Secure and Efficient In-Network Processing of
Exact SUM Queries

Stavros Papadopoulés Aggelos Kiayiag’, Dimitris Papadias

!Department of Computer Science and Engineering
The Chinese University of Hong Kong
stavros@se. cuhk. edu. hk

2Department of Informatics and Telecommunications
University of Athens
aggel os@li . uoa. gr

3Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
dimtris@se. ust. hk

Abstract—In-network aggregationis a popular methodology case, the querier collects all the raw data from the sensmts a
adopted in wireless sensor networks, which reduces the energyperforms the aggregation locally. Although this may be a vi-
expenditure in processing aggregate queries (such as SUM, MAX, gp1e solution in small networks, it leads to an excessivegne
etc.) over the sensor readings. Recently, research has focdsen - - ’ .
securein-network aggregation, motivated (i) by the fact that the expenditure in Iarge-sca_le networks. Sp_emﬂcally, theersosit-
sensors are usually deployed in open and unsafe environments,uated closer to the querier route a considerable amountaf da
and (i) by new trends such asoutsourcing where the aggregation which originate from farther nodes in the network topology.
process is delegated to an untrustworthy service. This new Therefore, their battery is depleted fast, since its lifgsjs
paradigm necessitates the following key security properties: mainly impacted by data transmission. Moreover, the above

data confidentiality integrity, authentication and freshness The o L . -
majority of the existing work on the topic is either unsuitable solution introduces a significant bandwidth consumptiod an

for large-scale sensor networks, or provides onlyapproximate COmputational cost at the querién-network aggregatiorl],
answers for SUM queries (as well as their derivatives, e.g., [2] is a popular paradigm that tackles these drawbacks, by

COUNT, AVG, etc). Moreover, there is currently no approach spreading more computation within the network. In paricul
offering both confidentiality and integrity at the same time. some sensors play the role ajgregatorswhich fuse the data

Towards this end, we propose a novel and efficient scheme . . .
called SIES. SIES is the first solution that supports_8cure as they flow in the network. The querier eventually receives

In-network processing of Exact SUM queries, safisfying all Only the final result from a single aggregator.
security properties. It achieves this goal through a combination b Recently, research has focusedsaturein-network aggre-

homomorphic encryptiorand secret sharing Furthermore, SIESis gation, which is motivated by the following two facts. Fjrst
lightweight (it relies on inexpensive hash operations and modular gansor networks are usually deployed in open and hostile en-

additions/multiplications), and features a very small bandwidth . . . - -
consumption (in the order of a few bytes). Consequently, SIES vironments (e.g., in battlefield grounds), or in securitjical

constitutes an ideal method for resource-constrained sensors ~ applications (e.g., in factory monitoring, burglar alajms
where adversarial activity must be averted (examples dieclu

|. INTRODUCTION [3], [4], [5], [6]). Second,outsourced aggregatiof¥], [8] has
Wireless sensor networks are nowadays deployed inst@rted to gain populararity. Under this new trend, the gask
plethora of applications, such as factory monitoring, iifidd of organizing/tuning the aggregation network and conahgcti
surveillance, environmental monitoring, battlefield gems, the aggregation process are delegated to a third-partyceerv
fire and burglar alarms, etc. The sensor nodes form a netwguovider with a well provisioned distributed infrastructu
topology by connecting to other sensors that reside with{e.g., Microsoft's SenseWeb [9]). Nevertheless, the mlewi
their vicinity. Communication between nodes is dictatedaby may beuntrustworthyand possiblymalicious
multi-hop routing protocol. The sensors generate andniéns Secure in-network aggregation mandates the following key
stream data (e.g., environmental readings, informatiasub security properties:
moving objects, etc.). A querier (e.g., a corporate orgsion, « Data Confidentiality: The adversary must not be able to
a laboratory, etc.) poses long-running queries on the senso read the raw data transmitted by the sensors.
readings, and periodically receives data from the networke Data Integrity: The adversary must not be able to alter
(typically via a single node, called th@nk). the result, i.e., the querier should be able to verify that
Aggregate queries (e.g., SUM, MAX, etc.) constitute a wide all the raw data were included in the aggregation process,
and important query class in sensor networks. In the naive and no spurious data were injected.

o Data Authentication: The adversary must not be ablehe Outsourced Database (ODB) model. Finally, in Sectien Il
to impersonate the querier and/or the sensors, i.e., th&wve select suitable benchmark solutions for our experiadent
parties must be able to verify the origin of a receivedvaluation, and present them in detail.
message. i o

. Data FreshnessThe reported result must reflect the mosf- Cryptographic Primitives
recent instance of the system, i.e., the adversary must noHomomorphic Encryption. Let m; and my be two
be able to replay old results to the querier. plaintexts, and® a binary operation over the plaintext

Next, we outline the weaknesses of existing work on secufBac€. An encryption functionf is homomorphic if

in-network aggregation, and present our contributions. it allows the generation ofé(m; © m2), given only
ciphertexts€(m;) and £(mg) and without requiring their

Prior work. The majority of the schemes are eithefl€CTyPtion. For example, the RSA cryptosystem [14] is
unsuitable for large-scale networks, or support onfyemomorphic; supposing that the public key (8, n),
approximate answers to SUM queries. More specificall, 10!dS thatErsa(mi) - Ersa(ma) modn = mg - mj
several methods follow thecommit-and-attest modef6], 0d 7 = (m1-m2)® mod n = Ersa(mi-ms). This scheme
[10], [11], [12], [13] that involves an expensive broadaast is glso ca_lle_dmgltlphcatlvely homomorphicsince operathn
phase, during which the sensors actively participate in the is mulupllcatlon. The m_thods that support the addition
verification process. The performance of these solutioRReration, such as the Paillier cryptosystem [15], areedall
deteriorates drastically with the number of sensors. On tRéditively homomorphic For instance, in the symmetric
other hand, more efficient methods [7], [8] associate sm&fCTyPtion setting, one can use a variant of the one-time pad
proofs of integrity with the transmitted raw data, whicHC achieve an additively homomorphic encryption: we define
can be aggregated in-network and easily verified by the () =k -m, where the plaintext space is a finite field and
querier. Nevertheless, they are based on sketches and, tif¥S are assumed to satisfy# 0. It is easy to verify that
cannot offer exact results. Finally, currently no approaah S Nomomorphic with respect to the field addition.
supportboth confidentiality and integrity at the same time. o
For example, [5] provides confidentiality but not integrity IMAC. The HMAC (hash-based message authentication

whereas [8] focuses on integrity without being able to suppd©de is a short piece of information used to prove the
confidentiality. origin of a messagen, as well as its integrity [16]. It is

implemented by combining a one-way, collision-resistagt
ffunction H(-) with a secret key. It entails two applications

the related work, we introduce SIES, the first solutioflf H(-), and consumes the same space as the hash digest. In
for Secure In-network processing oExact SUM queries the sequel, we usél M, (K,m) (HMss6(K,m)) to denote

(as well as their derivatives, e.g., COUNT, AVG, etc.)t,he HMAC,Ofm using key K, assuming that the underlying
satisfying all four security properties. SIES achieves thi§2sh function is SHA-1 (SHA-256) [17], [18] that produces

goal through a combination ohomomorphic encryption 20-PYte (32-byte) digests.

and secret sharing It is scalable as it does not involve the) K .
participation of the sensors in the verification process. It PSeudo-random Function (PRF)A PRF takes as input a

entails a small constant communication cost per networfC'et random kejt', and a variablen that can be an arbitrary

edge (in the order of a few bytes). Moreover, it require%mng' Its (_)utput i§ .distinguish_e_d from that of a.truly rang
few and inexpensive cryptographic operations (hashes gHgction with negligible probability, as long agk is hidden.
modular additions/multiplications) at each party invalve HMACs have been widely used as PRFs in the literature [18].

The above render SIES lightweight and, thus, an idel) our work, we assume that the PRFs are implemented as
solution for resource-constrained sensors. We analiytieald HMACs.

experimentally confirm our performance claims. B. Secure In-network Aggregation

Several approaches follow tltemmit-and-attest modh],

2], [13], [11], [10], which consists of two phases. Duritige
ommitment phaséhe aggregators are forced to commit to the
partial results they produce, by constructing a cryptolgiap
structure like the Merkle Hash Tree [19] and sending the
root digest to the querier. In thegtestation phasethe querier
broadcasts the aggregate result and the root digest itveztei
from the network to all the sensors, using an authenticated

In Section II-A we describe the basic cryptographic toolsroadcasting protocol likeuTesla [20]. Each sensor then
that are necessary for our presentation. In Section |I-B vimdividually audits its contribution to the result usingeth
survey the prior work on secure in-network aggregation. kommitment structure. The broadcasting inflicts consitlera
Section II-C we discuss the aggregation methods appearingcommunication cost to the network and high query latency

Our contributions. Motivated by the shortcomings o

The rest of the paper is organized as follows. Section
surveys the related work, Section Il contains preliminar
information, Section IV explains SIES in detail, Section
includes cost models, Section VI experimentally evaluates
scheme and, finally, Section VII concludes our paper.

IIl. RELATED WORK

that increase with the number of sources, gravely impactiesgmpromising a single sensor would lead to the compromise
scalability. of the entire system). Providing secure in-network aggrega
In the context obutsourced in-network aggregatipRroof- in the presence of multiple keys is a more challenging task.
Sketches [7] and SECOA [8] associate small proofs of intggri)
with the transmitted raw data, which can be aggregated f: Benchmark Solutions
network and easily verified by the querier. These approachessince there is currently no scheme offering both integrity
are more scalable than the above, since they do not reqeire and confidentiality for in-network processing of SUM qusrie
active participation of the sensors in the verification pssc there is no direct competitor to our work. However, in order
However, they are both based on sketches and, thus, offer otdl facilitate our experimental evaluation, we choose as
approximateanswers. benchmarks (i) the only method guaranteeing confidentialit
All the described methods so far focus on integrity, withoute., [5], henceforth referred to as CMT (after the authors’
being able to provide confidentiality. On the other handhitials), and (i) the best in-network solution providing
[5] supports aggregation directly on encrypted data via amtegrity. Specifically, we select SECOA [8] because it is
additively homomorphic encryption scheme, satisfyingadamore scalable than the commit-and-attest approaches, and
confidentiality. Nevertheless, this approach does nogsafel subsumes Proof-Sketches [7]. SECOA supports a wide range
against data tampering. Currently, there is no solutiort thef aggregate queries (including MAX). We hereafter use
provides both confidentiality and integrity. SECOA® to refer to the SUM algorithm of SECOA. Below
For completeness, we also present some methods that tavgetoresent these two methods in more detail.
at slightly different models than the above schemes and are
orthogonal to our work. LEAP [21] is a key management CMT. We illustrate this method through a simple example.
protocol that allows in-network aggregation, while regtri Suppose that sensék (Sz) shares a secret kely; (k) with
ing the impact of any malicious nodesthin their network the querier. Also letv; (v2) be the reading ofS; (S2). &1
neighborhood[3] and [4] provide secure aggregation againgtS:) computes ciphertext; = vy + k1 mod n (c2 = v2 + k2
a singlemalicious node. Finally, Yu [22] introduces a randomnmod n), wheren > vy, vq, k1, k2 is a publicly known integer.
sampling technique that enables aggregation queriedeate Now suppose that the sink receivesc; andc,. It aggregates
the adversarial nodes (instead of just detecting them)rdaro them intoc = ¢; + ¢ mod n and forwards it to the querier.

tackle denial of service (DoS) attacks. The latter can extract; + v = ¢ — (k1 + k2), since it
o knows k; and k5. This is a simple additively homomorphic
C. Aggregation in the ODB Model scheme that allows in-network processing of SUM queries

In the Outsourced Database (ODB) model [23], a data ownam encrypted data, thus satisfying confidentiality. Howeve
delegates the administration of its database to a spemializt does not guarantee integrity; the adversary can injegt an
third-party service provider. Since the provider may be umategerv’ to ¢, cheating the querier to extrae{ + vs + v’
trustworthy, security issues such as data confidentialitg aand admit it as a correct result.
integrity arise. Although there exist numerous approathats
follow this paradigm, here we discuss only those that focus SECOAS. This scheme is a combination of the MAX
specifically on secure processing aggregate queries protocol of SECOA, denoted by SECHA and the AMS

Li et al. [24] design authenticated index structures thaketches [27]. We first describe SECHAEach sensors;
incorporate hash digests similar to the Merkle Hash Treg [1$ends to its parent aggregatdr (i) the generated data value
and are signed by the data owner. In addition to the aggmuyati;, (ii) an inflation certificate and (iii) a deflation certificate
results, the provider utilizes the indices to produce \@atfon The inflation (deflation) certificate guarantees thahas not
information that proves the answer integrity. In [25], threner been inflated (deflated) by an adversary.
outsources the storage of a data stream to the provider, an@he inflation certificate o, is simply H M, (K;, v;), where
subsequently asks aggregate queries on the stream. The owfieis a unique key shared ki, and the querier. The deflation
monitors the stream and stores a compact authentication swertificate, called a SEAL, is a value produced by applying
mary that helps in auditing the result integrity. Ge and Zkonv; times the RSA encryption function on a seeél known
[26] focus on confidentiality instead of integrity. They as® only by S; and the querier. For example, 4f = 3, then the
that the database is encrypted with the Paillier additiveBEAL is equal tofrsa(Ersa(Ersa(sd;))) and denoted by
homomorphic scheme [15]. The provider operates solely @i ,(sd;). A SEAL can be perceived as @ne-way chain
the ciphertexts producing answers to SUM-based querigs. Tiiom £} , (sd;) one can produc€;y , (sd;) for anyv, > vy,
scheme, however, cannot guarantee integrity. but not forvy < v;.

The above methods cannot be applied to the in-networkAggregator.A first chooses the MAX of the received values
aggregation model because they assume the existence @nd forwards it to its parent aggregator, along with its tidta
singledata owner. In particular, the signatures and ciphertexdsrtificate. Subsequently, it combines all the collectedISE
are produced with a single key. In our setting, there ateet v; = 3 and vs = 5 be the values received from
multiple sensors, each regarded as a separate data oveesisorsS; and Sp, sd; and sds the corresponding seeds
that encrypts/signs its data with itsnique key (otherwise, and 3¢ 4(sd1) and Ejg4(sd2) the respective SEALsA

applies RSA encryption 0634 4 (sd1) 2 times (i.e.,v2 — v1),
which vyields £34 4 (sd1). This process is calledolling. It
then computes the modular produttq ,(sd1) - Exg 4(sda)
modn = E}gu(sdy - sd2), where n is the public RSA
modulus. This step is calledolding. The product is the
aggregate SEAL sent to the parent aggregator.

The described process continues recursively, until tl
querier eventually receives the MAX resulis along with its PSR, gregator
certificates from the sink. It first verifies the inflation décate
using the corresponding shared key. Next, knowing all tt
secret seeds, it recreates the aggregate SEAL (this ent
folding all seeds together and rolling thems times), and Aggpegator Az Aggregator Ay
verifies it against the collected one.

PSR

M M

To answer SUM queries, SECOAecessitates each sensa i PSR, PR, PSRy
S; to generateJ - v; AMS sketches and merge them intc I 7 / /
exactly J ones, whereJ adjusts the accuracy of the methoc Raw Raw Raw Raw
(with higher values leading to better accuracy). It therokes T data data data data
SECOA" separately on each of thesé sketches. As an | | D% Goaa Goa goaa

optimization, the aggregators merge the inflation proofs @ | source s,
singleaggregate HMAJ28] by XOR-ing them. Furthermore,
the sink folds the SEALs that are at the same “position” in Fig. 1. System Architecture
the chain to reduce the number of SEALs sent to the querier.

After verification, the querieapproximateghe SUM result as

2%, wherez denotes the average over thieollected sketches. input a single PSR collected from the sink; it extracts thalfin
aggregation result form the PSR, and verifies its correstnes
A last remark concerns the computational capabilities of
Section IlI-A presents our system architecture, Sectitn lihe sources, the aggregators and the querier. Unlike SECOA
B describes our query model, Section 11I-C includes ourahre[g], we do not make the strong assumption that the sensors
model, and Section 11I-D contains the building blocks of SIE zre capable of performing expensive computations (such as
RSA encryption operations), or that they are attached teemor
]) powerful proxy machines. On the contrary, in our schemej eac
In the sequel, without loss of generality, we separate tharty involved needs only to be able to compute inexpensive
roles of the sensor that generates data values, and ther seAgen functions and modular additions/multiplicationsthat

that performs aggregation tasks. We call the formaoarce sense, our work targets traditional resource-constraseedor
and denote it a§, whereas we refer to the latter aggregator networks.

and denote it asl. For simplicity, we assume that the sensors
are organized into &ree topology with _the sources being theB_ Query Model
leaves and the aggregators representing the internal noldes
tree topology can be arbitrary, while its construction, fine We assume th@ush-basediata collection model, where a
tuning and re-organization due to node failures are issues continuous query is registered at the sources during a setup
thogonal to our work. A querie@ poses long-running queries,phase, and then each source periodically transmits its data
and communicates only with the root of the aggregation treig, the network. This model is usually preferable to thel-
i.e., the networksink Figure 1 illustrates a simple examplébasedapproach (where the querier broadcasts the query to the
architecture. The topology configuration, the dissemamatif sources in order to extract the result on demand) because (i)
the necessary information to the aggregators and sourcesphiling the data incurs a large communication overhead and
the querier, and the initiation of the continuous query at tttan be prohibitively slow for large-scale networks, and (ii
sources occur before the aggregation process commencesthe sources must be always on to receive potential queries
The aggregation process consists of three phasesnithe (whereas in the push-based model the sources may preserve
tialization phasel, the merging phase\/, and theevaluation power by turning on periodically).
phase E. I takes place at each source and operates on thell sources, aggregators and the querier domsely
generated raw data. The output ipartial state recordPSR synchronized in time epochs. The epoch specifies the
(we adopt the notation from [1], [7]), which integrates tlagvr transmission period of each source. In the sequel, for
data with other security information\/ takes place at eachsimplicity, we perceive every epoch as a distinct time intsta
aggregator; it combines the PSRs received from its childrenWe focus on exact SUM queries, which have the following
into a single one, which is subsequently forwarded to tHerm:
respective parent. Finallyy occurs at the querier, and has as

Source S, Source S3 Source Sy

Ill. PRELIMINARIES

A. System Architecture

Query template Below we describe in detail these two basic components.
SELECT SUM attr) FROM Sensors
WHERE pr ed Additively Homomorphic Scheme.Let p be a primem,; <
EPOCH DURATI ON t p the message to be encrypted, aid# 0, k; < p two secret
keys. We define encryption as
If a source does not satisfy the WHERE predicate, it simply
transmits 0. Without loss of generality, we consider that al
data values are positive integers (we can always encode othed decryption as
data types as positive integers via simple translation and .
scaling operations [8]). Note that COUNT queries are thiyia mi = D(ci, K, ki,p) = (¢ = ki) - K mod p
reduced to SUM (e.g., a source simply transmits 1 if it s@tsfiyyhere K1 is the multiplicative inverse off modulop. Note
the query predicate). Moreover, SUM and COUNT resuligat k1 always exists since is prime.
can be combined to answer other aggregate queries, €.9., thQow consider two ciphertexts; and ¢, corresponding to

average as AVG = SUM/COUNT. In a similar manner Wejaintexts m; and m., respectively. Observe that we can
can derive other queries from SUM and COUNT, such ¥dmpute the encryption of SUMh; + mo as

STDDEV and VARIANCE.

c¢i =E(my, K, kiyp) = K -m; +k; mod p

cp+tce = 5(m17K7k17p)+5(m27K7k27p):
C. Threat Model = K-(mi+m2)+ (k1 +k2) modp=
The adversary may either compromise a sensor node (source = E(my+ma, K, ki + ko, p)

or aggregator) and thus take its full control, or infiltrates t
wireless channel. We do not make any assumption about
computational capabilities of the adversary. Our main goal m1 +me = D(c1 + o, K, k1 + ko, p)
is to satisfy data confidentiality, integrity, authentioat and

freshness, as they were defined in Section I. Particulary fo N ' ;)
data integrity, we mandateetectionof any alteration of the K€YSK andXi,k; in the decryption function. In the sequel,
result, and notoleranceor error recovery Additionally, we () andD(.) refer to the encryption and decryption functions

do not try to tackle DoS attacks, e.g., when the (comprorjisedf ©Ur homomorphic scheme, respectively. Observe that this
sink does not report at all the result within one or morlYP€ Of encryption is secure in anformation theoreticsense,
time epochs. Such cases are trivially detected if the quer|é- V€N againsta computationally unbounded adversry.
does not receive any data. Furthermore, we do not seekJdS since lacking knowledge df, the value&(m, K, . p)
protect against physical manipulation of the sources,, e_B_reserves no information whatsoever abouf(for any value

when the adversary places heaters nearby sensors measmng’ p).

temperatures to alter the real readings. hari h
Another remark concerns our goals in the presence of aSecret sharing [17].Let s be asecret Suppose that we

compromised source. Note that a compromised source éAc'l'ﬁh to distributes amongstN' parties, in a way suc_h that
arbitrarily alter itsown data. In this case, the querier admit§ can be re-constructed only wheil ' parties contribute.
the (modified) result as correct, without detecting the oiailis We first generateV — 1 random valuesssy, ssz, ..., ssn -1,
activity. Our scheme, as well as all the approaches in the lit and distribute 0”}353 to each party except for one. We then
ature, cannot tackle this situation. Nevertheless, themdyy SELSSN = 8 — Xi_y ss; and give it to the last party. Each
should not be able to breach the securitytioé rest of the 5% vaIuele called asecret share The secret is then equal
systemi.e., it must not be able to impersonate or decrypt tH8 § = i=155i- [Observe that the adversary cannot compute
ciphertext transmitted by anncompromisediode. Note that * W'FhOUt k”OW'”g _aIIN secret shares. .Th's S”T‘p'e secret_
this is important for the robustness of our scheme, since iﬁharlng technique is secure also in an information theoreti
very likely that some sensors are hacked in open and unsafeIse:
environments. Furthermore, take into account that SUM and IV. SIES
AVG results are resilient to a small number of “fake” reading
unlike MAX/MIN queries where a single compromised nodcran
suffices to significantly alter the result.

Finally, note that the querier must either be tvenerof the
sensors, or an authorized entity that possesses all theszyge
keys. Access control issues are orthogonal to our work.

%/Hréich can be decrypted using keys and k; + ko as

N N i
In general,X;* ;m; can be extracted front;’,c; using

Before embarking on the details of SIES we provide the
ain idea. We use the homomorphic encryption scheme de-
scribed in Section IlI-D because it enables the aggregators
to perform aggregation directly on ciphertexts through its
additive property, thus achieving data confidentialitysHould
be noted that this scheme cannot guarantee the integrity of
- the aggregation result by itself. For example, a comprodnise
D. Building Blocks aggregator may trivially drop the ciphertext from any seurc
SIES is based on a combination of an additivelwithout being detected. We overcome this problem by incor-
homomorphic scheme and a simple secret sharing technigperating secret shares into the plaintext values to be ptexly

The querier can then verify that all the ciphertexts havenbeg; ;, and ss; ; aretemporal as they all depend ot As we
involved in the aggregation process and no spurious ones hakall see, this is important for providing data fresheniext,
been added, by extracting the complete secret from the fidalproduces a binary message ; with the form depicted in
ciphertext. Figure 2.

SIES complies with the architecture presented in Sectien Il
A, i.e., it consists of a setup phase that occurs beforengett log N bits
the system into motion, and the three phases of the aggrega 4bytes (= upto § bytes) 20 bytes
process (initialization, merging, and evaluation). SetiV-A
explains these phases, and Section IV-B discusses the'tyeClmi,t Vit 00...0 SS;4
of SIES. Table | provides our notation.

Fig. 2. Format ofm; ¢

TABLE |
SUMMARY OF SYMBOLS The purpose of addinglog N zeros in m;, will
Symbol Meaning be clarified soon. Finally, S; createss a PSR as
SIAIQ Source/Aggregator/Querier PSR, = 5(_mi,ta K, k.iytvp)’. and sen-ds It to Its Parent
N Number of sources aggregator. Since the size pfis determined by the size of
K Key known toQ and every source) ; ; ;
K, Key known t0Q ands, K, andk; ., the resulting ciphertext is 32 bytes long.
p Public prime modulus]]]
t Time epoch Merging Phase. During this phase, an aggregatof;
Ky Key generated by all sources at epach receives the PSRs from its children and combines them into a
kit Key generated bys; at epocht
8512 Secret share generated By at epocht single one, which is then forwarded to its parent. Supposing
it Value generated by; at epocht that A; receivesPSR;: and PSR, ;, it simply computes the
my ¢ Plaintext ofS; to be encrypted at epoch /o
PSE., PSR generated bys; at epocht new PSR asPSR; PSRM + PSR_2_¢ mod p (recall that
s Secret verifiable by at epocht A; possesses). The resulting PSR is also 32 bytes long.
rest SUM result at epoch
HM, () HMAC implemented with SHA-1 Evaluation Phase Eventually,Q receives a single final PSR

HMbs6(-) HMAC impl ted with SHA-256 i ;
256 () mplemented wi in time epocht, denoted byPSR;;, which represents the

modular addition of all the PSRs generated by the sources.

A. Phases It then computesns; = D(PSRy, K¢, SN ki +,p). Note
Setup phase Suppose that the number of sources/isThe that Q can calculate; and allk; ; because it possess#s
querierQ first generates random keys$, andk,, ko, ..., ky, and allk;. Due to the homomorphic property of our scheme,

each having an appropriate size that diminishes the priityabir .+ is equal to the sum of akn; , produced by the sources.
of a random guess (in our implementation we set this sizgonsequently, the first 4 bytes af, constitute the result
to 20 bytes).Q also produces a random prime which is (res;) of the SUM query. The remaining((log N)/8 + 20)
used as the modulus of our homomorphic encryption scherfi¥tes represent the secret = %Y, ss; . Due to overflow
As we shall see, in our implementation the sizepofs 32 during the summation, the extra bits required cannot be more
bytes. Subsequently, inanuallyregisters(K, k;,p) to every thanlog N when N numbers are added. This justifies our
sourceS;, and provides each aggregatds with p. Observe choice to padog IV zeros befores; , in everym; ;. Moreover,
that K is commonly known to all sources. Nevertheleks, observe that our implementation can support up\te= 2%
is only known by sources;. Finally, Q issues the continuous sources, since the padding in;; can be up to 8 bytes (so
query to the system. To do so, it broadcasts the query in #@t the total size ofn; ; does not exceed 32 bytes). Figure
authenticated way withTesla [20]. After the sources receive3 illustrates the finalny, retrieved by Q for the topology
the query, the aggregation process commences. Wheigveglepicted in Figure 1, wher®SR; ; was generated bg;.
issues a new query, it simply broadcasts it wiffesla in the ~ Q first extracts the resultes; and values; as explained
network, without re-establishing any keys. above. Subsequently, it computes the secret shareof each
sourceS; asH M; (k;, t). Next, it derivesSYY ; ss; ;. Finally, Q
Initialization Phase. Let ¢ be the current time epoch. Everyconfirms the integrity and freshnessefs;, if and only if the
sources; first generates its data valug, (involved in the X;;ss; value it computed is equal to the extractedrom
aggregation query), which is 4 bytes long. Moreover, it com?SRy ;. To summarize, (i) confidentiality is ensured through
putes (pseudo-) random ke, = HM,s¢(K,t), using the our additively homomorphic scheme, which at the same time
HMAC PRF H Ms6(-), which is implemented with SHA-256. allows efficient aggregation, (ii) integrity is guarantebrbugh
In addition, S; generates:; ; = H Mosg(k:,t). Subsequently, the embedding of the secret shares into the PSRs, which
it calculatessecret sharess; , = HM, (k;,t), where H M, (-) eventually sum up to a secret verifiable by the querier, and
is the HMAC PRF that uses SHA-K; andk, , are 32-byte ")))
e consider here that the final result cannot exc&&d— 1. However, if

long, Whereassi»t 1S 207byte long. Note thak; is known to the application requires longer numbers we can use an 8-tfteifi m; ;
all sources, whereadls, ; is only known byS;. Moreover,K;, during the initialization phase.

PSR.: &(| v, [00.0] 55, |) to HMys6(-) when generating:; ;, occurs with probability

160 o o . . .)
PSR, ; 5(| v, | 00“.0| 555, |) 2 (smce.kl_ is 20 bytes long in our implementation), which
is also negligible. []
PSRy: &(| v [o00..0] 553, B
+ PSR, ;: g(| Vi |00...0| 55, |) The above discussion implies that, is not necessary for
(mod p) providing confidentiality, since the latter is satisfied edpl
k ;... Below we explain th is important for
PSR,; g(| es, | 5 |) by key k.. Belo e explain thatK; is important fo

guaranteeing data integrity.

res, = vy, t vy, Ty, Ty,

S, =58, 8585,,+585;,+55,, Data integrity. We focus on the case where the adversary
does not compromisany source. If the adversary hacks a
Fig. 3. Example aggregation in SIES source, it can obtain its keys and alter arbitrarily its own

reading. Therefore, in this case data integrity is always
breached. We say that SIES guarantees data integrity, if the
(iii) freshness is provided because the keys and shares uaddersary can alter the final aggregation result withoutdei
by the sources integrate the temporal informatiprwhich detected with negligible probability.
is different for different epochs. In the next sub section we
discuss the security of SIES in detail. Theorem 2: SIES satisfies data integrity.

B. Security Proof: Let PSRy, be the final legitimate PSR, and
i i i) i PSR’“ the PSR eventually presented g In order for data
In this section we explain the security of SIES agam?rt\teg'ri’ty to be violated, the last 28 bytes of val(BSR ., —
various attacks in terms of data confidentiality, integrity, -1 i
authentication. and freshness PSR ;) Ky~ mod p must all be 0. .Observe that this holds
: ' only when the secret; incorporated inPSR;; (whose size
) o L . isupto 28 bytes) is equal tg contained inPSR ,. This is
Data confidentiality. We distinguish two scenarios: (i) necessary in order for the querier to admif , extracted from

the adversary does not compromise any source and Sim?JSR}t as legitimate. Sinc&’, is unknown, this happens with

vesdr he wirel hannel, and (i) th versar m., oo S .
ea e;d ops the wireless channel, and (ii) the adve sary coprobablllty 2% _ 9220 \which is negligible. -
promises at least one source. Note that compromising an 2

aggregator is equivalent to eavesdropping the channelg sin

the aggregators do not possess any keys and do not perf%’ﬂI di . . o
. . impersonateQ during the dissemination of the query,
encryption. In both scenarios, the adversary attemptsttaetx and pI’O\F/)i de the sourcesgwith a false query (whichq ha)s/ a

wﬁ E)IatlateétSaRsisouar:e(: ,\[Nléhba PSR'r we Igcusthon the \(/:ve}i rerent result than the desired one). In this ca8ewould
ere the S generated Dy a source, since the case ec‘ceept the final collected result as correct, since the hctua
the PSR is a result of aggregation can be proven S'm"ara}/ggregation procedure is not altered

Let PSR, = K;-m;; + k;; be the PSR targeted by the

adversary, which originates from amcompromisedsource

S; at epocht. We say that SIES provides data confidentiality,

if the adversary succeeds in extracting; from PSR; ; with Proof: This is directly ensured by theTesla protocol,

negligible probability. which enables each source to verify that the message (i.e.,
In the first scenario, the adversary possesses neler the query) indeed originated fro@ (for details, we refer the

nor k; ;, whereas in the second scenario it obtains global kéyerested reader to [20]). []

K, from a compromised sourc§;, j # i, with k;; though

remaining unknown. In order to prove data confidentiality, i Source impersonation is covered by data integrity disalisse

suffices to focus only on the second scenario, since the fiegtove.

scenario is more difficult for the adversary to attack.

Data authentication. In another attack, the adversary

Theorem 3: SIES is secure against querier impersonation.

Data freshness.A result is freshif it reflects the current
Theorem 1: SIES satisfies data confidentiality. time epocht. An adversary violates data freshness if it
) presents to the querier &egitimate final PSR PSRy,
Proof: Recall thatk;, is produced by pseudo-randomypich however corresponds topsevioustime epocht’. This
function H Moss(-) with output size 32 bytes. This Key iSig cajled areplay attack We say that SIES satisfies data

unknown to the adversary. Additionally; , is used onhyonce fashness, if the adversary can mount a replay attack with
i.e., no other plaintext is encrypted witt} ;. Consequently, negligible probability.

in order to extractm;; and provided thatk;, p may be
known, the adversary can only attempt to correajlyess
ki . However, this happens with probabiligy 256, which is
negligible. Moreover, correctly guessing k&y, used as input Proof: Let PSRy, be the legitimate final PSR at epoch

Theorem 4: SIES provides data freshness.

t, and PSRy the legitimate final PSR at epoati < ¢t. HM,(-) and addition modulo a 20-byte integer, respectively,
The adversary succeeds in breaking freshness, if the sethettotal processing cost of CMT at a source is:
s¢ in PSRy, is the same as; in PSRy . Recall that all

the secret shares are produced by pseudo-random function S _ (o e 1)
H M, (-), which takeg as seed and has output length 20 bytes. CMT = HM, T A0

Consequently, the probability that = s, is equal to2—2% _

(similar to Theorem 2), which is negligible. - In SECOA, a source first computes - v sketches, where

v is the source value and is proportional to the desired
Discussion. A final remark concernsiode failures i.e., accuracy. It then merges them (with negligible cost) to poed

situations where either a source does not produce a PSR ofl#h final set of.J sketches to be transmitted to the parent
aggregator fails to fuse its children’s PSRs in a time epochggregator. Moreover, it creates an inflation certificateefch
due to an internal problem. In this case the failed node m@tthe J sketches by applying HMAGI M, (-). Subsequently,
be reported to the querier. Howeved, must also manually it produces.J temporal seeds using th& M (-) function
check the corresponding node, since a compromised node r&{nilar to CMT to satisfy freshness). Finally, the sourcesi
falsely report the failure. Then, during result verificati@@ the seeds to derive a SEAL for each sketch. Letlenote a
producess, = ¥;ss; ¢ considering only the secret shares o$ketch value(,,. the cost to generate a sketch, afids. the
the sources contributing to the result. time consumed by RSA encryption. Then, the total processing

cost at a source in SECGASs:

V. COSTMODELS

J
We analyti_cally compare SIES agginst CMT [5] and CgECOAS :J.(U.Csk+2.CHM1)+in.CRSA 2)

SECOA® [8] in terms of the computational costat each P
party, and thecommunication overheadt a network edge
(i_e_, between source-aggregator, aggregator-agglregﬂnd In SIES, the Computation at a source entails (l) two key
aggregator-querier). Table Il summarizes the symbols usgenerations by applying HMAGI Mas6(-), (i) a secret share
in the analysis, as well as their typical values 4% = creation with HM;(-), and (iii) a multiplication and an ad-
10~6 seconds, Ims = 10~3 seconds). These values werdlition modulo a 32-byte number. €'y, is the cost of

obtained based on the hardware and software settings of &{#256(-), and Carz2 and Ca3o refer to the cost of 32-byte
experiments. modular multiplication and addition, respectively, the LCP

consumption at a source in SIES is:
TABLE I

SYMBOLS AND VALUES IN THE ANALYSIS S
Csrps =2 Cramyss + Crny + Cuzz +Casza (3)

Symbol Meaning Typical Value
N Number of sources 1024 Let F be the number of children (or the fanout) of an
J Number of sketches 300 . .
P Aggregator fanout 4 aggregator. In CMT, the aggregator simply adds thg cipkisrte
v Source value € (1800, 5000] (modulo a 20-byte number). Hence, the computational cost at
rl; Rolling operations for SEAL € [0,22]
Csk Cost of sketch generation 0.03%
CRrsa Cost of RSA encryption 5.3@s CéMT = (F — 1) - Ca20 (4)
CH]\/h Cost OfHM1(~) 0.46 Hus
C - Cost of H M. . 1.02 us .
gfjoﬁ Cost of zo-lf;tﬁe(%Odmar addition 0.15 In SECO/’, the aggregator first merges tffe- J sketches
Casz2 Cost of 32-byte modular addition 0.3¥s received from its children intd sketches with negligible cost.
Chrrse Cost of 32-byte modular multiplication 0.45s ; ; :
Carm Cost of 128-byte modular multiplication 139 Subsequently, it comblnes theé SEALs _of each_of the fmal_
Carrsa Cost of finding a 32-byte mult. inverse 3 J sketches, by performing the appropriate folding and rgllin
Ssk Size 0; a skeftlch . 1 bgte operations. Next, it XOR-es thg inflation certificates, which
Sing Size of an inflation certificate 20 bytes : . : :
Semt. Size of a SEAL 128 bytes involves a negligible cost. Assuming that the RSA modulus is

128 bytes longyi; is the number of rolling operations required

for thei" SEAL, andC12s is the cost of a 128-byte modular
Computational cost.In CMT, the ciphertext calculation at multiplication, the computational cost at an aggregator in

a source involves a single modular addition of the plainteRECOA’ is:

with the secret key. Furthermore, in order to address data J

freshness, we must consider that a different key is used in ~a T (T _1). .

every epocht. Therefore, its creation time must be added to ~ SF¢04% — J(F=1)-Caizs +) rli-Crsa (5)

the sources’s computational cost. We assume that the pseudo

random function used for key generationds\/; (-) and, thus, In SIES, similar to CMT, the aggregator simply adds the

the key size is 20 bytes. 'y 5, andC 420 denote the costs of ciphertexts received from its children (however, this tithe

i=1

modulus is 32 bytes long). Therefore, the processing oeerhel0, whereas the cost between aggregator-querier is shown in

at an aggregator in SIES is: Equation 11.
Céips = (F —1)-Ca: 6 - -
SIES () A32 () S:SE?OAS = S?EéAOAS =J- Ssk' +J- SSEAL + S’inf (10)
The querier in CMT first computes wittH M, () the
temporal keys of all theV sources that participated in the S?E(?OAS =J - Su + seals - Ssgar + Siny (11)

aggregation. Then, it subtracts these keys from the final

ciphertext to decrypt it. Thus, the processing cost of trerigu i)
in CMT is: Formulae evaluation for typical values. Observe that

the costs of SIES are independent of the dataset. On the
7 other hand, some costs in SEC®Mepend on the dataset-
specific variables), x;, .., seals andrl;. Supposing that

The querier in SECOR aggregates the SEALs collectedhe domain ofv is [Dy, Dy], ; takes values from domain
from the root aggregator, by performing the necessarynglli [0;:log(V - Dy)] [8]. By boundingv and z;, we can also
and folding operations. Additionally, it creates a refemn bound z,..., seals andrl;, since they are all derived from
SEAL by (i) computing theJ - N seeds with theHM;(-) Ti- C_:onsequently, we can find the mmmqune(st-cas)aand
function, (ii) folding the seeds together, and (ijii) rojithem Maximum vorst-casg costs for SECOA, which hold forany
to the maximum collected sketch value,... Finally, it dataset distribution ifDy, Dy].
generates inflation certificates, once again usififh/ (-). If Table Il illustrates the costs calculated by inserting the
seals denotes the number of SEALs collected from the rodypical values of Table Il into Equations 1-11. Intereshyng

aggregator, the CPU time at the querier in SEGG#\ given in addition to its exact nature and security properties,SSIE
by: outperforms the best-case scenario of SE€OA all metrics,

by up to 4 orders of magnitude. Moreover, it is marginally
J-N-Cyar, + (seals +J - N — 2) - Cayios |nf§r|0r to the I!ghtwe|ght schemg of (?MT on all mgtrlcs,

which though fails to support data integrity. In the nexttsec
we experimentally confirm our observations.

C&vir =N (Crar, + Caz)

Q —
CSECOAS -

seals
+ (Z rli + Tmaz) - Crsa +J - Cun, (8)
i=1 TABLE Il

In SIES, the computational cost at the querier involves COSTSUSING TYPICAL VALUES

the generation ofN secret shares withi/M;(-), N + 1 SECOAS

keys with HM,se(-), the summation of all shares together Costs cMT (min/max) SIES

(for verification), the subtraction of the keys from the final Comput. costal 1.17us 20.26ms/ 92.75ms 3.46us

ciphertext, and a modular multiplication with the multggltive =~ Comput. costatd 0.45us 125ms/36.63ms 11lus
P P q:ﬂ Comput. cost aQ 0.62ms 568.46ms [568.63ms 2.28 ms

inverse of K;. Supposing thaty;r32 is the time to produce commun. coss-A 20 bytes 3872 KB/38.72KB 32 bytes
the multiplicative inverse modulo a 32-byte number, tha@ltot Commun. cost4-A 20 bytes 38.72 KB/38.72 KB 32 bytes

computational cost at the querier in SIES is Commun. costd-Q 20 bytes 044 KB/325KB 32 bytes

VI. EXPERIMENTS

Recall that there is no direct competitor to SIES, as no solu-
tion can provide in-network processing of exact SUM queries
satisfying both confidentiality and integrity. Neverthede we

Communication cost.In CMT, each party exchanges a sinselect CMT and SECOA(see Section II-D for their detailed
gle 20-byte ciphertext. Similarly, in SIES every party sanits description) as benchmark solutions to assist our expetihe
a 32-byte PSR. Therefore, the communication cost in CMavaluation, although they offer only partial solutions tor o
and SIES at every network edge is always constant and eqizafjeted problem (CMT cannot offer data integrity, whereas
to 20 and 32 hytes, respectively. SECOA does not provide confidentiality and supports only

In SECOA’, every source and every aggregator (except fapproximate answers).
the root aggregator) sends sketch values,J SEALs, and We ran our experiments on a 2.66 GHz Intel Core i7 with
one (aggregated) inflation certificate. The difference atrttot 4GB RAM, running Mac OS X ver. 10.6.4. Admittedly, this
aggregator is that it folds the SEALs that correspond to thmardware is much more powerful than that of a sensor and,
same chain position. The final number of SEALSs that it sendlsus, it solely facilitates the comparison of the methodswH
to the querier isseals instead ofJ. If S, Sspar, andS;,y ever, as we shall demonstrate soon, our scheme is lighttveigh
denote the size of a sketch, a SEAL and an inflation certificatnd, therefore, it can perform exceptionally even on sensor
respectively, the communication overhead between sour€RUs, which may be several orders of magnitude slower than
aggregator and aggregator-aggregator are given in Equatiur processor. We implemented SIES, CMT and SEE@A

C(ASQIES =N- CHZWl + (N + 1)) OHJ\'1256+
(2-N —1)-Caz2 + Currz2 +Cusa (9)

C++ using the GNU MP and OpenSSt libraries. We exper- rapidly with D because it is dominated by the time to produce
imented with real dataset Intel Lbwhich contains (among the numerous sketches, whose number depends on the source
other data) sensor temperature readings (in degrees €glcualue v (see also Equation 2 in Section V). Finally, note that
represented as float numbers with precision of four decintale processing time at the source is unaffected when varying
digits. Each source generates valudhat are randomly drawn £ and N and, thus, we omit the corresponding diagrams.

from the above dataset and fall in the rangs, 50]. The

sources and the aggregators form a complete tree. Finally, 10*

following [8], we fix the number of sketch instances) (of ' ' ' /-/-

SECOA to 300, in order to bound the relative approximation
T/T/r SIES —a—
CMT —*—

error within 10% with probability 90%.

We measure the costs of SUM queries, varying the following
system parameters: (i) the number of sourcay, ((ii) the SECOA™ ——
fanout of the aggregatorsF’j, and (iii) the dataset domain
(D = [Dr, Dy)). Recall that all solutions handle aggregates

—_
o
N

CPU time (ms)

A A A A
N N N N2
K K K N

kg

only on integers. In order to varg, each source multiplies its 10 » x10 %102 x10® x10%
drawn value with powers of 10, and then truncates it (i&., Domain (D=[18,50])

takes valueg18, 50], [180,500], etc.). Scaling the domain in

this manner is equivalent to changing the decimal precisfon Fig. 4. Computational cost at the source vs. the domain

the temperature readings supported by the system and, thus,

of the SUM result (the querier divides the extracted integer

result with the respective power of 10 to derive the final float

result). In every gxperiment we vary one parameter, settieg g Computational Cost at the Aggregator

other two to their default values. We evaluate a SUM query

over 20 epochs and report the average cost per epoch. Figure 5 demonstrates the CPU time at the aggregator
Table IV includes the system parameters, along with theithen varying its fanoutF, and settingN = 1024 and

ranges and default values. Sections VI-A, VI-B and VI-@ = [1800,5000]. Once again, SIES outperforms SECDA

evaluate the computational cost at the source, the aggregdly approximately two orders of magnitude, while featuring

and the querier, respectively. Section VI-D discusses themarginal performance difference from CMT. Specifically,

communication overhead at all parties. Finally, SectiorEVI the cost in SIES is within 0.3-2.s due to the inexpensive

summarizes our results. modular additions it involves. On the other hand, SECOA

entails expensive folding and rolling operations (moduha-

tiplications and RSA encryptions, respectively). As expdc

the overhead of all solutions linearly increases with theta.

TABLE IV
SYSTEM PARAMETERS

Parameter Default Range In SECOA this is justified because each increase in the fanout
Number of sourcesN) 1024 64, 256, 1024, 4096, 16384 causes the number of folding operations to rise, whereas in
Fanout F) 4 2,3,4,56 SIES and CMT the number of modular additions increase with

; _ 2 2 3 4 ; . X
Domain (0 = [18,50)) x10% x1, x10, x10%, x10%, x10 F. We do not include experiments varyin§ because the

performance of the aggregator in all schemes is independent
of this parameter. Furthermor®, has no impact on SIES and

A. Computational Cost at a Source . o
)) CMT, whereas it negligibly affects SECSAConsequently,
Figure 4 shows the computational cost at the source ag,@ 51so omit the corresponding diagram.

function of D, when N = 1024 and ' = 4. The error bars

on the curve of SECOR indicate its best- and worst-case .

scenario, as they were calculated by the cost models ofd®ecti 10 SIES —a—
V. SIES outperforms SECCAby more than two orders of 102 Q,:C%“E .

magnitude. The reason is that SIES involves few and cheap
HMAC operations and modular additions, whereas SEEOA
involves generating an excessive number of sketches and
performing several RSA encryptions to produce the SEALSs.

SIES also retains a comparable performance to CMT, which W

is in the order of a couple of microseconds. Furthermore, 10

%

CPU time (ms)

contrary to SECOA, the computational cost of SIES and CMT 2 8 4 5 6
are independent oD. The overhead in SECCGAincreases Fanout (F)
2http://gnplib.org/ Fig. 5. Computational cost at the aggregator vs. the fanout

Shtt p: // www. openssl . or g/
“http://db.csail.nmt.edu/l abdata/l abdata. htm

C. Computational Cost at the Querier D. Communication Cost

Figure 6 depicts the CPU time consumed by the querier Table V provides the communication cost per network edge,
(D = [11800,5000], F = 4). We omit the cost model when N' = 1024, F' = 4 and D = [1800,5000]. We also
of SECOA® from the diagram because it bounds the actuliclude the minimum and maximum values derived by the
values very accurately (within a 0.001 relative error). Ifnodels of SECOA Note that all costs except for that corre-
Figure 6(a) we varyN (F = 4, D = [1800,5000]). This sponding to pair aggregator-querier in SECOdxe invariant
overhead is linearly dependent G¥ in all methods. SIES Of our system parameters, whereas the latter cost is méygina
outperforms SECOR by more than one order of magnitudeffected byD and N. The benefit of SIES over SECOAs
on all values. This happens because in SEém querier clear, reaChing more than 3 orders of magnitude. Addltlynal
performs numerous folding and rolling operations to coraputhe difference between SIES and CMT is negligible.
the reference SEAL during verification. On the other hand,
SIES involves only the computation of the keys and shares
with the efficient HMAC, plus a number of cheap modular

TABLE V
COMMUNICATION COST

additions. The CPU consumption in SIES is within range 0.15- N =1024, F = 4, D = [1800, 5000]
36 ms. Additionally, the performance of SIES is comparable
to that of CMT. Their difference is mainly justified by the fac nework edge ~ cMT SECOA SIES
that in SIES the querier must also compute the shares that are (actual/min/max)
.) . C S-A 20 bytes 37.8KB/37.8KB/37.8KB 32 bytes
used for integrity verification, a process missing from CMT. AA 20 bytes 37.8 KB/ 37.8 KB /37.8 KB 32 bytes
In Figure 6(b) we vanD (N = 1024, F' = 4). The overhead A-Q 20 bytes 832 bytes / 448 bytes / 6.7 KB 32 bytes

in SIES and CMT is independent dd and more than one
order of magnitude lower than that of SEC®AVoreover,
the cost in SECOA is practically unaffected byD because -))))
it is dominated by the numerous (i) HMAC operations to In addition to covering all se_curlty propertles and offerin
create the temporal seeds, and (i) modular multiplicatitm exact results, SIES offers an impressive performance gdvan
fold these seeds during the creation of the reference SEARJE Over SE.CO% on all performance metrics, especially
Finally, the performance of all solutions does not vary witgonsidering (i) the approximate nature of SUM queries in

F and, therefore, we omit the respective experiment from ogF COA’, and (ii) its unsuitability to support confidentiality.
discussion. Furthermore, SIES has comparable performance to CMT,

despite the simplicity and efficiency of the encryption sobe
of CMT due to its lack of the data integrity property. In oMgra

E. Summary

10* = - - ;

/ SIES is lightweight as it features very small communication
=z 102 .- cost in the order of a few bytes, and CPU consumption that
% W most of the times ranges from a few microseconds to a few
E 1 L milliseconds in the worst-case. More notably, the procegsi
2 M cost at a sensor (source or aggregator) is always up to a
O 102 SIES —a— couple of microseconds. Consequently, SIES would offealide

CM'IS' —K— s .
s SECOAS —m— performance even if it were deployed on a sensor CPU with
10 o6 o8 510 12 14 several orders of magnitude smaller computational caiiabil
Number of sources (N) than our benchmark CPU. In that sense, SIES constitutes a
suitable technique for resource-constrained sensor mieswo
(a) vs. the number of sources
10t VIl. CONCLUSION
. - - - - In this paper we introduced SIES, a novel and efficient
% 102 scheme for secure in-network processing of SUM queries (as
% well as their derivatives, e.g., COUNT, AVG, etc.). SIES is
E 1% I % % % the only solution that offers exact query answers, satigfyi
2 all the necessary security properties of the targeted modgl
G 1072 SIES —a— data confidentiality, integrity, authentication, and fesss. It
4 SEC%'\QE : achieves this goal through a combination of a homomorphic
10 » 10 X1'02 X1'03 X1'04 encryption scheme and a secret sharing method. These tech-

nigues are lightweight, leading to a very small bandwidth-co
sumption for all parties involved (in the order of a few bytes
(b) vs. the domain and a very low CPU cost because they entail a small number
of inexpensive cryptographic operations (hashes and raodul
additions/multiplications). This fact renders SIES a pdule
security tool for resource-constrained sensor networks. W

Domain (D=[18,50])

Fig. 6. Computational cost at the owner

confirm our performance claims through a detailed anallytica
and experimental evaluation.

REFERENCES

[1] S. Madden, M. J. Franklin, J. Hellerstein, and W. HongAGE: A Tiny
AGgregation service for ad-hoc sensor networks,O8D|, 2002.

[2] Y. Yao and J. Gehrke, “The COUGAR approach to in-netwoterny
processing in sensor network§IGMOD Reg.vol. 31, no. 3, pp. 9-18,
2002.

[3] L. Hu and D. Evans, “Secure aggregation for wireless oeks,” in
SAINT-W 2003.

[4] P. Jadia and A. Mathuria, “Efficient secure aggregation sensor
networks,” inHIiPC, 2004.

[5] C. Castelluccia, E. Mykletyn, and G. Tsudik, “Efficienggregation of
encrypted data in wireless sensor networks,MabiQuitous 2005.

[6] B. Przydatek, D. Song, and A. Perrig, “SIA: Secure infotima aggre-
gation in sensor networks,” iBenSy,s2003.

[7] M. Garofalakis, J. M. Hellerstein, and P. Maniatis, “Bfosketches:
Verifiable in-network aggregation,” ilCDE, 2007.

[8] S. Nath, H. Yu, and H. Chan, “Secure outsourced aggregatia one-
way chains,” inSIGMOD, 2009.

[9] SenseWeb, Microsoft Research. [Online]. Available:pfittesearch.
microsoft.com/en-us/projects/senseweb/

[10] A. Mahimkar and T. S. Rappaport, “SecureDAV: A secureadaggre-
gation and verification protocol for sensor networks,”Giobecomm
2004.

[11] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: A secure hggibp
data aggregation protocol for sensor networks,MabiHoc, 2006.

[12] H. Chan, A. Perrig, and D. Song, “Secure hierarchicahétwork
aggregation in sensor networks,” @CS 2006.

[13] K. B. Frikken and J. A. Dougherty, 1V, “An efficient inteigy-preserving
scheme for hierarchical sensor aggregation,WiSec 2008.

[14] R. Rivest, A. Shamir, and L. Adleman, “A method for obtamidigital
signatures and public-key cryptosystem3dmmunications of the ACM
vol. 21, no. 2, pp. 120-126, 1978.

[15] P. Paillier, “Public-key cryptosystems based on conmtpodegree resid-
uosity classes,” iEEUROCRYPT1999.

[16] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hasm#tions for
message authentication,” DRYPTQ 1996.

[17] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstdiendbook of
Applied Cryptography CRC Press, Inc., 1996.

[18] J. Kim, A. Biryukov, B. Preneel, and S. Hong, “On the sétyuof
HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-
1,” in SCN 2006.

[19] R. Merkle, “A certified digital signature,” ICRYPTQ 1989.

[20] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tyg&PINS:
Security protocols for sensor networks,” Mobile Computing and
Networking 2001.

[21] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient segumechanisms
for large-scale distributed sensor networks,”GES 2003.

[22] H. Yu, “Secure and highly-available aggregation geerin large-scale
sensor networks via set sampling,” IASN 2009.

[23] H. Hacigumus, B. lyer, and S. Mehrotra, “Providing dats® as a
service,” inICDE, 2002.

[24] F. Li, M. Hadijieleftheriou, G. Kollios, and L. Reyzin Atithenticated
index structures for aggregation queries|SSEC (to appeay2010.

[25] K.Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kolligaand D. Sri-
vastava, “Small synopses for group-by query verification otsaurced
data streams, TODS vol. 34, no. 3, pp. 1-42, 2009.

[26] T. Ge and S. Zdonik, “Answering aggregation queries seeure system
model,” in VLDB, 2007.

[27] N. Alon, Y. Matias, and M. Szegedy, “The space complexitypprox-
imating the frequency moments}. Comput. Syst. Scivol. 58, no. 1,
pp. 137-147, 1999.

[28] J. Katz and Y. Lindell, “Aggregate message authenticattodes,” in
CT-RSA 2008.

