest. In
the sequel, we useHM1(K,m) (HM256(K,m)) to denote
the HMAC of m using keyK, assuming that the underlying
hash function is SHA-1 (SHA-256) [17], [18] that produces
20-byte (32-byte) digests.

Pseudo-random Function (PRF).A PRF takes as input a
secret random keyK, and a variablem that can be an arbitrary
string. Its output is distinguished from that of a truly random
function with negligible probability, as long asK is hidden.
HMACs have been widely used as PRFs in the literature [18].
In our work, we assume that the PRFs are implemented as
HMACs.

B. Secure In-network Aggregation

Several approaches follow thecommit-and-attest model[6],
[12], [13], [11], [10], which consists of two phases. Duringthe
commitment phase, the aggregators are forced to commit to the
partial results they produce, by constructing a cryptographic
structure like the Merkle Hash Tree [19] and sending the
root digest to the querier. In theattestation phase, the querier
broadcasts the aggregate result and the root digest it received
from the network to all the sensors, using an authenticated
broadcasting protocol likeµTesla [20]. Each sensor then
individually audits its contribution to the result using the
commitment structure. The broadcasting inflicts considerable
communication cost to the network and high query latency

that increase with the number of sources, gravely impacting
scalability.

In the context ofoutsourced in-network aggregation, Proof-
Sketches [7] and SECOA [8] associate small proofs of integrity
with the transmitted raw data, which can be aggregated in-
network and easily verified by the querier. These approaches
are more scalable than the above, since they do not require the
active participation of the sensors in the verification process.
However, they are both based on sketches and, thus, offer only
approximateanswers.

All the described methods so far focus on integrity, without
being able to provide confidentiality. On the other hand,
[5] supports aggregation directly on encrypted data via an
additively homomorphic encryption scheme, satisfying data
confidentiality. Nevertheless, this approach does not safeguard
against data tampering. Currently, there is no solution that
provides both confidentiality and integrity.

For completeness, we also present some methods that target
at slightly different models than the above schemes and are
orthogonal to our work. LEAP [21] is a key management
protocol that allows in-network aggregation, while restrict-
ing the impact of any malicious nodeswithin their network
neighborhood. [3] and [4] provide secure aggregation against
a singlemalicious node. Finally, Yu [22] introduces a random
sampling technique that enables aggregation queries totolerate
the adversarial nodes (instead of just detecting them), in order
tackle denial of service (DoS) attacks.

C. Aggregation in the ODB Model

In the Outsourced Database (ODB) model [23], a data owner
delegates the administration of its database to a specialized
third-party service provider. Since the provider may be un-
trustworthy, security issues such as data confidentiality and
integrity arise. Although there exist numerous approachesthat
follow this paradigm, here we discuss only those that focus
specifically on secure processing ofaggregate queries.

Li et al. [24] design authenticated index structures that
incorporate hash digests similar to the Merkle Hash Tree [19],
and are signed by the data owner. In addition to the aggregation
results, the provider utilizes the indices to produce verification
information that proves the answer integrity. In [25], the owner
outsources the storage of a data stream to the provider, and
subsequently asks aggregate queries on the stream. The owner
monitors the stream and stores a compact authentication sum-
mary that helps in auditing the result integrity. Ge and Zdonik
[26] focus on confidentiality instead of integrity. They assume
that the database is encrypted with the Paillier additively
homomorphic scheme [15]. The provider operates solely on
the ciphertexts producing answers to SUM-based queries. This
scheme, however, cannot guarantee integrity.

The above methods cannot be applied to the in-network
aggregation model because they assume the existence of a
singledata owner. In particular, the signatures and ciphertexts
are produced with a single key. In our setting, there are
multiple sensors, each regarded as a separate data owner
that encrypts/signs its data with itsunique key (otherwise,

compromising a single sensor would lead to the compromise
of the entire system). Providing secure in-network aggregation
in the presence of multiple keys is a more challenging task.

D. Benchmark Solutions

Since there is currently no scheme offering both integrity
and confidentiality for in-network processing of SUM queries,
there is no direct competitor to our work. However, in order
to facilitate our experimental evaluation, we choose as
benchmarks (i) the only method guaranteeing confidentiality,
i.e., [5], henceforth referred to as CMT (after the authors’
initials), and (ii) the best in-network solution providing
integrity. Specifically, we select SECOA [8] because it is
more scalable than the commit-and-attest approaches, and
subsumes Proof-Sketches [7]. SECOA supports a wide range
of aggregate queries (including MAX). We hereafter use
SECOAS to refer to the SUM algorithm of SECOA. Below
we present these two methods in more detail.

CMT. We illustrate this method through a simple example.
Suppose that sensorS1 (S2) shares a secret keyk1 (k2) with
the querier. Also letv1 (v2) be the reading ofS1 (S2). S1

(S2) computes ciphertextc1 = v1 + k1 mod n (c2 = v2 + k2
mod n), wheren > v1, v2, k1, k2 is a publicly known integer.
Now suppose that the sinkA receivesc1 andc2. It aggregates
them intoc = c1 + c2 mod n and forwards it to the querier.
The latter can extractv1 + v2 = c − (k1 + k2), since it
knows k1 and k2. This is a simple additively homomorphic
scheme that allows in-network processing of SUM queries
on encrypted data, thus satisfying confidentiality. However,
it does not guarantee integrity; the adversary can inject any
integer v′ to c, cheating the querier to extractv1 + v2 + v′

and admit it as a correct result.

SECOAS. This scheme is a combination of the MAX
protocol of SECOA, denoted by SECOAM , and the AMS
sketches [27]. We first describe SECOAM . Each sensorSi

sends to its parent aggregatorA (i) the generated data value
vi, (ii) an inflation certificate, and (iii) a deflation certificate.
The inflation (deflation) certificate guarantees thatvi has not
been inflated (deflated) by an adversary.

The inflation certificate ofvi is simplyHM1(Ki, vi), where
Ki is a unique key shared bySi and the querier. The deflation
certificate, called a SEAL, is a value produced by applying
vi times the RSA encryption function on a seedsdi known
only by Si and the querier. For example, ifvi = 3, then the
SEAL is equal toERSA(ERSA(ERSA(sdi))) and denoted by
E3

RSA(sdi). A SEAL can be perceived as aone-way chain;
from Ev1

RSA(sdi) one can produceEv2

RSA (sdi) for anyv2 > v1,
but not forv2 < v1.

AggregatorA first chooses the MAX of the received values
and forwards it to its parent aggregator, along with its inflation
certificate. Subsequently, it combines all the collected SEALs.
Let v1 = 3 and v2 = 5 be the values received from
sensorsS1 and S2, sd1 and sd2 the corresponding seeds
and E3

RSA(sd1) and E5

RSA(sd2) the respective SEALs.A

applies RSA encryption onE3

RSA(sd1) 2 times (i.e.,v2 − v1),
which yields E5

RSA(sd1). This process is calledrolling. It
then computes the modular productE5

RSA(sd1) · E
5

RSA(sd2)
mod n = E5

RSA(sd1 · sd2), where n is the public RSA
modulus. This step is calledfolding. The product is the
aggregate SEAL sent to the parent aggregator.

The described process continues recursively, until the
querier eventually receives the MAX resultres along with its
certificates from the sink. It first verifies the inflation certificate
using the corresponding shared key. Next, knowing all the
secret seeds, it recreates the aggregate SEAL (this entails
folding all seeds together and rolling themres times), and
verifies it against the collected one.

To answer SUM queries, SECOAS necessitates each sensor
Si to generateJ · vi AMS sketches and merge them into
exactly J ones, whereJ adjusts the accuracy of the method
(with higher values leading to better accuracy). It then invokes
SECOAM separately on each of theseJ sketches. As an
optimization, the aggregators merge the inflation proofs into a
singleaggregate HMAC[28] by XOR-ing them. Furthermore,
the sink folds the SEALs that are at the same “position” in
the chain to reduce the number of SEALs sent to the querier.
After verification, the querierapproximatesthe SUM result as
2x̄, wherex̄ denotes the average over theJ collected sketches.

III. PRELIMINARIES

Section III-A presents our system architecture, Section III-
B describes our query model, Section III-C includes our threat
model, and Section III-D contains the building blocks of SIES.

A. System Architecture

In the sequel, without loss of generality, we separate the
roles of the sensor that generates data values, and the sensor
that performs aggregation tasks. We call the former asource
and denote it asS, whereas we refer to the latter asaggregator
and denote it asA. For simplicity, we assume that the sensors
are organized into atree topology, with the sources being the
leaves and the aggregators representing the internal nodes. The
tree topology can be arbitrary, while its construction, fine-
tuning and re-organization due to node failures are issues or-
thogonal to our work. A querierQ poses long-running queries,
and communicates only with the root of the aggregation tree,
i.e., the networksink. Figure 1 illustrates a simple example
architecture. The topology configuration, the dissemination of
the necessary information to the aggregators and sources by
the querier, and the initiation of the continuous query at the
sources occur before the aggregation process commences.

The aggregation process consists of three phases: theini-
tialization phaseI, themerging phaseM , and theevaluation
phaseE. I takes place at each source and operates on the
generated raw data. The output is apartial state recordPSR
(we adopt the notation from [1], [7]), which integrates the raw
data with other security information.M takes place at each
aggregator; it combines the PSRs received from its children
into a single one, which is subsequently forwarded to the
respective parent. Finally,E occurs at the querier, and has as

Source

Data

Generator

I

Raw
data

PSR
1

Aggregator

M

M

PSR
5 PSR

6

Querier

E

PSR
7

Result

Data

Generator

I

Raw
data

PSR
2

Data

Generator

I

Raw
data

PSR
3

M

Data

Generator

I

Raw
data

PSR
4

Source Source Source

Aggregator

Aggregator

Q

A1 A2

A3

S1 S2
S3 S4

Fig. 1. System Architecture

input a single PSR collected from the sink; it extracts the final
aggregation result form the PSR, and verifies its correctness.

A last remark concerns the computational capabilities of
the sources, the aggregators and the querier. Unlike SECOA
[8], we do not make the strong assumption that the sensors
are capable of performing expensive computations (such as
RSA encryption operations), or that they are attached to more
powerful proxy machines. On the contrary, in our scheme, each
party involved needs only to be able to compute inexpensive
hash functions and modular additions/multiplications. Inthat
sense, our work targets traditional resource-constrainedsensor
networks.

B. Query Model

We assume thepush-baseddata collection model, where a
continuous query is registered at the sources during a setup
phase, and then each source periodically transmits its data
to the network. This model is usually preferable to thepull-
basedapproach (where the querier broadcasts the query to the
sources in order to extract the result on demand) because (i)
pulling the data incurs a large communication overhead and
can be prohibitively slow for large-scale networks, and (ii)
the sources must be always on to receive potential queries
(whereas in the push-based model the sources may preserve
power by turning on periodically).

All sources, aggregators and the querier areloosely
synchronized in time epochs. The epoch specifies the
transmission period of each source. In the sequel, for
simplicity, we perceive every epoch as a distinct time instant
t. We focus on exact SUM queries, which have the following
form:

Query template
SELECT SUM(attr) FROM Sensors
WHERE pred
EPOCH DURATION t

If a source does not satisfy the WHERE predicate, it simply
transmits 0. Without loss of generality, we consider that all
data values are positive integers (we can always encode other
data types as positive integers via simple translation and
scaling operations [8]). Note that COUNT queries are trivially
reduced to SUM (e.g., a source simply transmits 1 if it satisfies
the query predicate). Moreover, SUM and COUNT results
can be combined to answer other aggregate queries, e.g., the
average as AVG = SUM/COUNT. In a similar manner we
can derive other queries from SUM and COUNT, such as
STDDEV and VARIANCE.

C. Threat Model

The adversary may either compromise a sensor node (source
or aggregator) and thus take its full control, or infiltrate the
wireless channel. We do not make any assumption about the
computational capabilities of the adversary. Our main goal
is to satisfy data confidentiality, integrity, authentication, and
freshness, as they were defined in Section I. Particularly for
data integrity, we mandatedetectionof any alteration of the
result, and nottoleranceor error recovery. Additionally, we
do not try to tackle DoS attacks, e.g., when the (compromised)
sink does not report at all the result within one or more
time epochs. Such cases are trivially detected if the querier
does not receive any data. Furthermore, we do not seek to
protect against physical manipulation of the sources, e.g.,
when the adversary places heaters nearby sensors measuring
temperatures to alter the real readings.

Another remark concerns our goals in the presence of a
compromised source. Note that a compromised source can
arbitrarily alter itsown data. In this case, the querier admits
the (modified) result as correct, without detecting the malicious
activity. Our scheme, as well as all the approaches in the liter-
ature, cannot tackle this situation. Nevertheless, the adversary
should not be able to breach the security ofthe rest of the
system, i.e., it must not be able to impersonate or decrypt the
ciphertext transmitted by anuncompromisednode. Note that
this is important for the robustness of our scheme, since it is
very likely that some sensors are hacked in open and unsafe
environments. Furthermore, take into account that SUM and
AVG results are resilient to a small number of “fake” readings,
unlike MAX/MIN queries where a single compromised node
suffices to significantly alter the result.

Finally, note that the querier must either be theownerof the
sensors, or an authorized entity that possesses all the necessary
keys. Access control issues are orthogonal to our work.

D. Building Blocks

SIES is based on a combination of an additively
homomorphic scheme and a simple secret sharing technique.

Below we describe in detail these two basic components.

Additively Homomorphic Scheme.Let p be a prime,mi <
p the message to be encrypted, andK 6= 0, ki < p two secret
keys. We define encryption as

ci = E(mi,K, ki, p) = K ·mi + ki mod p

and decryption as

mi = D(ci,K, ki, p) = (ci − ki) ·K
−1 mod p

whereK−1 is the multiplicative inverse ofK modulop. Note
thatK−1 always exists sincep is prime.

Now consider two ciphertextsc1 and c2 corresponding to
plaintexts m1 and m2, respectively. Observe that we can
compute the encryption of SUMm1 +m2 as

c1 + c2 = E(m1,K, k1, p) + E(m2,K, k2, p) =

= K · (m1 +m2) + (k1 + k2) mod p =

= E(m1 +m2,K, k1 + k2, p)

which can be decrypted using keysK andk1 + k2 as

m1 +m2 = D(c1 + c2,K, k1 + k2, p)

In general,ΣN
i=1

mi can be extracted fromΣN
i=1

ci using
keysK andΣN

i=1
ki in the decryption function. In the sequel,

E(·) andD(·) refer to the encryption and decryption functions
of our homomorphic scheme, respectively. Observe that this
type of encryption is secure in aninformation theoreticsense,
i.e., even against a computationally unbounded adversary.This
holds since lacking knowledge ofk, the valueE(m,K, k, p)
preserves no information whatsoever aboutm (for any value
of K, p).

Secret sharing [17].Let s be a secret. Suppose that we
wish to distributes amongstN parties, in a way such that
s can be re-constructed only whenall N parties contribute.
We first generateN − 1 random valuesss1, ss2, . . . , ssN−1,
and distribute onessi to each party except for one. We then
set ssN = s − ΣN−1

i=1
ssi and give it to the last party. Each

ssi value is called asecret share. The secret is then equal
to s = ΣN

i=1
ssi. Observe that the adversary cannot compute

s without knowing all N secret shares. This simple secret
sharing technique is secure also in an information theoretic
sense.

IV. SIES

Before embarking on the details of SIES we provide the
main idea. We use the homomorphic encryption scheme de-
scribed in Section III-D because it enables the aggregators
to perform aggregation directly on ciphertexts through its
additive property, thus achieving data confidentiality. Itshould
be noted that this scheme cannot guarantee the integrity of
the aggregation result by itself. For example, a compromised
aggregator may trivially drop the ciphertext from any source
without being detected. We overcome this problem by incor-
porating secret shares into the plaintext values to be encrypted.

The querier can then verify that all the ciphertexts have been
involved in the aggregation process and no spurious ones have
been added, by extracting the complete secret from the final
ciphertext.

SIES complies with the architecture presented in Section III-
A, i.e., it consists of a setup phase that occurs before setting
the system into motion, and the three phases of the aggregation
process (initialization, merging, and evaluation). Section IV-A
explains these phases, and Section IV-B discusses the security
of SIES. Table I provides our notation.

TABLE I

SUMMARY OF SYMBOLS

Symbol Meaning
S/A/Q Source/Aggregator/Querier

N Number of sources
K Key known toQ and every source
ki Key known toQ andSi

p Public prime modulus
t Time epoch
Kt Key generated by all sources at epocht
ki,t Key generated bySi at epocht
ssi,t Secret share generated bySi at epocht
vi,t Value generated bySi at epocht
mi,t Plaintext ofSi to be encrypted at epocht

PSRi,t PSR generated bySi at epocht
st Secret verifiable byQ at epocht

rest SUM result at epocht
HM1(·) HMAC implemented with SHA-1
HM256(·) HMAC implemented with SHA-256

A. Phases

Setup phase.Suppose that the number of sources isN . The
querierQ first generates random keysK, andk1, k2, . . . , kN ,
each having an appropriate size that diminishes the probability
of a random guess (in our implementation we set this size
to 20 bytes).Q also produces a random primep, which is
used as the modulus of our homomorphic encryption scheme.
As we shall see, in our implementation the size ofp is 32
bytes. Subsequently, itmanually registers(K, ki, p) to every
sourceSi, and provides each aggregatorAj with p. Observe
that K is commonly known to all sources. Nevertheless,ki
is only known by sourceSi. Finally, Q issues the continuous
query to the system. To do so, it broadcasts the query in an
authenticated way withµTesla [20]. After the sources receive
the query, the aggregation process commences. WheneverQ

issues a new query, it simply broadcasts it withµTesla in the
network, without re-establishing any keys.

Initialization Phase. Let t be the current time epoch. Every
sourceSi first generates its data valuevi,t (involved in the
aggregation query), which is 4 bytes long. Moreover, it com-
putes (pseudo-) random keyKt = HM256(K, t), using the
HMAC PRFHM256(·), which is implemented with SHA-256.
In addition,Si generateski,t = HM256(ki, t). Subsequently,
it calculatessecret sharessi,t = HM1(ki, t), whereHM1(·)
is the HMAC PRF that uses SHA-1.Kt andki,t are 32-byte
long, whereasssi,t is 20-byte long. Note thatKt is known to
all sources, whereaski,t is only known bySi. Moreover,Kt,

ki,t, and ssi,t are temporal, as they all depend ont. As we
shall see, this is important for providing data fresheness.Next,
Si produces a binary messagemi,t with the form depicted in
Figure 2.

vi,t 00...0 ssi,tmi,t

4 bytes
log N bits

 20 bytes(= up to 8 bytes)

Fig. 2. Format ofmi,t

The purpose of addinglogN zeros in mi,t will
be clarified soon. Finally, Si creates a PSR as
PSRi,t = E(mi,t,Kt, ki,t, p), and sends it to its parent
aggregator. Since the size ofp is determined by the size of
Kt andki,t, the resulting ciphertext is 32 bytes long.

Merging Phase. During this phase, an aggregatorAi

receives the PSRs from its children and combines them into a
single one, which is then forwarded to its parent. Supposing
thatAi receivesPSR1,t andPSR2,t, it simply computes the
new PSR asPSR′

t = PSR1,t + PSR2,t mod p (recall that
Ai possessesp). The resulting PSR is also 32 bytes long.

Evaluation Phase.Eventually,Q receives a single final PSR
in time epocht, denoted byPSRf,t, which represents the
modular addition of all the PSRs generated by the sources.
It then computesmf,t = D(PSRf,t,Kt,Σ

N
i=1

ki,t, p). Note
that Q can calculateKt and all ki,t because it possessesK
and allki. Due to the homomorphic property of our scheme,
mf,t is equal to the sum of allmi,t produced by the sources.
Consequently, the first 4 bytes ofmf,t constitute the result
(rest) of the SUM query1. The remaining((logN)/8 + 20)
bytes represent the secretst = ΣN

i=1
ssi,t. Due to overflow

during the summation, the extra bits required cannot be more
than logN when N numbers are added. This justifies our
choice to padlogN zeros beforessi,t in everymi,t. Moreover,
observe that our implementation can support up toN = 264

sources, since the padding inmi,t can be up to 8 bytes (so
that the total size ofmi,t does not exceed 32 bytes). Figure
3 illustrates the finalmf,t retrieved byQ for the topology
depicted in Figure 1, wherePSRi,t was generated bySi.
Q first extracts the resultrest and valuest as explained

above. Subsequently, it computes the secret sharessi,t of each
sourceSi asHM1(ki, t). Next, it derivesΣN

i=1
ssi,t. Finally,Q

confirms the integrity and freshness ofrest, if and only if the
ΣN

i=1
ssi,t value it computed is equal to the extractedst from

PSRf,t. To summarize, (i) confidentiality is ensured through
our additively homomorphic scheme, which at the same time
allows efficient aggregation, (ii) integrity is guaranteedthrough
the embedding of the secret shares into the PSRs, which
eventually sum up to a secret verifiable by the querier, and

1We consider here that the final result cannot exceed232 − 1. However, if
the application requires longer numbers we can use an 8-byte field in mi,t

during the initialization phase.

v1,t 00...0 ss1,t
PSR

1,t: ()

v2,t 00...0 ss2,t
PSR

2,t:)

v3,t 00...0 ss3,tPSR
3,t:)

v4,t 00...0 ss4,t
PSR

4,t:)+

(mod p)

rest stPSRf,t:)

rest = v1,t + v2,t + v3,t + v4,t

st = ss1,t + ss2,t + ss3,t + ss4,t

E

(E

(E

(E

(E

Fig. 3. Example aggregation in SIES

(iii) freshness is provided because the keys and shares used
by the sources integrate the temporal informationt, which
is different for different epochs. In the next sub section we
discuss the security of SIES in detail.

B. Security

In this section we explain the security of SIES against
various attacks in terms of data confidentiality, integrity,
authentication, and freshness.

Data confidentiality. We distinguish two scenarios: (i)
the adversary does not compromise any source and simply
eavesdrops the wireless channel, and (ii) the adversary com-
promises at least one source. Note that compromising an
aggregator is equivalent to eavesdropping the channel, since
the aggregators do not possess any keys and do not perform
encryption. In both scenarios, the adversary attempts to extract
the plaintext associated with a PSR. We focus on the case
where the PSR is generated by a source, since the case where
the PSR is a result of aggregation can be proven similarly.
Let PSRi,t = Kt · mi,t + ki,t be the PSR targeted by the
adversary, which originates from anuncompromisedsource
Si at epocht. We say that SIES provides data confidentiality,
if the adversary succeeds in extractingmi,t from PSRi,t with
negligibleprobability.

In the first scenario, the adversary possesses neitherKt

nor ki,t, whereas in the second scenario it obtains global key
Kt from a compromised sourceSj , j 6= i, with ki,t though
remaining unknown. In order to prove data confidentiality, it
suffices to focus only on the second scenario, since the first
scenario is more difficult for the adversary to attack.

Theorem 1: SIES satisfies data confidentiality.

Proof: Recall thatki,t is produced by pseudo-random
function HM256(·) with output size 32 bytes. This key is
unknown to the adversary. Additionally,ki,t is used onlyonce,
i.e., no other plaintext is encrypted withki,t. Consequently,
in order to extractmi,t and provided thatKt, p may be
known, the adversary can only attempt to correctlyguess
ki,t. However, this happens with probability2−256, which is
negligible. Moreover, correctly guessing keyki, used as input

to HM256(·) when generatingki,t, occurs with probability
2−160 (sinceki is 20 bytes long in our implementation), which
is also negligible.

The above discussion implies thatKt is not necessary for
providing confidentiality, since the latter is satisfied solely
by key ki,t. Below we explain thatKt is important for
guaranteeing data integrity.

Data integrity. We focus on the case where the adversary
does not compromiseany source. If the adversary hacks a
source, it can obtain its keys and alter arbitrarily its own
reading. Therefore, in this case data integrity is always
breached. We say that SIES guarantees data integrity, if the
adversary can alter the final aggregation result without being
detected with negligible probability.

Theorem 2: SIES satisfies data integrity.

Proof: Let PSRf,t be the final legitimate PSR, and
PSR′

f,t the PSR eventually presented toQ. In order for data
integrity to be violated, the last 28 bytes of value(PSRf,t −

PSR′
f,t) ·K

−1

t mod p must all be 0. Observe that this holds
only when the secretst incorporated inPSRf,t (whose size
is up to 28 bytes) is equal tos′t contained inPSR′

f,t. This is
necessary in order for the querier to admitm′

f,t extracted from
PSR′

f,t as legitimate. SinceKt is unknown, this happens with

probability 2
32

2256
= 2−224, which is negligible.

Data authentication. In another attack, the adversary
could impersonateQ during the dissemination of the query,
and provide the sources with a false query (which has a
different result than the desired one). In this case,Q would
accept the final collected result as correct, since the actual
aggregation procedure is not altered.

Theorem 3: SIES is secure against querier impersonation.

Proof: This is directly ensured by theµTesla protocol,
which enables each source to verify that the message (i.e.,
the query) indeed originated fromQ (for details, we refer the
interested reader to [20]).

Source impersonation is covered by data integrity discussed
above.

Data freshness.A result is fresh if it reflects the current
time epoch t. An adversary violates data freshness if it
presents to the querier alegitimate final PSR PSRf,t′ ,
which however corresponds to aprevioustime epocht′. This
is called a replay attack. We say that SIES satisfies data
freshness, if the adversary can mount a replay attack with
negligible probability.

Theorem 4: SIES provides data freshness.

Proof: Let PSRf,t be the legitimate final PSR at epoch

t, and PSRf,t′ the legitimate final PSR at epocht′ < t.
The adversary succeeds in breaking freshness, if the secret
st in PSRf,t is the same ass′t in PSRf,t′ . Recall that all
the secret shares are produced by pseudo-random function
HM1(·), which takest as seed and has output length 20 bytes.
Consequently, the probability thatst = s′t is equal to2−224

(similar to Theorem 2), which is negligible.

Discussion. A final remark concernsnode failures, i.e.,
situations where either a source does not produce a PSR or an
aggregator fails to fuse its children’s PSRs in a time epoch,
due to an internal problem. In this case the failed node must
be reported to the querier. However,Q must also manually
check the corresponding node, since a compromised node may
falsely report the failure. Then, during result verification, Q
producesst = Σissi,t considering only the secret shares of
the sources contributing to the result.

V. COST MODELS

We analytically compare SIES against CMT [5] and
SECOAS [8] in terms of the computational costat each
party, and thecommunication overheadat a network edge
(i.e., between source-aggregator, aggregator-aggregator, and
aggregator-querier). Table II summarizes the symbols used
in the analysis, as well as their typical values (1µs =
10−6 seconds, 1ms = 10−3 seconds). These values were
obtained based on the hardware and software settings of our
experiments.

TABLE II

SYMBOLS AND VALUES IN THE ANALYSIS

Symbol Meaning Typical Value
N Number of sources 1024
J Number of sketches 300
F Aggregator fanout 4
v Source value ∈ [1800, 5000]
xi Value of sketchi ∈ [0, 23]
rli Rolling operations for SEALi ∈ [0, 22]
Csk Cost of sketch generation 0.037µs

CRSA Cost of RSA encryption 5.36µs
CHM1

Cost ofHM1(·) 0.46µs
CHM256

Cost ofHM256(·) 1.02µs
CA20 Cost of 20-byte modular addition 0.15µs
CA32 Cost of 32-byte modular addition 0.37µs
CM32 Cost of 32-byte modular multiplication 0.45µs
CM128 Cost of 128-byte modular multiplication 1.39µs
CMI32 Cost of finding a 32-byte mult. inverse 3.2µs
Ssk Size of a sketch 1 byte
Sinf Size of an inflation certificate 20 bytes

SSEAL Size of a SEAL 128 bytes

Computational cost. In CMT, the ciphertext calculation at
a source involves a single modular addition of the plaintext
with the secret key. Furthermore, in order to address data
freshness, we must consider that a different key is used in
every epocht. Therefore, its creation time must be added to
the sources’s computational cost. We assume that the pseudo-
random function used for key generation isHM1(·) and, thus,
the key size is 20 bytes. IfCHM1

andCA20 denote the costs of

HM1(·) and addition modulo a 20-byte integer, respectively,
the total processing cost of CMT at a source is:

CS
CMT = CHM1

+ CA20 (1)

In SECOAS, a source first computesJ · v sketches, where
v is the source value andJ is proportional to the desired
accuracy. It then merges them (with negligible cost) to produce
the final set ofJ sketches to be transmitted to the parent
aggregator. Moreover, it creates an inflation certificate for each
of theJ sketches by applying HMACHM1(·). Subsequently,
it producesJ temporal seeds using theHM1(·) function
(similar to CMT to satisfy freshness). Finally, the source uses
the seeds to derive a SEAL for each sketch. Letxi denote a
sketch value,Csk the cost to generate a sketch, andCRSA the
time consumed by RSA encryption. Then, the total processing
cost at a source in SECOAS is:

CS
SECOAS = J · (v ·Csk +2 ·CHM1

)+

J∑

i=1

xi ·CRSA (2)

In SIES, the computation at a source entails (i) two key
generations by applying HMACHM256(·), (ii) a secret share
creation withHM1(·), and (iii) a multiplication and an ad-
dition modulo a 32-byte number. IfCHM256

is the cost of
HM256(·), andCM32 andCA32 refer to the cost of 32-byte
modular multiplication and addition, respectively, the CPU
consumption at a source in SIES is:

CS
SIES = 2 · CHM256

+ CHM1
+ CM32 + CA32 (3)

Let F be the number of children (or the fanout) of an
aggregator. In CMT, the aggregator simply adds the ciphertexts
(modulo a 20-byte number). Hence, the computational cost at
the aggregator is

CA
CMT = (F − 1) · CA20 (4)

In SECOAS, the aggregator first merges theF · J sketches
received from its children intoJ sketches with negligible cost.
Subsequently, it combines theF SEALs of each of the final
J sketches, by performing the appropriate folding and rolling
operations. Next, it XOR-es theF inflation certificates, which
involves a negligible cost. Assuming that the RSA modulus is
128 bytes long,rli is the number of rolling operations required
for theith SEAL, andCM128 is the cost of a 128-byte modular
multiplication, the computational cost at an aggregator in
SECOAS is:

CA
SECOAS = J · (F − 1) · CM128 +

J∑

i=1

rli · CRSA (5)

In SIES, similar to CMT, the aggregator simply adds the
ciphertexts received from its children (however, this timethe

modulus is 32 bytes long). Therefore, the processing overhead
at an aggregator in SIES is:

CA
SIES = (F − 1) · CA32 (6)

The querier in CMT first computes withHM1(·) the
temporal keys of all theN sources that participated in the
aggregation. Then, it subtracts these keys from the final
ciphertext to decrypt it. Thus, the processing cost of the querier
in CMT is:

CQ
CMT = N · (CHM1

+ CA20) (7)

The querier in SECOAS aggregates the SEALs collected
from the root aggregator, by performing the necessary rolling
and folding operations. Additionally, it creates a reference
SEAL by (i) computing theJ · N seeds with theHM1(·)
function, (ii) folding the seeds together, and (iii) rolling them
to the maximum collected sketch valuexmax. Finally, it
generatesJ inflation certificates, once again usingHM1(·). If
seals denotes the number of SEALs collected from the root
aggregator, the CPU time at the querier in SECOAS is given
by:

CQ

SECOAS = J ·N · CHM1
+ (seals+ J ·N − 2) · CM128

+ (

seals∑

i=1

rli + xmax) · CRSA + J · CHM1
(8)

In SIES, the computational cost at the querier involves
the generation ofN secret shares withHM1(·), N + 1
keys with HM256(·), the summation of all shares together
(for verification), the subtraction of the keys from the final
ciphertext, and a modular multiplication with the multiplicative
inverse ofKt. Supposing thatCMI32 is the time to produce
the multiplicative inverse modulo a 32-byte number, the total
computational cost at the querier in SIES is

CQ
SIES = N · CHM1

+ (N + 1) · CHM256
+

(2 ·N − 1) · CA32 + CMI32 + CM32 (9)

Communication cost.In CMT, each party exchanges a sin-
gle 20-byte ciphertext. Similarly, in SIES every party transmits
a 32-byte PSR. Therefore, the communication cost in CMT
and SIES at every network edge is always constant and equal
to 20 and 32 bytes, respectively.

In SECOAS, every source and every aggregator (except for
the root aggregator) sendsJ sketch values,J SEALs, and
one (aggregated) inflation certificate. The difference at the root
aggregator is that it folds the SEALs that correspond to the
same chain position. The final number of SEALs that it sends
to the querier isseals instead ofJ . If Ssk, SSEAL andSinf

denote the size of a sketch, a SEAL and an inflation certificate,
respectively, the communication overhead between source-
aggregator and aggregator-aggregator are given in Equation

10, whereas the cost between aggregator-querier is shown in
Equation 11.

SS−A

SECOAS = SA−A

SECOAS = J · Ssk + J · SSEAL + Sinf (10)

SA−Q

SECOAS = J · Ssk + seals · SSEAL + Sinf (11)

Formulae evaluation for typical values. Observe that
the costs of SIES are independent of the dataset. On the
other hand, some costs in SECOAS depend on the dataset-
specific variablesv, xi, xmax, seals and rli. Supposing that
the domain ofv is [DL, DU], xi takes values from domain
[0, log(N · DU)] [8]. By bounding v and xi, we can also
boundxmax, seals and rli, since they are all derived from
xi. Consequently, we can find the minimum (best-case) and
maximum (worst-case) costs for SECOAS, which hold forany
dataset distribution in[DL, DU].

Table III illustrates the costs calculated by inserting the
typical values of Table II into Equations 1-11. Interestingly,
in addition to its exact nature and security properties, SIES
outperforms the best-case scenario of SECOAS on all metrics,
by up to 4 orders of magnitude. Moreover, it is marginally
inferior to the lightweight scheme of CMT on all metrics,
which though fails to support data integrity. In the next section
we experimentally confirm our observations.

TABLE III

COSTSUSING TYPICAL VALUES

Costs CMT SECOAS
SIES(min/max)

Comput. cost atS 1.17µs 20.26ms / 92.75ms 3.46µs
Comput. cost atA 0.45µs 1.25ms / 36.63ms 1.11µs
Comput. cost atQ 0.62ms 568.46ms / 568.63ms 2.28ms
Commun. costS-A 20 bytes 38.72 KB / 38.72 KB 32 bytes
Commun. costA-A 20 bytes 38.72 KB / 38.72 KB 32 bytes
Commun. costA-Q 20 bytes 0.44 KB / 3.25 KB 32 bytes

VI. EXPERIMENTS

Recall that there is no direct competitor to SIES, as no solu-
tion can provide in-network processing of exact SUM queries
satisfying both confidentiality and integrity. Nevertheless, we
select CMT and SECOAS (see Section II-D for their detailed
description) as benchmark solutions to assist our experimental
evaluation, although they offer only partial solutions to our
targeted problem (CMT cannot offer data integrity, whereas
SECOAS does not provide confidentiality and supports only
approximate answers).

We ran our experiments on a 2.66 GHz Intel Core i7 with
4GB RAM, running Mac OS X ver. 10.6.4. Admittedly, this
hardware is much more powerful than that of a sensor and,
thus, it solely facilitates the comparison of the methods. How-
ever, as we shall demonstrate soon, our scheme is lightweight
and, therefore, it can perform exceptionally even on sensor
CPUs, which may be several orders of magnitude slower than
our processor. We implemented SIES, CMT and SECOAS in

C++ using the GNU MP2 and OpenSSL3 libraries. We exper-
imented with real dataset Intel Lab4, which contains (among
other data) sensor temperature readings (in degrees Celcius)
represented as float numbers with precision of four decimal
digits. Each source generates valuesv that are randomly drawn
from the above dataset and fall in the range[18, 50]. The
sources and the aggregators form a complete tree. Finally,
following [8], we fix the number of sketch instances (J) of
SECOAS to 300, in order to bound the relative approximation
error within 10% with probability 90%.

We measure the costs of SUM queries, varying the following
system parameters: (i) the number of sources (N), (ii) the
fanout of the aggregators (F), and (iii) the dataset domain
(D = [DL, DU]). Recall that all solutions handle aggregates
only on integers. In order to varyD, each source multiplies its
drawn value with powers of 10, and then truncates it (i.e.,D
takes values[18, 50], [180, 500], etc.). Scaling the domain in
this manner is equivalent to changing the decimal precisionof
the temperature readings supported by the system and, thus,
of the SUM result (the querier divides the extracted integer
result with the respective power of 10 to derive the final float
result). In every experiment we vary one parameter, settingthe
other two to their default values. We evaluate a SUM query
over 20 epochs and report the average cost per epoch.

Table IV includes the system parameters, along with their
ranges and default values. Sections VI-A, VI-B and VI-C
evaluate the computational cost at the source, the aggregator
and the querier, respectively. Section VI-D discusses the
communication overhead at all parties. Finally, Section VI-E
summarizes our results.

TABLE IV

SYSTEM PARAMETERS

Parameter Default Range
Number of sources (N) 1024 64, 256, 1024, 4096, 16384

Fanout (F) 4 2, 3, 4, 5, 6
Domain (D = [18, 50]) ×102 ×1, ×10, ×102, ×103, ×104

A. Computational Cost at a Source

Figure 4 shows the computational cost at the source as a
function of D, whenN = 1024 andF = 4. The error bars
on the curve of SECOAS indicate its best- and worst-case
scenario, as they were calculated by the cost models of Section
V. SIES outperforms SECOAS by more than two orders of
magnitude. The reason is that SIES involves few and cheap
HMAC operations and modular additions, whereas SECOAS

involves generating an excessive number of sketches and
performing several RSA encryptions to produce the SEALs.
SIES also retains a comparable performance to CMT, which
is in the order of a couple of microseconds. Furthermore,
contrary to SECOAS, the computational cost of SIES and CMT
are independent ofD. The overhead in SECOAS increases

2http://gmplib.org/
3http://www.openssl.org/
4http://db.csail.mit.edu/labdata/labdata.html

rapidly withD because it is dominated by the time to produce
the numerous sketches, whose number depends on the source
valuev (see also Equation 2 in Section V). Finally, note that
the processing time at the source is unaffected when varying
F andN and, thus, we omit the corresponding diagrams.

10
-4

10
-2

1

10
2

10
4

x1 x10 x10
2

x10
3

x10
4

C
P

U
 t

im
e
 (

m
s
)

Domain (D=[18,50])

SIES
CMT

SECOA
S

Fig. 4. Computational cost at the source vs. the domain

B. Computational Cost at the Aggregator

Figure 5 demonstrates the CPU time at the aggregator
when varying its fanoutF , and settingN = 1024 and
D = [1800, 5000]. Once again, SIES outperforms SECOAS

by approximately two orders of magnitude, while featuring
a marginal performance difference from CMT. Specifically,
the cost in SIES is within 0.3-2µs due to the inexpensive
modular additions it involves. On the other hand, SECOAS

entails expensive folding and rolling operations (modularmul-
tiplications and RSA encryptions, respectively). As expected,
the overhead of all solutions linearly increases with the fanout.
In SECOAS this is justified because each increase in the fanout
causes the number of folding operations to rise, whereas in
SIES and CMT the number of modular additions increase with
F . We do not include experiments varyingN because the
performance of the aggregator in all schemes is independent
of this parameter. Furthermore,D has no impact on SIES and
CMT, whereas it negligibly affects SECOAS. Consequently,
we also omit the corresponding diagram.

10
-4

10
-2

1

10
2

10
4

2 3 4 5 6

C
P

U
 t

im
e
 (

m
s
)

Fanout (F)

SIES
CMT

SECOA
S

Fig. 5. Computational cost at the aggregator vs. the fanout

C. Computational Cost at the Querier

Figure 6 depicts the CPU time consumed by the querier
(D = [11800, 5000], F = 4). We omit the cost model
of SECOAS from the diagram because it bounds the actual
values very accurately (within a 0.001 relative error). In
Figure 6(a) we varyN (F = 4, D = [1800, 5000]). This
overhead is linearly dependent onN in all methods. SIES
outperforms SECOAS by more than one order of magnitude
on all values. This happens because in SECOAS the querier
performs numerous folding and rolling operations to compute
the reference SEAL during verification. On the other hand,
SIES involves only the computation of the keys and shares
with the efficient HMAC, plus a number of cheap modular
additions. The CPU consumption in SIES is within range 0.15-
36 ms. Additionally, the performance of SIES is comparable
to that of CMT. Their difference is mainly justified by the fact
that in SIES the querier must also compute the shares that are
used for integrity verification, a process missing from CMT.

In Figure 6(b) we varyD (N = 1024, F = 4). The overhead
in SIES and CMT is independent ofD and more than one
order of magnitude lower than that of SECOAS. Moreover,
the cost in SECOAS is practically unaffected byD because
it is dominated by the numerous (i) HMAC operations to
create the temporal seeds, and (ii) modular multiplications to
fold these seeds during the creation of the reference SEAL.
Finally, the performance of all solutions does not vary with
F and, therefore, we omit the respective experiment from our
discussion.

10
-4

10
-2

1

10
2

10
4

2
6

2
8

2
10

2
12

2
14

C
P

U
 t

im
e
 (

m
s
)

Number of sources (N)

SIES
CMT

SECOA
S

(a) vs. the number of sources

10
-4

10
-2

1

10
2

10
4

x1 x10 x10
2

x10
3

x10
4

C
P

U
 t

im
e
 (

m
s
)

Domain (D=[18,50])

SIES
CMT

SECOA
S

(b) vs. the domain

Fig. 6. Computational cost at the owner

D. Communication Cost

Table V provides the communication cost per network edge,
when N = 1024, F = 4 and D = [1800, 5000]. We also
include the minimum and maximum values derived by the
models of SECOAS. Note that all costs except for that corre-
sponding to pair aggregator-querier in SECOAS are invariant
of our system parameters, whereas the latter cost is marginally
affected byD andN . The benefit of SIES over SECOAS is
clear, reaching more than 3 orders of magnitude. Additionally,
the difference between SIES and CMT is negligible.

TABLE V

COMMUNICATION COST

N = 1024, F = 4, D = [1800, 5000]

Nework edge CMT SECOA SIES(actual/min/max)
S-A 20 bytes 37.8 KB / 37.8 KB / 37.8 KB 32 bytes
A-A 20 bytes 37.8 KB / 37.8 KB / 37.8 KB 32 bytes
A-Q 20 bytes 832 bytes / 448 bytes / 6.7 KB 32 bytes

E. Summary

In addition to covering all security properties and offering
exact results, SIES offers an impressive performance advan-
tage over SECOAS on all performance metrics, especially
considering (i) the approximate nature of SUM queries in
SECOAS, and (ii) its unsuitability to support confidentiality.
Furthermore, SIES has comparable performance to CMT,
despite the simplicity and efficiency of the encryption scheme
of CMT due to its lack of the data integrity property. In overall,
SIES is lightweight as it features very small communication
cost in the order of a few bytes, and CPU consumption that
most of the times ranges from a few microseconds to a few
milliseconds in the worst-case. More notably, the processing
cost at a sensor (source or aggregator) is always up to a
couple of microseconds. Consequently, SIES would offer ideal
performance even if it were deployed on a sensor CPU with
several orders of magnitude smaller computational capabilities
than our benchmark CPU. In that sense, SIES constitutes a
suitable technique for resource-constrained sensor networks.

VII. C ONCLUSION

In this paper we introduced SIES, a novel and efficient
scheme for secure in-network processing of SUM queries (as
well as their derivatives, e.g., COUNT, AVG, etc.). SIES is
the only solution that offers exact query answers, satisfying
all the necessary security properties of the targeted model, i.e.,
data confidentiality, integrity, authentication, and freshness. It
achieves this goal through a combination of a homomorphic
encryption scheme and a secret sharing method. These tech-
niques are lightweight, leading to a very small bandwidth con-
sumption for all parties involved (in the order of a few bytes),
and a very low CPU cost because they entail a small number
of inexpensive cryptographic operations (hashes and modular
additions/multiplications). This fact renders SIES a powerful
security tool for resource-constrained sensor networks. We

confirm our performance claims through a detailed analytical
and experimental evaluation.

REFERENCES

[1] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny
AGgregation service for ad-hoc sensor networks,” inOSDI, 2002.

[2] Y. Yao and J. Gehrke, “The COUGAR approach to in-network query
processing in sensor networks,”SIGMOD Rec., vol. 31, no. 3, pp. 9–18,
2002.

[3] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in
SAINT-W, 2003.

[4] P. Jadia and A. Mathuria, “Efficient secure aggregation in sensor
networks,” inHiPC, 2004.

[5] C. Castelluccia, E. Mykletyn, and G. Tsudik, “Efficient aggregation of
encrypted data in wireless sensor networks,” inMobiQuitous, 2005.

[6] B. Przydatek, D. Song, and A. Perrig, “SIA: Secure information aggre-
gation in sensor networks,” inSenSys, 2003.

[7] M. Garofalakis, J. M. Hellerstein, and P. Maniatis, “Proof sketches:
Verifiable in-network aggregation,” inICDE, 2007.

[8] S. Nath, H. Yu, and H. Chan, “Secure outsourced aggregation via one-
way chains,” inSIGMOD, 2009.

[9] SenseWeb, Microsoft Research. [Online]. Available: http://research.
microsoft.com/en-us/projects/senseweb/

[10] A. Mahimkar and T. S. Rappaport, “SecureDAV: A secure data aggre-
gation and verification protocol for sensor networks,” inGlobecomm,
2004.

[11] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: A secure hop-by-hop
data aggregation protocol for sensor networks,” inMobiHoc, 2006.

[12] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” inCCS, 2006.

[13] K. B. Frikken and J. A. Dougherty, IV, “An efficient integrity-preserving
scheme for hierarchical sensor aggregation,” inWiSec, 2008.

[14] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,”Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[15] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” inEUROCRYPT, 1999.

[16] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” inCRYPTO, 1996.

[17] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone,Handbook of
Applied Cryptography. CRC Press, Inc., 1996.

[18] J. Kim, A. Biryukov, B. Preneel, and S. Hong, “On the security of
HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-
1,” in SCN, 2006.

[19] R. Merkle, “A certified digital signature,” inCRYPTO, 1989.
[20] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:

Security protocols for sensor networks,” inMobile Computing and
Networking, 2001.

[21] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient security mechanisms
for large-scale distributed sensor networks,” inCCS, 2003.

[22] H. Yu, “Secure and highly-available aggregation queries in large-scale
sensor networks via set sampling,” inIPSN, 2009.

[23] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in ICDE, 2002.

[24] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Authenticated
index structures for aggregation queries,”TISSEC (to appear), 2010.

[25] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and D. Sri-
vastava, “Small synopses for group-by query verification on outsourced
data streams,”TODS, vol. 34, no. 3, pp. 1–42, 2009.

[26] T. Ge and S. Zdonik, “Answering aggregation queries in asecure system
model,” in VLDB, 2007.

[27] N. Alon, Y. Matias, and M. Szegedy, “The space complexityof approx-
imating the frequency moments,”J. Comput. Syst. Sci., vol. 58, no. 1,
pp. 137–147, 1999.

[28] J. Katz and Y. Lindell, “Aggregate message authentication codes,” in
CT-RSA, 2008.

