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Abstract—Uncertain graphs are prevalent in several appli-
cations including communications systems, biological databases
and social networks. The ever increasing size of the underlying
data renders both graph storage and query processing extremely
expensive. Sparsification has often been used to reduce the size
of deterministic graphs by maintaining only the important edges.
However, adaptation of deterministic sparsification methods fails
in the uncertain setting. To overcome this problem, we introduce
the first sparsification techniques aimed explicitly at uncertain
graphs. The proposed methods reduce the number of edges and
redistribute their probabilities in order to decrease the graph size,
while preserving its underlying structure. The resulting graph
can be used to efficiently and accurately approximate any query
and mining tasks on the original graph, including clustering
coefficient, page rank, reliability and shortest path distance.

I. INTRODUCTION

Uncertain graphs, where edges are associated with a prob-
ability of existence, have been used widely in numerous
applications. For instance, in communication systems, each
edge (u, v) is often associated with a reliability value that
represents the probability that the channel from u to v will not
fail. In biological databases, uncertain edges between vertices
representing proteins are due to error-prone laboratory mea-
surements. In social networks, edge probabilities can model
the influence between friends, or the likelihood that two users
will become friends in the future.

Several techniques have been proposed for diverse query
processing and mining tasks on uncertain graphs (e.g. [3]–[7]),
most of which assume possible-world semantics. Specifically,
let G = (V,E, p) be an uncertain (also called probabilistic)
graph1, where p : E → (0, 1] assigns a probability to each
edge. G is interpreted as a set {G = (V,EG)}EG⊆E of 2|E|

possible deterministic graphs, each defined on a subset of E.
Exact processing requires query evaluation on all possible
worlds and aggregation of the partial results2.

Consequently, exact processing is prohibitive even for un-
certain graphs of moderate size due to the exponential number
of worlds. Thus, most techniques provide approximate results
by applying Monte-Carlo (MC) sampling on a random subset
of possible worlds. However, even MC may be very expensive
for large uncertain graphs because generating a sample is time
consuming as it involves sampling each edge. Moreover, due
to the high entropy of the uncertain graphs, there is significant
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1G is assumed simple, unweighted, undirected and connected.
2In general, the probability of a query predicate Q is derived by the sum

of probabilities of all possible worlds G for which Q(G) = true.

variance among the possible worlds, which implies the need of
numerous samples for accurate query estimation. This imposes
huge overhead at query processing cost because the query must
be executed at every sample.

II. MOTIVATION

In order to tackle the high cost, we develop techniques
for uncertain graph sparsification. Specifically, given G and a
parameter α ∈ (0, 1), the proposed methods generate a spar-
sified probabilistic subgraph G′ = (V,E′, p′), which contains
a fraction of the edges, i.e., E′ : E′ ⊂ E, |E′| = α|E|.
G′ preserves the structural properties of G, has less entropy,
and can be used to approximate the result of a wide range
of queries on G. Sparsification yields significant benefits in
execution time because the cost of sampling is linear to the
number of edges. Moreover, the required number of samples
is proportional to the graph’s entropy, which is lower in our
sparsified graphs. Finally, similar to the case of deterministic
graphs, sparsification reduces the storage cost, and facilitates
visualization of complex networks.

To the best of our knowledge, this is the first work on
uncertain graph sparsification. On the contrary, sparsification
has received considerable attention in the deterministic graph
literature ( [1], [2], [8]) . In that context, most techniques
aim at approximating all shortest path distances up to a
multiplicative or additive factor, or preserving all cuts up to
an arbitrarily small multiplicative error. As we demonstrate in
our experimental evaluation, the adaptation of such methods
to uncertain graphs yields poor results. On the other hand,
our sparsification techniques achieve high accuracy and small
variance for common graph tasks by capturing the expected
node degrees, or the expected cut sizes up to a certain
value. Summarizing, the contributions of this work are: 1) We
propose a novel framework of uncertain graph sparsification
with entropy reduction. 2) We design algorithms that reduce
the number of edges and tune the probability of the remaining
ones to preserve crucial properties. 3) We experimentally
demonstrate that the sparsified graphs are effective for a variety
of common tasks including shortest path distance, reliability,
page rank etc.

III. PROBLEM DEFINITION

A prevalent goal of deterministic graph sparsification is
preservation of the cut sizes [2]. The notion of a cut can be
extended naturally to uncertain graphs. In this case, due to the
linearity of expectation, the expected size of a cut is the sum



of the probabilities of the edges involved in the cut. We define
the discrepancy δ(S) of a vertex set S in a sparsified graph G′
as the difference of S’s expected cut size in G′ to its expected
cut size in G.

Motivated by the work in deterministic sparsification, we
aim at cut-preserving sparsified graphs, or, using our notation,
at minimizing discrepancy δ. The exponential number of cuts
renders their exhaustive enumeration intractable. To overcome
this, we target cuts of sets S with specific cardinality k.

Formally, given an integer k, we define the k-discrepancy
∆k of a graph G′ as the sum of the absolute values of the
discrepancies for all sets with cardinality k:

∆k(G′) =
∑

S⊆V ,|S|=k

|δ(S)|

We aim at minimizing the sum of ∆i for 1 ≤ i ≤ k,
or equivalently at preserving the size of all cuts up to k.
Accordingly, the problem we tackle in this work is:

Problem 1: Given an uncertain graph G = (V,E, p), and
a sparsification ratio α ∈ (0, 1), find an uncertain graph
G∗ = (V,E∗, p∗), with |E∗| = α|E| that minimizes the sum
of discrepancies

∑k
i=1 ∆i(G∗) up to a given k ≥ 1.

In addition to discrepancy minimization, our methods aim
at entropy reduction. Observe that the two objectives are not
independent because, since the sparsified graph has fewer
edges, it is likely to have lower entropy as well. Minimization
of discrepancy refers to the quality of the sparsified graph,
while entropy reduction relates to the efficiency of query
processing. The proposed techniques apply a gradient descent
framework that finds a local minimum in terms of discrepancy,
but adjusts the gradient step with the aim of reducing entropy.

IV. ALGORITHMS AND EVALUATION

The proposed framework starts with an initialization step
that generates a connected unweighted, deterministic graph
Gb out of the input uncertain graph. Gb can be thought of
as a backbone that ensures that connectivity is preserved in
the resulting sparsified graph. We first compute a maximum
spanning tree of G, where the probabilities act as weights.
Then, we remove the tree edges from G and insert them to
Gb. This process is repeated until Gb consists of α|E| edges.
Then, two different techniques operate on Gb in order to pro-
duce the sparsified graph, namely Gradient Descent Backbone
(GDB) and Expectation Maximization Degree (EMD). Both
techniques aim at minimizing the objective function of our
problem definition, i.e., preserving the expected cuts of the
original graph.

Given the backbone graph Gb = (V,Eb), Gradient Descent
Backbone (GDB) initially generates a seed uncertain graph
Ĝ = (V,Eb, p̂), p̂ = p, and proceeds in iterations.. At each
iteration, GDB optimizes the probability p′e of each edge e =
(u0, v0), considering the remaining probabilities fixed.

Since GDB only updates the edge probabilities of the
backbone graph Gb = (V,Eb) (without inserting or removing
edges), it is sensitive to the choice of Gb. On the other hand,

Expectation-Maximization Degree (EMD) modifies both Eb

and the edge probabilities. EMD is inspired by Expectation-
Maximization, which is an iterative optimization framework
that estimates two sets of interdependent unknown parameters.
In our case, EMD estimates the following sets of parameters:
i) the set of edges in the sparsified graph and ii) their
probabilities.

Similarly to GDB, EMD starts with the input backbone
graph, and the corresponding probabilities p of G. Then, it
enters the iterative process, which consists of two phases. E-
phase replaces edges of Eb with edges from E\Eb considering
the edge probabilities fixed. The new graph is denoted by
G′b = (V,E′b). M -phase calls GDB to optimize the edge
probabilities considering G′b = (V,E′b) as fixed.

In our experimental evaluation [6], we use two real undi-
rected uncertain graphs with various sizes, densities, and edge
probabilities. In order to assess the behaviour of the methods
in graphs with increasing density, we also use 4 synthetic
undirected datasets. We compare EMD and GDB against two
benchmarks NI and SS: NI constitutes the adaptation of a cut-
based deterministic sparsification method, whereas SS extends
a spanner-based technique to the uncertain setting.

Summarizing the experiments, as shown in [6] the proposed
techniques accurately capture the structural properties of the
input uncertain graphs. The preservation of structural proper-
ties leads to precise results for various queries with different
characteristics. Moreover, by reducing the entropy of the un-
certain graph, our methods decrease the variance of the Monte
Carlo estimator of all evaluated queries. This reduces the
processing time, as considerably fewer samples are required
for accurate query estimation. As opposed to the proposed
methods, techniques based on deterministic sparsification (e.g.,
NI and SS) usually fail, in terms of result quality, variance
and execution time. Finally, our algorithms are efficient and
applicable to large uncertain graphs. For instance, our most
expensive algorithm EMD, sparsifies Flickr [6] (one of our
largest real datasets consisting of more than 10M edges), in
just few seconds using an Intel Xeon E5-2660 with 2.20GHz
CPU and 96GB RAM.
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