
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

$Recommen
�Correspondi

fax: +852 2358

E-mail addr

cityu.edu.hk (Y

gkollios@cs.bu.

URL: http:/
Information Systems] (]]]])]]]–]]]

www.elsevier.com/locate/infosys
Spatio-temporal join selectivity$

Jimeng Suna, Yufei Taob, Dimitris Papadiasc,�, George Kolliosd

aDepartment of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
bDepartment of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong

cDepartment of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
dDepartment of Computer Science, Boston University, Boston, MA, USA

Received 12 July 2002; received in revised form 11 February 2005; accepted 11 February 2005
Abstract

Given two sets S1, S2 of moving objects, a future timestamp tq, and a distance threshold d, a spatio-temporal join

retrieves all pairs of objects that are within distance d at tq. The selectivity of a join equals the number of retrieved pairs

divided by the cardinality of the Cartesian product S1�S2. This paper develops a model for spatio-temporal join

selectivity estimation based on rigorous probabilistic analysis, and reveals the factors that affect the selectivity. Initially,

we solve the problem for 1D (point and rectangle) objects whose location and velocities distribute uniformly, and then

extend the results to multi-dimensional spaces. Finally, we deal with non-uniform distributions using a specialized

spatio-temporal histogram. Extensive experiments confirm that the proposed formulae are highly accurate (average

error below 10%).

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

An important operation in spatio-temporal
databases and mobile computing systems is to
predict objects’ future location based on informa-
tion at the current time (e.g., for collision
detection). For this purpose the database usually
e front matter r 2005 Elsevier Ltd. All rights reserve

2005.02.002

ded by Yannis Ioannidis.

ng author. Tel.: +852 23586971;

1477.

esses: jimeng@cs.cmu.edu (J. Sun), taoyf@cs.

. Tao), dimitris@cs.ust.hk (D. Papadias),

edu (G. Kollios).

/www.cs.ust.hk/�dimitris/.
represents object movement as a function of time
and stores the function parameters [1–4]. As an
example, given the location o(0) of object o at the
current time 0 and its velocity oV, its position at
future time t can be computed as oðtÞ ¼ oð0Þ þ oV t:
According to this representation, an update is
necessary only when the function parameters (i.e.,
oV) change.
Given two sets S1, S2 of objects, a spatio-

temporal join retrieves all pairs of objects /o1,o2S
such that o1 2 S1; o2 2 S2; and jo1ðtqÞ; o2ðtqÞjpd;
i.e., the distance jo1ðtqÞ; o2ðtqÞj between objects o1
and o2 at a (future) query timestamp tq is below a
threshold d. For instance, consider the query
d.

www.elsevier.com/locate/infosys

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]]2
‘‘retrieve all pairs of airplanes that will come closer
than 10miles 5minutes from now’’. This (self-join)
example outputs pairs of moving objects; in some
cases one of the inputs can be static: ‘‘retrieve all
pairs /city c, typhoon tS such that t will cover c at
9 a.m. tomorrow according to the current spread-
ing speed of t’’. An important variation is the
constrained join, which involves an additional
constraint window to limit the data space of
interest. For instance, in the previous example, an
analyst may be interested only in cities in the
southeast US region.
In this paper we discuss the selectivity of spatio-

temporal joins, which is defined as the number of
result pairs divided by the size of the Cartesian
product of the input data sets. Estimating the join
selectivity is important for several reasons.
	
 As with conventional and spatial [5] databases,
selectivity estimation is vital to query optimiza-
tion for computing the best execution plan.
	
 In many applications users are interested in the
number of joined pairs (i.e., a join counting

query) rather than the concrete results. For
example, prediction of potential congestions
requires the traffic volume rather than the IDs
of cars [6]. Furthermore, stream (spatio-tempor-
al) databases [7,8] may maintain only aggregate
information in order to deal with voluminous
updates.
	
 Performing an exact join (which is time con-
suming) is meaningless in applications with very
frequent motion function changes because the
result may already be invalidated before the join
processing terminates. In such cases, a fast
estimation of the output size is the only mean-
ingful computation that can be performed given
the tight time limit.

Although spatial join selectivity can be computed
using several methods [9–11], their application in
spatio-temporal scenarios leads to significant
error. Similarly, existing work [12] on estimation
of spatio-temporal window queries on a single
data set cannot be efficiently adapted for joins.
Motivated by this, we address the problem by first
proposing fundamental probabilistic formulae for
spatio-temporal joins on uniform (point and
rectangular) objects. Then, we integrate these
equations with spatio-temporal histograms to
support non-uniform data. Compared to the
previous approaches, the proposed histogram
achieves significantly lower estimation error and
is incrementally updatable (whereas previous
solutions require frequent re-construction). We
evaluate the efficiency of our methods with
extensive experimentation.
The rest of the paper is organized as follows.

Section 2 reviews previous work on spatial joins,
histograms, and spatio-temporal prediction. Sec-
tion 3 analyzes spatio-temporal join selectivity on
uniform data, while Section 4 extends the results to
non-uniform data (using histograms). Section 5
experimentally evaluates the proposed methods,
and Section 6 concludes the paper with directions
for future work.
2. Related work

Section 2.1 overviews spatial join algorithms
(assuming knowledge of R-trees [13,14]), and join
selectivity estimation on static objects. Section 2.2
introduces MinSkew, a multi-dimensional histo-
gram that constitutes the starting point of our
spatio-temporal histogram. Section 2.3 discusses
spatio-temporal range selectivity and elaborates
why it cannot be applied for join selectivity
estimation. Finally Section 2.4 reviews the time
parameterized R-tree (TPR-tree), an index struc-
ture for moving objects which is employed in our
histogram techniques.

2.1. Spatial join selectivity

Consider two objects o1, o2 belonging to spatial
data sets S1, S2 and satisfying the join condition
jo1; o2jpd: Join processing algorithms [15–17] are
based on the observation that o1 and o2 should
reside in R-tree nodes E1 and E2, respectively,
whose minimum bounding rectangles (MBRs)
satisfy the property jE1;E2jpd: Thus, qualifying
pairs are retrieved by synchronously traversing the
R-trees of S1 and S2 in a top-down fashion,
recursively following node pairs that are within the
distance constraint. The special case where d ¼ 0

ARTICLE IN PRESS

bucket b

b.len/2

b.len/2

query q

Fig. 1. Estimating the selectivity inside a bucket.

1Given n numbers a1; a2; . . . ; an; the variance equals
1
n

Pn
i¼1ðai � aÞ2; where a is the average of a1; a2; . . . ; an:

2The density of a point is defined as the number of objects

that cover the point.

J. Sun et al. / Information Systems] (]]]])]]]–]]] 3
corresponds to the intersection join and has
received considerable attention. Notice, however,
that intersection join is not meaningful for point
data since it reduces to equality of points.
Spatial join selectivity was first studied in [18],

which presents a formula for uniform data using
the results of previous work [19,20] on window
query selectivity. Several histogram-based ap-
proaches have been proposed for non-uniform
distributions. In particular, the histograms of
[5,21] divide the universe regularly, while more
sophisticated techniques [9,11] perform the parti-
tioning according to the data distribution. On the
other hand, [10] employs a different approach
based on power laws. Further, [5] studies the
selectivity of complex queries that involve multiple
data sets. All the above methods require the
knowledge of distributions of the join data sets.
In spatio-temporal databases, however, the dis-
tribution continuously changes due to object
movements. Hence, it is extremely expensive (both
in terms of computation time and storage cost) to
pre-compute the distributions for future time-
stamps. Furthermore, even if such distributions
are obtained, they will soon be invalidated due to
subsequent updates, rendering re-computation
necessary. Therefore, traditional approaches for
spatial join selectivity are insufficient for moving
objects. Effective techniques should take the
specialized problem characteristics into account.

2.2. MinSkew

MinSkew [22] is a spatial histogram originally
proposed for selectivity estimation of window
queries on non-uniform data sets. It partitions
the space into a set of buckets such that the MBRs
of all buckets are disjoint, and their union covers
the entire universe. Each bucket bi contains the
number bi.num of objects whose centroids fall
inside bi.MBR, and the average extent bi.len of
these objects. Fig. 1 illustrates a query q and an
intersecting bucket b in the 2D space. The gray
area corresponds to the intersection between
b.MBR and the extended query region, obtained
by enlarging each edge of q with distance b.len/2.
The expected number of rectangles in b intersect-
ing q is estimated as b.num� areaG/area(b.MBR),
where areaG and area(b.MBR) are the areas of the
gray region and b.MBR, respectively. The esti-
mated selectivity is obtained by summing the
results for all such intersecting buckets.
To ensure satisfactory accuracy, the above

estimation requires that objects in each bucket
b have similar sizes and their centroids distribute
uniformly in b.MBR. To quantify the degree
of uniformity, [22] defines the spatial-skew

(denoted as b.skew) for a bucket b as the variance1

of the spatial densities2 of all points inside it.
Since a small spatial-skew indicates better
uniformity, MinSkew aims at minimizingP

i¼1�n(bi.num
 bi.skew), i.e., the weighted sum of
the spatial-skews of the buckets. Computing the
optimal buckets, however, is NP-hard [23]. To
reduce the computation cost, [22] partitions the
original space into a grid with H�H regular cells
(where H is a parameter called the resolution), and
associates each cell c with (i) the number c.num of
objects whose centroids fall in c.MBR, (ii) the
average extent length c.len of objects satisfying (i),
and (iii) the density c.den of the cell (i.e., the
number of objects intersecting c.MBR). Fig. 2a
shows an example ðH ¼ 3Þ for a data set with 8
objects, and Fig. 2b illustrates the information
associated with the cells (len is not shown because
it is not needed for partitioning). A greedy
algorithm builds the histogram that minimizes
the total-skew, under the constraint that each
bucket must cover an integer number of cells. The
final buckets are shown in Fig. 2c, together with
their associated information (notice that the

ARTICLE IN PRESS

num=1
D=3

num=1
D=2

num=0
D=0

num=0
D=0

num=2
D=2

num=1
D=2

num=1
D=1

num=1
D=1

num=1
D=1

num=5
skew=0.1875

num=0
skew=0

num=3
skew=0

(a) (b) (c)

Fig. 2. Building the histogram. (a) 3� 3 grid, (b) cell information, (c) the final buckets.

1

1

-2

-2

-3 1

-1

-2

1

2 -1

-1

a

c

d

e
f

g

h
i

1

-3

1-2

-1

-1

2-1

b1 b2

b3

(a) (b)

Fig. 3. A spatio-temporal histogram. (a) Object location and

velocities, (b) the final buckets.

J. Sun et al. / Information Systems] (]]]])]]]–]]]4
spatial-skews are very small) computed as follows:

b:num ¼
X

each cell c in b

c:num,

b:len ¼

P
each cell c in b c:num
 c:lenP

each cell c in b c:num
,

b:skew ¼
1

jCj

X
each cell c in b

c:den � den
� �2

,

where |C| is the number of cells covered by b, and
den denotes their average density. MinSkew can be
applied in arbitrary dimensionality with straight-
forward modifications.

2.3. Spatio-temporal range selectivity

Given a set of moving objects, a spatio-temporal

window query retrieves all the objects that will
appear in a query region at the query time tq. Choi
and Chung [12] extend MinSkew with velocities to
estimate the selectivity of window queries (defined
as the ratio between the number of qualifying
objects and the data set cardinality). Fig. 3a shows
8 moving points, where the arrows (numbers)
indicate the directions (values) of their velocities (a
minus value indicates movement in the negative
direction of the axis). Fig. 3b shows the corre-
sponding spatio-temporal histogram built in two
steps. First, the spatial extents of the buckets are
determined in the same way as the traditional
MinSkew algorithm (by ignoring the velocities).
Then, each bucket b is associated with a velocity
bounding rectangle (VBR) (bVx�, bVx+, bVy�,
bVy+), such that (i) bVx� (bVx+) equals the
minimum (maximum) velocity along the x-dimen-
sion of the objects inside, and (ii) bVy� (bVy+) is
defined similarly with respect to the y-dimension.
In Fig. 3b, the VBRs of buckets b1, b2, and b3 are
(�2, 1, �3, 1), (0, 0, 0, 0), and (�1, 2, �1, �1),
respectively.
Accurate spatio-temporal selectivity estimation

requires that the location (velocities) of the objects
inside a bucket uniformly distribute(s) in the
bucket’s MBR (VBR). The data partition in
Fig. 3, however, is decided according to spatial
information; thus, the uniformity of velocity
cannot be guaranteed, which may lead to sig-
nificant estimation error. Furthermore, the histo-
gram is not incrementally updatable and must be
re-built very frequently to maintain satisfactory
accuracy ([12] suggests re-building at every single
timestamp). To see this, assume that in Fig. 3b the

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 5
y-velocity of object d (which determines b1Vy�)
changes to �1, after which b1Vy� should be
adjusted to the y-velocity of c (i.e., �2), because
it is now the minimum y-velocity of all objects in
b1. This, however, is not possible because the
histogram does not contain detailed information
about the velocities of individual objects.
Based on the above histogram, Choi and Chung

[12] discuss selectivity estimation for (predictive)
range queries on point data. Specifically, given a
point q, distance d, and timestamp tq, a range
query retrieves all the objects whose distances from
q at time tq are less than d. The selectivity is defined
as the number of retrieved objects divided by the
data set cardinality. This technique could estimate
join selectivity (on point data sets) by regarding a
join as the combination of multiple range queries.
Specifically, given two data sets S1, S2, we build a
histogram on S1. Then, for each point p2 2 S2; the
number of objects p1 in S1 that qualify the join
condition with p2 (i.e., jp1ðtqÞ; p2ðtqÞjpd) can be
predicted using the method in [12]. The total
number of qualifying pairs equals the sum of the
estimates for all points in S2. This approach,
however, has the following problems. First, it
incurs significant computation overhead because,
the number of range selectivity predictions equals
the cardinality of S2 (which can be huge in
practice). Second, it requires maintaining all the
objects in one data set, leading to expensive space
consumption. Further, for large data sets, some
data might need to be stored on disk, in which case
selectivity estimation would involve I/O accesses,
20 4 6 8 10

2

4

6

8

10

x axis

y
ax

is

v

E

2-1

2

1

-1

query window

-1

u

-1

1

(a) (b

Fig. 4. Representation of entries in the TPR-tree. (a) The bound
further compromising the estimation time. In
Section 3, we develop alternative solutions to
overcome these problems.

2.4. The TPR-tree

The TPR-tree [3] is an extension of the R-tree
that can answer predictive queries on moving
objects. Each object is represented with an MBR
that bounds its extents at the current time, and a
velocity vector. Fig. 4a shows the representation of
two objects u and v. As before, the arrows indicate
the velocity directions, and the numbers corre-
spond to their values. A non-leaf entry (e.g., E in
Fig. 4a) stores an MBR and a VBR. Specifically,
as in traditional R-trees the MBR tightly encloses
the extents of all entries in the node at the current
time, while the definition of VBR is similar to
those of the spatio-temporal buckets in Fig. 3b
(i.e., it tightly bounds the velocities of the objects
in its subtree). The MBR of an entry E con-
tinuously grows with time according to its VBR,
which ensures that the MBR always bounds the
underlying objects (but is not necessarily tight).
Fig. 4b shows u, v and the enclosing node E at

time 1. Observe how the extents and positions of u,
v, E change, and that the rectangle of E is larger
than the tightest MBR for u and v. Future MBRs
(e.g., those in Fig. 4b) are not stored explicitly, but
are computed based on the entries’ current extents
and velocities. A spatio-temporal window query is
processed in exactly the same way as in the R-tree,
except that the extents of the MBRs at some future
y
ax

is

20 4 6 8 10

2

4

6

8

10

x axis

v

E

u

query window

)

aries at current time 0, (b) the boundaries at future time 1.

ARTICLE IN PRESS

d

d d

d

p
1

p
2

extended region of p
1

d

d

r
2

d

d r
1

extended region of r
1

J. Sun et al. / Information Systems] (]]]])]]]–]]]6
time are first calculated dynamically before being
compared to the query window. For the query
(retrieving objects intersecting the query window
at timestamp 1) shown in Fig. 4, for example, node
E must be visited because its MBR intersects
the query at time 1 (although its MBR at time 0
does not).
(a) (b)

Fig. 5. Objects within distance d (the L1; norm) from each

other. (a) Points, (b) rectangles.
3. Spatio-temporal join selectivity

Formally, given two sets S1, S2 of m-dimen-
sional moving objects (points or rectangles), a
future timestamp tq, and distance threshold d, a
spatio-temporal join retrieves all pairs of objects
/o1, o2S such that o1 2 S1; o2 2 S2; and
jo1ðtqÞ; o2ðtqÞjpd; where jo1ðtqÞ; o2ðtqÞj is the dis-
tance between o1 and o2 at tq. We consider that the
distance jo1ðtqÞ; o2ðtqÞj is computed according to
the Lp norm. Specifically, denoting the coordinates
of an m-dimensional point p as p:x0; p:x1; . . . ; p:xm;
the Lp-distance jo1ðtqÞ; o2ðtqÞj equalsP

i¼12d jp1:xi2p2:xij
p

� �1=p
: A constrained spatio-

temporal join is similar to a normal spatio-
temporal join, except that it involves a constraint

window Wq which is an m-dimensional rectangle. A
pair of qualifying objects /o1, o2S must satisfy all
the conditions of a normal join, and the additional

predicate that o1 and o2 both intersect Wq at time
tq. The selectivity of the (normal or constrained)
join is the ratio between the number of result pairs
and the size of the Cartesian product S1�S2.
Interestingly, as discussed in [10], the join

selectivity under various Lp norms (for different
p) differs only by a constant factor. As a result, to
deal with arbitrary Lp norm, it suffices to solve the
problem under a particular value of p. In the
sequel, we focus on L1; (i.e., jo1ðtqÞ; o2ðtqÞj ¼

maxi¼1;2;...;m jp1:xi � p2:xij), since the resulting
equations are the simplest in this case. The
distance between two (hyper-) rectangles r1, r2 is
the minimum of the distances between all pairs of
points in r1 and r2, respectively, or more formally:
jr1; r2j ¼ min fjp1; p2j for all p1 2 r1; and p2 2 r2g:
Under L1;; two (point or rectangle) objects o1, o2
are within distance d if and only if the extended
region of o1, obtained by enlarging its extents
with length d along all dimensions, intersects o2.
Fig. 5a and b illustrate this for 2D points and
rectangles, respectively. When d ¼ 0; the condition
jo1ðtqÞ; o2ðtqÞjpd reduces to simple intersection.
We use R1 (V1) to represent the MBR (VBR)

that tightly encloses the location (velocities) of all
the objects in S1, and similarly, R2(V2) for S2. Note
that R1 and R2 may cover different sub-spaces of
the universe (i.e., we allow objects of the two sets
to distribute in different areas). The objective is to
predict the join selectivity based solely on R1, R2,
V1, V2, assuming that (i) the location of the objects
inside S1 (S2) distributes uniformly in R1 (R2),
(ii) the object velocities are uniform in V1 (V2), and
(iii) all the dimensions are independent. Section 3.1
first solves the problem for 1D space, and Section
3.2 extends the results to higher dimensionality,
both assuming LN. Section 3.3 extends the results
to the constrained join and other Lp norms. In
Section 4 we overcome the uniformity assumptions
with the aid of histograms. Table 1 lists the
symbols that will appear frequently in our
analysis.

3.1. Solution for one-dimensional space

We first consider the case of 1D point data and
then solve the problem for 1D intervals. Let
[R1.x�, R1.x+] be the extent of R1 (the MBR of
S1), and [V1.v�, V1.v+] the range of V1 (the VBR
of S1). The Cartesian product S1�S2 consists of
N1N2 pairs of points. Let PQ1Dpt be the probability
for a pair to qualify the join condition; the
expected number of qualifying pairs can be
represented as N1N2PQ1Dpt. Furthermore, since
the selectivity equals the number of qualifying

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 7
pairs divided by N1N2, PQ1Dpt directly corre-
sponds to the join selectivity. In particular, the
derivation of PQ1Dpt is equivalent to the following
problem: Given two points p1, p2 such that p1 (p2)
uniformly distributes in the range [R1.x�, R1.x+]
([R2.x�, R2.x+]), and the velocity of p1 (p2)
uniformly distributes in [V1.v�, V1.v+] ([V2.v�,
V2.v+]), compute the probability PQ1Dpt that
jp1ðtqÞ; p2ðtqÞjpd:
Table 1

Frequent symbols in the analysis

Symbol Description

M Dimensionality of the data space

tq The query timestamp

S1, S2 The two data sets participating the

join

R1(R2) The MBR of S1(S2) covering the

location of objects in the set

V1(V2) The VBRs of S1(S2) covering the

velocities of objects in the set

N1(N2) The number of objects in S1(S2)

p.xi The ith coordinate of point p

[R.xi�, R.xi+] The extent along the ith dimension of

MBR R

[V.vi�, V.vi+] The extent along the ith dimension of

VBR V

PQ{1Dpt, 1Dintv} The qualifying probability for 1D

{point, interval} objects

Sel{1Dpt,1Dintv, pt, rect} The join selectivity for {1D points,

1D intervals, mD points, mD

rectangles}

Wq The constrained window

R1.x- R1.x+ R2.x- R2.x+

V1.v- V1.v+V2.v - V2.v+

ti
m

e

p
1

p
2

tq

A BC D

S1 .MBR S2 .MBR

spatial0
histogram
building
time

(a) (b

Fig. 6. Qualifying pairs (distance threshold d ¼ 0). (a) /
For two particular points p1, p2, the probability
for /p1, p2S to qualify depends on their relative
positions. To see this, consider Fig. 6a, where the
x- and y-axes correspond to the spatial and
temporal dimensions, respectively (the current
time is 0). The thick line segments (on the spatial
dimension) represent the MBRs of S1 and S2,
while their VBRs are illustrated by the lines
passing through the end points of the correspond-
ing MBRs (the slopes of these lines indicate the
velocity values). At query time tq, the entire range
that can be reached by p1 constitutes line segment
AB, where point A (B) is the extreme position if p1
travels with the minimum (maximum) velocity
V1.v� (V1.v+). The probability that p1 reaches any

point on segment AB is the same, due to the fact
that the velocity of p1 uniformly distributes in the
range [V1.v�, V1.v+] (note that: every position on
segment AB can be reached via a unique velocity of
p1). Similarly, segment CD consists of all the
possible location of p2 at time tq. Assuming the
distance threshold d is 0, /p1, p2S may qualify
because, as shown in Fig. 6a, segments AB and CD

intersect (i.e., it is possible for p1 and p2 to reach
the same position at tq).
Fig. 6b shows similar situation except that p1

and p2 are farther apart from each other at the
current time. Notice that, in this case AB and CD

do not intersect, indicating that /p1, p2S does not
belong to the result. Motivated by this, we denote
with Ppair(l1,l2) the probability that pair /p1, p2S
qualifies if p1 (p2) lies at location l1 (l2). Conse-
quently, the qualifying probability PQ1Dpt corre-
spatial

ti
m

e

p
1 p

2

A B C D

S1 .MBR S
2 .MBR

V1.v- V2.v+V1.v+V2.v -

R1.x- R1.x+ R2.x- R2.x+
0

histogram
building
time

tq

)

p1, p2S may qualify, (b) /p1, p2S cannot qualify.

ARTICLE IN PRESS

V1.v- V1.v+ V2.v- V2.v+

ti
m

e

p
1

p
2

d d

(p
1 t)q

u
1

u
2max

u
2min

spatial
_l

2 l
1

A B

histogram
building
time

0

tq

Fig. 7. Computing the probability Ppair(l1, l2).

J. Sun et al. / Information Systems] (]]]])]]]–]]]8
sponds to the average of Ppair(l1,l2) over all
possible positions for l1 and l2, or formally:

PQ1Dpt ¼
1

ðR1:xþ � R1:x�ÞðR2:xþ � R2:x�Þ

�

ZR1:xþ

R1:x�

ZR2:xþ

R2:x�

Ppairðl1; l2Þdl2 dl1. ð1Þ

Given two points at l1 and l2, respectively,
Ppair(l1,l2) corresponds to Pfjp1ðtqÞ; p2ðtqÞjpdg;
i.e., the probability that the distance of p1 and p2
at time tq is not greater than the threshold d.
Assuming the velocities of p1 and p2 to be u1 and
u2, respectively, p1(tq) and p2(tq) can be represented
as

p1ðtqÞ ¼ l1 þ tq
 u1 and p2ðtqÞ ¼ l2 þ tq
 u2.

Thus,

Ppairðl1; l2Þ ¼ Pfjp1ðtqÞ; p2ðtqÞjpd j p1 ¼ l1 and p2

¼ l2g ¼ Pfjðl1 � l2Þ þ tq
 ðu1 � u2Þjpdg.

The above equation can be converted to

Ppairðl1; l2Þ ¼ P
l1 � l2 � d

tq

�

þu1pu2p
l1 � l2 þ d

tq

þ u1

�
. ð2Þ

Since u1 and u2 uniformly distribute in [V1.v�,
V1.v+] and [V2.v�, V2.v+], respectively, they
satisfy the following probability density functions:

f ðu1Þ ¼
1

V1:vþ � V 1:v�
and

f ðu2Þ ¼
1

V 2:vþ � V 2:v�
.

Therefore, the right-hand side of Eq. (2) can be
written as:3

P
l1 � l2 � d

tq

þ u1pu2p
l1 � l2 þ d

tq

þ u1

� �
3In this paper we follow the convention that if a4b, thenR b

a
f ðxÞdx ¼ 0:
¼

ZV 1:vþ

V 1:v�

f ðu1Þ

(

�

Z minðV2:vþ;u1þðl1�l2þdÞ=tqÞ

maxðV2:v�;u1þðl1�l2�dÞ=tqÞ

f ðu2Þdu2

" #)
du1

¼
1

ðV 1:vþ � V1:v�ÞðV 2:vþ � V 2:v�Þ

�

Z V1:vþ

V1:v�

Z minðV2:vþ ;u1þðl1�l2þdÞ=tqÞ

maxðV2:v�;u1þðl1�l2�dÞ=tqÞ

1 du2 du1.

ð3Þ

The above integral can be solved into closed form
as presented in the appendix. To understand the
formula, consider Fig. 7, where point p1(tq) shows
the location of p1 at tq when it travels at speed u1
ð2 ½V1:v�;V 1:vþ�Þ: Then, line segment AB corre-
sponds to the set of positions for a qualifying point
p2 at time tq (i.e., p2(tq) is within distance d from
p1(tq)).
Let u2min and u2max be the velocities according to

which p2 reaches points A and B at time tq,
respectively. It follows that the probability that
/p1,p2S is a join result, is ðu2max � u2minÞ=ðV2:vþ �

V2:v�Þ; i.e., the probability that the velocity u2 of
p2 falls in the range [u2min, u2max], given that u2
uniformly distributes in [V2.v�, V2.v+]. So far we
have considered a particular value of u1, while, as
shown in Eq. (3), in order to compute Ppair(l1, l2)
we must consider all possible values in [V1.v�,
V1.v+] (i.e., the outer integral in the formula).
Combining Eqs. (1)–(3), we have represented
PQ1Dpt as a function of R1, R2, V1, V2; the
following equation gives the complete formula for

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 9
join selectivity of 1D points:
Sel1D-ptðd; tqÞ ¼
1

ðR1:xþ � R1:x�ÞðR2:xþ � R2:x�ÞðV 1:vþ � V1:v�ÞðV 2:vþ � V 2:v�Þ

�

ZR1:xþ

R1:x�

ZR2:xþ

R2:x�

ZV1:vþ

V1:v�

ZminðV2:vþ ; u1þðl1�l2þdÞ=tqÞ

minðV2:vþ ; u1þðl1�l2�dÞ=tqÞ

1 du2 du1 dl2 dl1. ð4Þ
Extending the results to interval objects is
straightforward. Assume that S1 (S2) contains
intervals with lengths I1 (I2); then, similar to the
discussion for point objects, the selectivity corre-
sponds to the qualifying probability PQ1Dintv that
a pair of intervals /i1,i2S in the Cartesian product
S1�S2 has distance no longer than d at future
time tq. Observe that i1 and i2 are closer than d, if
and only if their centroids are within distance d þ

ðI1 þ I1Þ=2: This is illustrated in Fig. 8, where
intervals i1 and i2 (with lengths I1 and I2) travel at
velocities u1 and u2, respectively. Therefore, the
selectivity PQ1Dintv can be estimated using Eq. (4),
except that, as shown in Eq. (5), (i) d should be
replaced with d þ ðI1 þ I1Þ=2; and (ii) the lower/
upper limit of the integral should be modified to
capture the fact that the centroid of i1 distributes
in ½R1:x� þ I1=2;R1:xþ � I1=2� (the range is
½R2:x� þ I2=2;R2:xþ � I2=2� for i2).
Sel1D-intvðd; I1; I2; tqÞ ¼ PQ1Dintv ¼
1

ðR1:xþ � R1:x�ÞðR2:xþ � R2:x�ÞðV1:vþ � V1:v�ÞðV 2:vþ � V2:v�Þ

�

ZR1 :xþ�I1=2

R1 :x�
þI1=2

ZR2 :xþ�I2=2

R2 :x�
þI2=2

ZV1:vþ

V1:v�

Zmin V2:vþ; u1þðl1�l2þdþI1=2þI2=2Þ=tqð Þ

min V2:vþ; u1þðl1�l2�d�I1=2�I2=2Þ=tqð Þ

1 du2 du1 dl2 dl1. ð5Þ
3.2. Arbitrary dimensionality

In this section we present the equations for
spatio-temporal join selectivity in m-dimensional
ti
m

e

i
1

i2

q
t

d

i)(2 tq

spatial

(i1 t)q

I
1

I
2

d I
1

I
2

+)/2+(

u
1

u
2

Fig. 8. A pair of qualifying intervals.
spaces, starting with point data sets before
extending the results to rectangles. The MBR R1

(VBR V1) of set S1 is now an m-dimensional
rectangle, and its extent along the ith dimension
(1pipm) is ½R1:xi�;R1:xiþ� ð½V 1:vi�;V1:viþ�Þ; si-
milar notations are used for S2. Let PQpt be the
probability that a pair of points /p1,p2S in S1�S2

satisfies the join condition. The crucial observation
is that (due to the definition of L1;)
jp1ðtqÞ; p2ðtqÞjpd if and only if jp1:xiðtqÞ �

p2:xiðtqÞjpd for all dimensions 1pipm, where
p1.xi(tq) represents the ith coordinate of p1 at time
tq. Let PQ1Dpt-i (1pipm) be the probability that
the ith coordinates of p1 and p2 qualify. Since the
dimensions are independent, we have:

PQpt ¼
Ym
i¼1

PQ1Dpt-i. (6)
The computation of PQ1Dpt-i along each dimen-
sion is based on Eq. (4) (passing d, tq), except that
R1.x�, R1.x+, V1.v�, V1.v+ should be replaced with
R1.xi�, R1.xi+, V1.vi�, and V1.vi+, respectively. As
in the 1D case, PQpt corresponds to the selectivity
Selpoint(d, tq, m).
In order to estimate the join selectivity for

rectangular objects, we denote I1i (I2i) as the
extents of the objects in S1 (S2) along the ith
dimension. Given a pair of rectangles /r1,r2S, let
their extents (on the ith dimension) at time tq be
r1.ii(tq) and r2.ii(tq), respectively. In analogy with
the point case, /r1,r2S is a join result if and only if

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]]10
/r1.ii(tq), r2.ii(tq)S qualifies along the ith dimen-
sion (1pipm), or equivalently, jr1:iiðtqÞ; r2:ii

ðtqÞjpd: Hence, the selectivity for m-dimensional
rectangles is represented as:

Selrectðd; tq;mÞ ¼
Ym
i¼1

PQ1Dintv-i, (7)

where PQ1Dintv-i is the probability that
hr1:iiðtqÞ; r2:iiðtqÞi qualifies, and is computed ac-
cording to Eq. (5) (passing d, I1i, I2i, and tq).
SelC-1Dptðd; tq;W qÞ ¼ PC-1Dptðd; tq;W qÞ

¼
1

ðR1:xþ � R1:x�ÞðR2:xþ � R2:x�ÞðV1:vþ � V 1:v�ÞðV2:vþ � V2:v�Þ

�

Z R1:xþ

R1:x�

Z R2:xþ

R2:x�

Z u1max

u1min

ðminðV2:vþ; u2maxÞ �maxðV2:v�; u2minÞÞdu1 dl2 dl1. ð8Þ
3.3. Extensions

In this section, we first study the selectivity
estimation for constrained joins (again for L1;

metric), and then explain the extension to arbitrary
Lp norms. Our analysis of the constrained join
follows the same framework as the discussion on
normal joins. Specifically, we first solve the
fundamental problem involving 1D points, and
then tackle the general version (multi-dimensional,
rectangle data) by reducing it to the fundamental
case. Fig. 9 illustrates an example, where line
segment AB denotes the constrained window Wq

at time tq (i.e., if /p1,p2S is a qualifying join pair,
then both p1 and p2 must appear in AB at tq).
Similar to the derivation in Section 3.1, we fix the
location of p1 and p2 at time 0 to specific positions
l1, l2, respectively, and the velocity of p1 to a
particular value u1. Note that the permissible
values of u1 (in order to appear in Wq at tq)
depend on the location l1 of p1. In Fig. 9, for
instance, the minimum (maximum) value u1min

(u1max) of u1 is such that p1 will reach point A (B)
(i.e., an end point of Wq) at this speed.
Having fixed p1(tq), the possible location of p2(tq)

(for/p1,p2S to qualify the join predicate) is confined
to segment CB, which contains all the positions that
are in Wq and have distances at most d from p1(tq).
Consequently, the minimum u2min (maximum u2max)
velocity of p2 is decided by the slope of segment
connecting p2 and C(B). Therefore, the probability
PC-pair(l1, l2, u1, Wq) that /p1,p2S qualifies (given l1,
l2, u1) equals (min(V2.v+, u2max)�max(V2.v�, u2min))/
(u2max�u2min), taking into account the fact that u2 is
in [u2min, u2max]. Similar to the discussion in Section
3.1, the overall probability PC-1Dpt (i.e., the selectivity
SelC-1Dpt) can be obtained by integrating PC-pair(l1, l2,
u1, Wq) over all the possible values for l1, l2, u1, as
shown in Eq. (8):
Next we study constrained joins on 1D intervals.
Fig. 9 shows two intervals i1, i2 (with lengths I1, I2,
respectively) that qualify the join (note that both
i1(tq) and i2(tq) intersect the constraint region Wq).
The crucial observation is that, the centroids of i1,
i2 must satisfy the following conditions: (i) the
distance between them is within d+(I1+I2)/2
(similar to Fig. 8), and (ii) the centroid of i1(i2)
should have distance no more than Wq/2+I1/2
(Wq/2+I2/2) from the centroid of Wq in order for
i1(tq) (i2(tq)) to intersect Wq. Hence, the selectivity
for intervals can be reduced to Eq. (8) by
considering the interval centroids (as with
Eq. (5), the integral ranges must be modified to
ensure that both i1 and i2 lie in R1 and R2,
respectively). The extension to multiple dimen-
sions is trivial: we simply multiply the selectivity
on each individual axis, as shown in Section 3.2.
We finish this section by clarifying the applica-

tion of our techniques to general Lp norms other
than LN. For this purpose, we review the concept
of sphere ratio sr(Lp1,Lp2,m) between two different
norms Lp1, Lp2 ðp1ap2Þ for dimensionality m.
Specifically, sr(Lp1,Lp2,m) equals the ratio between
the volumes of m-dimensional spheres with the
same radius in Lp1 and Lp2 (it can be easily verified
that the ratio is a constant independent of the
radius). To illustrate this, Fig. 10 demonstrates the
spheres with radius d under L1, L2, L1; in the 2D

ARTICLE IN PRESS

L1

L2

d

L

Fig. 10. Spheres in L1, L2, L1; norms.

spatial

histogram
building

time 0

tq

p
1 p

2

(p
1 t)q

u
1 u

2max

u
2min

A B

d
Wq

u
1min

u
1max

C D

d

ti
m

e

ti
m

e

spatial

histogram
building

time 0

tq

i1 i
2

A B

d
Wq

C D

I1/2 I2/2

i)(2 tq
i)(1 tq

(a) (b)

Fig. 9. Analysis of constrained joins. (a) Deriving PC-pair(l1, l2, u1, Wq) for point data, (b) a pair of qualifying intervals.

J. Sun et al. / Information Systems] (]]]])]]]–]]] 11
space (particularly, the sphere of L2 is simply a
circle). The sphere ratio between L1 ðL1Þ and L2,
for example, equals the area of the inner (outer)
square divided by that of the circle. Faloutsos et al.
[10] show the following interesting result: if Selp1
and Selp2 are the join selectivities under the Lp1

and Lp2 metrics and m is the dimensionality, then
Selp1/Selp2 equals sr(Lp1,Lp2,m). Based on this
observation, they estimate the selectivity of arbi-
trary Lp norm by multiplying the selectivity of L1;

with sr(Lp1,Lp2,m). The same method can also be
applied in our case.
4. Spatio-temporal histograms

In the previous section we presented the
formulae for estimating the join selectivity for
data sets where objects’ location and velocities
distribute uniformly in their corresponding ranges.
The uniformity assumption, however, does not
usually hold in real data sets, and thus direct
application of the above models will lead to
significant error. In this section we deal with this
problem using histograms that partition the
universe into separate buckets, such that the data
distribution within a bucket is nearly uniform.
Then, the previous equations are applied locally
(in each bucket), and the overall prediction is
obtained by summing up the individual estima-
tions. The accuracy of this approach depends on
the quality of the histogram, which must guarantee
that in each bucket both the location and the
velocity distributions are as uniform as possible. In
Section 4.1, we first show that existing histograms
cannot achieve this (thus, leading to erroneous
estimation), and then provide an alternative
solution to avoid their defects. Section 4.2 explains
how to use the proposed histogram to perform
estimation, as well as various approaches to reduce
the computation cost.

4.1. Histogram construction and maintenance

The spatio-temporal of [12] first partitions the
objects based on their spatial location using the
conventional MinSkew algorithm, and then deci-
des the VBRs of the buckets during a second step.
Since the velocity information is not considered
during data partition, the resulting histogram
cannot ensure the uniformity of velocity distribu-
tion in the buckets. Assume, for example, that we
want to build a histogram with two buckets for the
data set in Fig. 11a. In Fig. 11b the buckets are
decided based on the objects’ location. In parti-
cular, the first two columns of cells are grouped
into the same bucket because they all contain

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]]12
exactly one point (i.e., no variance), while cells in
the last column (with 2 points each) constitute the
second bucket. Although the location distribution
is fairly uniform, the velocity distribution is rather
skewed. Consider the left bucket in Fig. 11b,
whose (x�) velocity range is [�10,8] (i.e., decided
by the velocities of points a and e). Notice that,
there are 5 points with velocities in the range [�10,
�2], while only one (i.e., e) has positive velocity
(8). Similarly, the velocity range of the right bucket
is [�8, 10], but ranges [�8, 0] and [2,10] contain 2
and 4 points.
An effective spatio-temporal histogram should

partition data using both location and velocity
information. Continuing the previous example,
Fig. 11c shows such a histogram, where the left
and right buckets contain the first and the last two
columns of cells, respectively. Compared with
Fig. 11b, the spatial uniformity is slightly worse
(only in the right bucket), while the velocity
uniformity is significantly better. Specifically, the
velocities distribute uniformly in the ranges [�10,
�6] and [�8, 10] for the two buckets, respectively.
8

a

c

d

e

f

g

h

i

-10

-8

-6 -4

-2

-6

-8

2

6

4

b

k

l

j 10

8

a

c

d

e

f

-10

-8

-6 -4

-2

b

(a) (b)

Fig. 11. Uniform velocity distribution. (a) Cell information,

a

f

h

i

k

m
-10

10

-10
10

-10

-10

d

q

p 10

10
b

c
-10

10
e

10
g

10
j

l
-10

n
-10

o
-10

r 10

-10

10

-10

a

f

i

-10

-10

-10

c
-10

-10

(a) (b)

Fig. 12. Skewed velocity distribution. (a) Cell
As a result, the new histogram is expected to
produce better prediction.
The overall velocity distribution for the data set

of Fig. 11 is uniform. If the distribution is skewed,
ignoring the velocities during partitioning is even
more problematic. Consider, for example, Fig. 12a
where object velocities have only two values �10
and 10. Partitioning the spatial universe is useless
because (i) the overall location distribution is
already fairly uniform (i.e., 2 points in each cell),
and (ii) for all possible partitions, the resulting
buckets still have extremely skewed velocity
distribution. In fact, in this case the best partition
should be based entirely on the velocity dimension.
Specifically, the first bucket (Fig. 12b) contains all
the points with negative velocities while the second
one (Fig. 12c) involves those with positive ones.
Notice that the resulting buckets have uniform
location (one point from each cell) and velocity (all
points have the same velocity) distributions.
Motivated by this observation, given a 2D

spatial universe, we employ a histogram in the
4D space consisting of two spatial (same as the
g

h

i

-6

-8

2

6

4

k

l

j 10

8

a

c

d

e

f

g

h

i

-10

-8

-6 -4

-2

-6

-8

2

6

4

b

k

l

j 10

(c)

(b) considering only location, (c) location and velocity.

h

-10
q

l

n
-10

o
-10

k

m

10

10

10

d p

10

10

b
10g

10j

r

10

10
e

(c)

information, (b) bucket 1, (c) bucket 2.

ARTICLE IN PRESS

spatial

ve
lo

ci
ty

b2

b
1

b
4

b
3

10

0

20

30

-10

-20

p

p'

q

q'

ti
m

e

t

spatial
0

histogram
building
time

b2 .MBR b4 .MBR
b3 .MBR &

p

p()t

p'

b1 .MBR &

p
V

=25 pV'=10

q

q()t

q'

qV=25 qV'=10

(a) (b)

Fig. 13. Updating the histogram. (a) The cells and buckets, (b) point p falls in a different bucket after update.

4As currently there is no version of the TPR-tree specifically

designed for main memory, our implementation follows the

disk-resident version, although with a different node size

(¼ 10). This choice of the node capacity is discussed towards

the end of the section.

J. Sun et al. / Information Systems] (]]]])]]]–]]] 13
original universe) and two velocity (decided by the
maximum and minimum velocities along the
corresponding spatial axis) dimensions. Specifi-
cally, a point (p.x1, p.x2) with velocities (p.v1, p.v2)
is converted into a 4D point (p.x1, p.x2, p.v1, p.v2),
and similarly a rectangle r is transformed to a 4D
one with the same extents on the spatial and
velocity dimensions. The histogram is constructed
using the MinSkew algorithm with an initial grid
that partitions the space into H4 regular cells. Each
bucket b is associated with b.MBR that encloses
the MBRs of all the cells in b, and with b.VBR that
tightly bounds the cell VBRs. For point data sets,
b.num records the number of 4D points in b. For
rectangle sets, b.num is the number of 4D
rectangles whose centroids lie in b, and b.len

(b.vlen) is the average spatial (velocity) extents of
these rectangles. The discussion generalizes to
arbitrary dimensionality in a straightforward
manner.
An important property of the proposed histogram

is that it can be incrementally maintained. Fig. 13
illustrates this using point data with one space/
velocity dimension (extending to higher dimension-
ality and rectangles is straightforward). Fig. 13a and
b illustrate the bucket extents in the space–velocity
and space–time universe, respectively. Particularly, in
the space–time universe, a velocity is represented as
the slope of a line. Consider point p which falls in
bucket b2, given its current location (as shown in
both figures) and velocity (25). Assume that p

generates a velocity change (to �10) at future time
t (when its location is p(t)). To decide the bucket
affected by p(t) (in the histogram constructed at time
0), we find a point p0 (called the surrogate point) at
time 0, such that p0 will reach the same position p(t)
with the updated velocity (�10) of p. As shown in
Fig. 13b, p0 is the intersection of the spatial axis and
the line with slope �10 that crosses p(t). The bucket
affected by p(t) is the one (b3) that contains p0 in the
space–velocity universe, as shown in Fig. 13a. Since
the new bucket b3 is different from the old one b2, the
histogram must be modified by decreasing b2.num

and increasing b3.num (by 1). In some cases, the
surrogate point may fall outside the universe, in
which case the boundary bucket needs to be enlarged.
As an example, the MBR of bucket b3 must be
expanded to cover the surrogate point q0 (of q) in
Fig. 13. It is worth mentioning that, the VBR of the
selected bucket for expansion includes the updated
velocity of q0 (i.e., hence b4 is not expanded).
An exhaustive scan over all buckets is necessary

to identify the ones affected by an update. To
avoid this, we build an in-memory4 TPR-tree on
the MBRs and VBRs of the buckets (stored at the
leaf level of the tree), so that the affected ones can
be identified very quickly by performing a window
query using the information of p and p0, respec-
tively. Since, as with normal TPR-trees, the non-
leaf levels account for a fraction of the total size,
the space overhead is very small (less than 15% in
our implementation). Similarly, building the tree

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]]14
after the histogram has been constructed requires
less than 1% of the total construction time.
Furthermore, notice that for most updates (except
those requiring expansion) the bucket extents are
not changed, and thus the TPR-tree only needs to
be maintained infrequently.
Updating the histogram incrementally avoids the

frequent histogram re-building, and hence reduces
the maintenance cost considerably. Whenever the
system receives an object update, the new informa-
tion is intercepted to modify the histogram accord-
ingly. However, the uniformity (in buckets) may
gradually deteriorate along with time as the data
(location and velocity) distributions vary. When the
distribution changes significantly, the histogram
eventually needs to be re-built in order to ensure
satisfactory estimation accuracy. In order to for-
mulate such a re-building condition, notice that, if
sufficient distribution changes have accumulated, the
histogram must have been modified many times.
Therefore, a simple heuristic to ensure satisfactory
estimation accuracy is to re-construct the histogram
when the number of modifications reaches a certain
threshold. As evaluated in the experiments, high
prediction precision can be achieved with a very large
threshold which leads to only occasional re-building.
b1

(b1 tq)

b2

(b2 tq)
b2 '

' (b2 tq)

d

Fig. 14. Buckets that need to be examined.
4.2. Performing estimation with histograms

Given the histograms H1 and H2 for data sets S1

and S2, respectively, the expected number of
qualifying join pairs can be obtained by summing
up the results of bucket pairs from H1�H2.
Specifically, for two buckets bi, bj (bi 2 H1 and
bj 2 H2), the number of result pairs produced
from objects inside them is bi:num
 bj :num

Selijðd; tq;mÞ; where Selij(d,tq,m) is computed using
Eqs. (6) (for points), and (7) (for rectangles), by
replacing Ri, Rj, Vi, Vj with bi.MBR, bj.MBR,
bi.VBR, bj.VBR, respectively. Thus, the join
selectivity can be estimated as

Selðd; tq;mÞ

¼

P
for all buckets

bi2H1 and bj2H2

bi:num
 bj :num
 Selijðd; tq;mÞ

N1
 N2
,

ð9Þ
where N1 and N2 are the cardinalities of S1 and S2,
respectively.
As explained in the appendix, computing

Selij(d,tq,m) requires integral evaluation, and hence
should be avoided as much as possible in order to
minimize the estimation time. For point data,
given two buckets bi, bj, such computation is
necessary only if the distance between bi(tq) (i.e., its
extent at query time tq) and bj(tq) is closer than the
distance threshold d (in the sequel we call /bi, bjS
a qualifying bucket pair). Consider, for example,
Fig. 14 which shows the MBRs (at the current
time) of three buckets: b1 2 H1 and b2, b0

2AH2,
together with the VBRs. The dashed rectangles
represent the extents of the buckets at query time
tq. Note that, computing Selij(d, tq, m) is necessary
for /b1,b2S (|b1(tq), b2(tq)| ¼ 0od), but not for
/b1,b2

0S because |b1(tq), b2
0(tq)|4d, indicating that

no points from b1 and b2
0 can produce a joined

pair. Similarly, for rectangular data, we do not
consider two buckets if jb1ðtqÞ; b2ðtqÞj4d þ

1=2ðb1:len þ b2:lenÞ; where b1.len corresponds to
the side length of the rectangles in b1 (similar for
b2.len). This is because (i) b1.MBR covers the
centroids of the rectangles counted in b1, and
(ii) jr1; r2jpd if and only if their centroids are
closer than d+1/2(r1.len+r2.len) along all dimen-
sions (as explained in Section 3), where ri.len

denotes the side length of ri.
In order to avoid checking all possible bucket

pairs, we take advantage of the main-memory
TPR-trees (used also for efficient updating of the
histograms). Specifically, we adopt a synchronous
traversal algorithm (i.e., SpatialJoin [15]) that
traverses the TPR-trees of the two histograms

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 15
synchronously, only following pairs of nodes that
may lead to qualifying buckets. Compared with
the brute-force approach, this algorithm avoids
checking pairs whose parent entries do not qualify,
thus leading to lower estimation time. Note that
the node size influences the estimation time
considerably. Specifically, a large size leads to a
tree with few levels, in which case the intermediate
entries have large MBRs and VBRs. Thus, the
synchronous traversal needs to descend almost all
pairs of (intermediate) entries, degenerating into
the naı̈ve algorithm (that checks all pairs of
buckets). On the other hand, a small node size
increases the number of tree levels, resulting in
longer processing time on intermediate entries. In
our experiments, we set the node size to 10 entries
per node, which leads to the smallest traversal
cost.
5. Experiments

In this section we present an extensive experi-
mentation to prove the effectiveness of the
proposed methods. All experiments were per-
formed using a Pentium IV 1GHz CPU with
256Mbytes memory. Due to the lack of real
spatio-temporal data, we created synthetic data
sets by generating velocities for objects in real
spatial data sets. Fig. 15 shows the distributions of
the selected static data sets (the universe is
normalized to [0, 10 000]), where LB, CA contain
point and LA, GER rectangle objects. From each
data set X (¼ LB, CA, LA, or GER), we created
two spatio-temporal sets X_u and X_s where
objects’ velocities are generated according to
uniform and Zipf distributions (with skew coeffi-
cient 0.8), respectively.
Fig. 15. Location distributions. (a) LB (53K points), (b) CA (62K
The accuracy of our model is examined using
(i) the histogram in [12] where bucket extents are
decided by considering only the spatial dimensions
(referred to as 2D in the sequel), and (ii) the 4D
histogram presented in Section 4. Both histograms
are created using the MinSkew algorithm intro-
duced in Section 2, while the resolution H is set to
50 and 10 for 2D and 4D, respectively (i.e., there
are 502 ¼ 2500 (2D) and 104 ¼ 10 000 (4D), cells in
the initial grid before MinSkew starts). As shown
in [22], the accuracy of Minskew initially improves
as H increases, but actually deteriorates when H

grows beyond a certain threshold. Values 50 and
10 (for 2D and 4D) are selected because they lead
to the best performance for the corresponding
histograms (in particular, 50 is also the value used
in [12]). The number of buckets in a histogram is
set to 200 (requiring around 8Kbytes) in all cases.
The 2D (4D) building time is around 0.5 (0.75)
seconds after the initial grid is ready. A join query
has two parameters: (i) the query timestamp tq

(assuming the histogram is constructed at current
time 0), and (ii) a distance threshold d. Given the
actual act and estimated est selectivity, the error
rate is computed as |est�act|/min(est, act).
Fig. 16a shows the estimation error for joining

data sets LB_u and CA_u (i.e., uniform velocity
distributions) by fixing the distance threshold d to
250 and varying tq from 0 (i.e., the current time) to
500 timestamps in the future. Both histograms
demonstrate similar behavior and provide precise
estimation (with less than 5% error). Note that,
since the velocity distribution is uniform, the 4D
histogram partitions mainly on the spatial dimen-
sions, and thus behaves similarly to 2D (i.e.,
ignoring velocities is not important in this case).
Fig. 16b illustrates the error rate as a function of d

with tq fixed to 250. Again both histograms have
points), (c) LA (130K rectangles), (d) GER (36K rectangles).

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]]16
similar accuracy, indicating the correctness of the
proposed equations. The error rates are relatively
higher (around 10%) when d is small. This is not
surprising because for low values of d the output
size is small, rendering accurate estimation more
difficult.
Fig. 17a and b demonstrate the results of similar

experiments using data sets LB_s and CA_s

(skewed velocity distribution). The performance
of 2D is very poor in most cases (with up to 60%
error) while the proposed 4D approach yields
significantly lower error (up to 10%). As shown in
Fig. 17a, 2D gives better estimation only when tq

equals 0 (i.e., at the current time), while its
precision deteriorates very quickly when tq in-
creases. This is expected because the selectivity
estimation at the current time depends on only
objects’ current location (i.e., not on velocities);
thus, the 2D histogram is more accurate because it
achieves better spatial uniformity in the buckets.
4D, on the other hand, outperforms it very quickly
at small tq, confirming the importance of consider-
ing velocities in building the histogram. Fig. 17b
t
q

er
ro

r
ra

te

0%

1%

2%

3%

4%

5%

0 100 200 300 400 500

2D

4D

(a)

Fig. 16. LB_u joins CA_u (point data—uniform velocities)

tq

er
ro

r
ra

te

0%

10%

20%

30%

40%

50%

60%

70%

0 100 200 300 400 500

2D

4D

(a) (b

Fig. 17. LB_s joins CA_s (point data—skewed velocities).
illustrates the error rate as a function of d (fixing tq

to 250). Similar to Fig. 16b, the error rates remain
stable when d is sufficiently large.
Figs. 18 and 19 repeat the same set of

experiments for rectangle data, where similar
phenomena can be observed (again, 2D is erro-
neous for skewed velocities while 4D is accurate in
all cases). Note that rectangles incur higher error
than points because although rectangles have
variable sizes, only the average size (in each
bucket) is used for estimation.
The next experiment evaluates the efficiency of

the cost models for constrained joins. Since the
selectivity depends on the concrete position of the
constraint window, we measure the average error
of a workload consisting of 50 joins, where the
constraint area of each join is a square uniformly
distributed in the universe. Fig. 20a and b
demonstrate the results (obtained from Eq. (8))
for point and rectangle data sets (with skewed
velocities), respectively (d and tq are set to 250).
The error rate is plotted as a function of the
constraint window size, denoted as the percentage
2D

4D

d

er
ro

r
ra

te

0%

2%

4%

6%

8%

10%

12%

1 100 200 300 400 500

(b)

. (a) Error vs. tq ðd ¼ 250Þ; (b) error vs. d ðtq ¼ 250Þ:

d

er
ro

r
ra

te

0%

10%

20%

30%

40%

50%

60%

70%

1 100 200 300 400 500

2D

4D

)

(a) Error vs. tq ðd ¼ 250Þ; (b) error vs d ðtq ¼ 250Þ:

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 17
of its side length over the axis length (e.g., a 1%
window covers 0.01% of the universe area). It is
clear that 4D gives much more accurate prediction
than 2D. The error rates are relatively higher (up
to 15% for 4D) for small windows since they lead
to high selectivity. On the other hand, when the
window is sufficiently large, the error rate con-
verges to that of a normal join.
As mentioned in Section 4.1, our histogram can

be maintained incrementally to avoid frequent re-
tq

er
ro

r
ra

te

0%
10%

20%
30%
40%
50%
60%
70%
80%

0 100 200 300 400 500

2D

4D

(a) (b

Fig. 19. LA_s joins GER_s (rectangle data—skewed velocitie

er
ro

r
ra

te

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1% 10% 20% 30% 40% 50%

2D
4D

window size(a) (b

Fig. 20. Error rates for constrained join (d ¼ 250; tq ¼ 250). (a

(rectangles—skewed velocities).

tq

er
ro

r
ra

te

5.0%
5.5%
6.0%
6.5%
7.0%
7.5%
8.0%
8.5%
9.0%
9.5%

0 100 200 300 400 500

2D

4D

(a) (b

Fig. 18. LA_u joins GER_u (rectangle data—uniform velociti
building. To study the effects of updates we
created dynamic data sets as follows. At time-
stamp 0, the location and velocities of objects are
generated as described earlier. Then, at each of the
subsequent 1000 timestamp, 10% of the objects
are randomly chosen to produce updates. Specifi-
cally, the velocity change (along each dimension) is
generated randomly in [�10, 10], while the new
location of the object is decided based on its
previous location and velocity. As discussed in
d

er
ro

r
ra

te

0%

10%

20%

30%
40%

50%

60%

70%
80%

0 100 200 300 400 500

2D

4D

)

s). (a) Error vs. tq ðd ¼ 250Þ; (b) error vs. d ðtq ¼ 250Þ:

er
ro

r
ra

te

window size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1% 10% 20% 30% 40% 50%

2D

4D

)

) LB_s-CA_s (points—skewed velocities), (a) LA_s-GER_s

er
ro

r
ra

te

d

5%
6%
7%
8%
9%

10%
11%
12%
13%
14%

0 100 200 300 400 500

2D
4D

)

es). (a) Error vs. tq ðd ¼ 250Þ; (b) error vs. d ðtq ¼ 250Þ:

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]]18
Section 4.2, we build a main-memory TPR-tree on
the histogram of each data set, with a node
capacity of 10 entries. The qualifying buckets are
identified by synchronously traversing the two
trees. The construction time for each tree is around
1% of the histogram building time. Further, the
TPR-tree handles object updates efficiently in less
than 0.1ms per update.
Since the generated data sets incur (slow)

distribution changes, whereas we do not modify
the bucket extents, the uniformity inside each
bucket may gradually deteriorate, thus affecting
the estimation accuracy. To investigate the degra-
dation rate, we measure the error of joins with the
same parameters (tq ¼ 250; d ¼ 250) every 100
timestamps (i.e., based on objects’ latest informa-
tion) using the histogram incrementally main-
tained. Fig. 21 shows the results (of the 4D
histogram) for joining LB_s, CA_s and LA_s,
GER_s. The accuracy decreases slowly with time
(error rate up to 15% after 1000 timestamps). This
implies that, using incremental maintenance we
only need to re-build the histogram very infre-
0

1

2

3

4

5

6

0 100 200 300 400 500

brute-force

TPR

tq

ev
al

ua
ti

on
 ti

m
e

(s
ec

)

(a) (b

Fig. 22. Evaluation time (LB_s join CA_s). (a) Evaluation ti

0%

2%

4%

6%

8%

10%

12%

14%

0 200 400 600 800 1000

er
ro

r
ra

te

elapsed timestamps

LB_s JOIN CA_s

LA_s JOIN GER_s

Fig. 21. The accuracy degradation of 4D histogram (tq ¼ 250;
d ¼ 250).
quently in order to ensure good estimation
accuracy. Note that similar experiments are not
applicable to 2D histograms, which require re-
building at every timestamp. This fact severely
limits the applicability of 2D histograms in
practice, where frequent updates may invalidate
the histogram even before it is constructed.
As discussed in Section 4.2, given two histo-

grams, a brute-force estimation algorithm would
examine all pairs of buckets, and hence its
computation time would be quadratic to the
number of buckets. Instead we utilize the TPR-
tree for each histogram and apply a spatial join
algorithm to avoid examining unnecessary buck-
ets. Fig. 22 compares the evaluation time of the
brute-force and TPR approaches in joining LB_s

and CA_s (results for other data sets are similar).
Specifically, Fig. 22a shows the time as a function
of tq, fixing d to 250. The cost of the brute-force
algorithm is constant because it checks the same
number of bucket pairs for all queries. The cost of
TPR, on the other hand, increases with time
because, for larger tq, the entry MBRs (at tq) of
the TPR-trees are larger, leading to more inter-
secting pairs. Fig. 22b shows similar results by
varying d and fixing tq to 250 (i.e., higher distance
thresholds also increase the number of intersecting
pairs).
In summary, we have shown that the proposed

models accurately capture the selectivity of spatio-
temporal joins in a wide range of settings
(including constrained joins), yielding average
error below 10%. Furthermore, we also confirm
the necessity of considering velocity distributions
in building spatio-temporal histograms, by de-
monstrating that the proposed 4D histogram has
significantly lower error than the 2D counterpart.
d

ev
al

ua
ti

on
 ti

m
e

(s
ec

)

0

1

2

3

4

5

6

1 100 200 300 400 500

brute-force

TPR

)

me vs. tq ðd ¼ 250Þ; (b) evaluation time vs d ðtq ¼ 250Þ:

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 19
6. Conclusion

The paper first discusses the mathematical
preliminaries for spatio-temporal join selectivity
and then solves the problem with a specialized
histogram that can be efficiently maintained in
main memory. Extensive experiments confirm that
the proposed techniques produce accurate predic-
tion with average error less than 10%. Our
techniques are based on the assumption that
objects move with linear and known velocities,
which is common in the literature of spatio-
temporal prediction, e.g., [1–4,12]. Applications
that satisfy these conditions involve objects (ships,
airplanes, weather patterns) moving in unob-
structed spaces. The prediction horizon depends
on the (velocity) update rate; e.g., given that ships
move with slow, linear movements for long
periods, it is meaningful to estimate queries that
refer to several hours in the future. For air traffic
control, the prediction horizon should be in the
order of minutes [24]. On the other hand, in some
situations (e.g., cars on a road network) the
motion parameters may be unknown or may
change so fast that velocity-based prediction is
meaningless. In such cases, selectivity estimation
should be based on alternative techniques. For
instance, [25] applies exponential smoothing using
only location information. Although this method
does not rely on velocity assumptions, it has to
maintain historical data since future prediction is
based on the recent past (whereas velocity-based
prediction requires only information about the
present).
u1=V1.v- u1=V1.v+

u2=V2.v-

u2=V2.v+

u2=u1+α

u2=u1+β

LN1

LN2

u1=V1.v-

u2=V2.v-

u2=V2.v+

(a) (b)

Fig. A.1. Integral area ¼ Ar1�Ar2. (a) Inte
Acknowledgements

This work was supported by grants HKUST
6180/03E, CityU 1163/04E from Hong Kong
RGC, and NSF CAREER grant IIS-0133825.
Appendix

This appendix discusses the evaluation of the
integrals in Eqs. (3) and (4). For the sake of
simplicity, we use the notation a ¼ ðl1 � l2 � dÞ=tq

and b ¼ ðl1 � l2 þ dÞ=tq; thus, the integral in
Eq. (3) can be written asZ V1:vþ

V1:v�

Z minðV2:vþ;u1þbÞ

maxðV2:v�;u1þaÞ
1 du2 du1.

The value of the integral equals the area of the
intersection (the shaded region in Fig. A.1) of (i)
the rectangle bounded by lines fu1 ¼ V 1:v�; u1 ¼
V1:vþ; u2 ¼ V2:v�; u2 ¼ V1:vþg; and (ii) the region
between parallel lines LN1: u2 ¼ u1+a and LN2:
u2 ¼ u1+b. As shown in Fig. A.1b and c, the
shaded area is the difference of areas Ar1 and Ar2,
i.e., the intersection of the rectangle in (i) and the
lower half planes of lines LN1 and LN2, respec-
tively. Obviously Ar1 depends on the intercept (i.e.,
a) of LN1, which decides the relative positions of
LN1 and the rectangle; Table A.1 illustrates its
values for the all six possible cases. Due to the
symmetry, values of Ar2 (as well as the corre-
sponding conditions) are the same as those in
Table 1, except that a should be replaced with b.
u1=V1.v+

u2=u1+β
LN2

u1=V1.v- u1=V1.v+

u2=V2.v-

u2=V2.v+

u2=u1+α
LN1

LN2

(c)

gral area, (b) area Ar1, (c) area Ar2.

ARTICLE IN PRESS

T
a
b
le
A
.1

V
a
lu
es

o
f

A
r 1
a
n
d
co
rr
es
p
o
n
d
in
g
co
n
d
it
io
n
s

V
a
lu
es

o
f

A
r 1

C
o
n
d
it
io
n
s

ðV
1
:v
þ
�

V
1
:v
�
Þð

V
2
:v
þ
�

V
2
:v
�
Þ

a
2
ðV

2
:v
þ
�

V
1
:v
�
;1

Þ
1 2
ðV

1
:v
�
�

V
2
:v
�
þ
aÞ

þ
ðV

2
:v
þ
�

V
2
:v
�
Þ

½
�ð

V
2
:v
þ
�

V
1
:v
�
�
aÞ

þ
ðV

1
:v
þ
�

V
2
:v
þ
þ

aÞ
ðV

2
:v
þ
�

V
2
:v
�
Þ

a
2

m
a
x

V
2
:v
�
�

V
1
:v
�
;V

2
:v
þ
�

V
1
:v
þ

�
� ;

V
2
:v
þ
�

V
1
:v
�

#

1 2
ðV

1
:v
þ
�

V
2
:v
þ
þ

aÞ
þ

ðV
2
:v
þ
�

V
2
:v
�
þ
aÞ

½
�ð

V
2
:v
þ
�

V
2
:v
�
Þ

a
2

V
2
:v
þ
�

V
1
:v
þ
;V

2
:v
�
�

V
1
:v
�

ð
�

1 2
ðV

1
:v
�
�

V
2
:v
�
þ

aÞ
þ

ðV
1
:v
þ
�

V
2
:v
�
þ
aÞ

½
�ð

V
1
:v
þ
�

V
1
:v
�
Þ

a
2

V
2
:v
�
�

V
1
:v
�
;V

2
:v
þ
�

V
1
:v
þ

ð
�

1 2
ðV

1
:v
þ
�

V
2
:v
�
þ

aÞ
ðV

1
:v
þ
�

V
2
:v
�
þ
aÞ

a
2

V
2
:v
�
�

V
1
:v
þ
;

m
in

V
2
:v
�
�

V
1
:v
�
;V

2
:v
þ
�

V
1
:v
þ

�
�

#

0
a
2

�
1

;V
2
:v
�
�

V
1
:v
þ

ð
�

J. Sun et al. / Information Systems] (]]]])]]]–]]]20
Notice that since the integral in Eq. (3) equals
Ar1�Ar2, we have solved the equation into closed
form.
Because the exact solution of Eq. (4) is more

complex, in our implementation we evaluate it
using the trapezoidal method [26]. Particularly, the
numerical approach is applied to the two outer
integral layers (recall that Eq. (4) has four layers),
while the inner two (i.e., corresponding to Eq. (3))
can be solved accurately as described earlier.
References

[1] G. Kollios, D. Gunopulos, V. Tsotras, On indexing mobile

objects, ACM PODS, 1999.

[2] P.K. Agarwal, L. Arge, J. Erickson, Indexing moving

points, ACM PODS, 2000.

[3] S. Saltenis, C.S. Jensen, S.T. Leutenegger, M.A. Lopez,

Indexing the positions of continuously moving objects,

ACM SIGMOD, 2000.

[4] S. Saltenis, C.S. Jensen, Indexing of moving objects for

location-based services, IEEE ICDE, 2002.

[5] N. Mamoulis, D. Papadias, Multiway spatial joins, ACM

TODS 26 (4) (2001) 424–475.

[6] D. Papadias, Y. Tao, P. Kalnis, J. Zhang, Indexing spatio-

temporal data warehouses, IEEE ICDE, 2002.

[7] J. Gehrke, F. Korn, D. Srivastava, On computing

correlated aggregates over continual data streams, ACM

SIGMOD, 2001.

[8] A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi,

Processing complex aggregate queries over data streams,

ACM SIGMOD, 2002.

[9] N. An, Z. Yang, Sivasubramaniam, A. Selectivity estima-

tion for spatial joins, IEEE ICDE, 2001.

[10] C. Faloutsos, B. Seeger, A. Traina, C. Traina Jr., Spatial

join selectivity using power laws, ACM SIGMOD, 2000.

[11] C. Sun, D. Agrawal, A. Abbadi, Selectivity estimation for

spatial joins with geometric selections, EDBT, 2002.

[12] Y. Choi, C. Chung, Selectivity estimation for spatio-

temporal queries to moving objects, ACM SIGMOD,

2002.

[13] A. Guttman, R-trees: a dynamic index structure for spatial

searching, ACM SIGMOD, 1984.

[14] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The

R*-tree: an efficient and robust access method for points

and rectangles, ACM SIGMOD, 1990.

[15] T. Brinkhoff, H. Kriegel, B. Seeger, Efficient processing of

spatial joins using R-trees, ACM SIGMOD, 1993.

[16] Y.-W. Huang, N. Jing, E. Rundensteiner, Spatial joins

using R-trees: breadth first traversal with global optimiza-

tions, VLDB, 1997.

[17] N. Koudas, K. Sevcik., High dimensional similarity joins:

algorithms and performance evaluation, IEEE ICDE,

1998.

ARTICLE IN PRESS

J. Sun et al. / Information Systems] (]]]])]]]–]]] 21
[18] W. Aref, H. Samet, A cost model for query optimization

using R-trees, ACM GIS, 1994.

[19] I. Kamel, C. Faloutsos, On packing R-trees, CIKM, 1993.

[20] B.U. Pagel, H.W. Six, H. Toben, P. Widmayer, Towards

an analysis of range query performance in spatial data

structures, ACM PODS, 1993.

[21] Y. Theodoridis, E. Stefanakis, T. Sellis, Cost models for

join queries in spatial databases, IEEE ICDE, 1998.

[22] S. Acharya, V. Poosala, S. Ramaswamy, Selectivity

estimation in spatial databases, ACM SIGMOD,

1999.
[23] S. Muthukrishnan, V. Poosala, T. Suel, On rectangular

partitionings in two dimensions: algorithms, complexity,

and applications, ICDT, 1999.

[24] Y. Tao, J. Sun, D. Papadias, Analysis of predictive spatio-

temporal queries, ACM TODS 28 (4) (2003) 295–336.

[25] J. Sun, D. Papadias, Y. Tao, B. Liu, Querying about the

past, the present, and the future in spatio-temporal

databases, IEEE ICDE, 2004.

[26] W. Press, B. Flannery, S. Teukolsky, W. Vetterling,

Numerical Recipes in C++, second ed., Cambridge

University Press, Cambridge, 2002.

	Spatio-temporal join selectivity
	Introduction
	Related work
	Spatial join selectivity
	MinSkew
	Spatio-temporal range selectivity
	The TPR-tree

	Spatio-temporal join selectivity
	Solution for one-dimensional space
	Arbitrary dimensionality
	Extensions

	Spatio-temporal histograms
	Histogram construction and maintenance
	Performing estimation with histograms

	Experiments
	Conclusion
	Acknowledgements
	References

