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A Reciprocal Framework for Spatial  
K-Anonymity 

Gabriel Ghinita, Keliang Zhao, Dimitris Papadias, and Panos Kalnis 

Abstract—Spatial K-anonymity (SKA) exploits the concept of K-anonymity in order to protect the identity of users from 
location-based attacks. The main idea of SKA is to replace the exact location of a user U with an anonymizing spatial 
region (ASR) that contains at least K-1 other users, so that an attacker can pinpoint U with probability at most 1/K. Simply 
generating an ASR that includes K users does not guarantee SKA. Previous work defined the reciprocity property as a 
sufficient condition for SKA. However, the only existing reciprocal method, Hilbert Cloak, relies on a specialized data 
structure. In contrast, we propose a general framework for implementing reciprocal algorithms using any existing spatial 
index on the user locations. We discuss ASR construction methods with different tradeoffs on effectiveness (i.e., ASR size) 
and efficiency (i.e., construction cost). Then, we present case studies of applying our framework on top of two popular 
spatial indices (namely, R*-trees and Quad-trees). Finally, we consider the case where the attacker knows the query 
patterns of each user. The experimental results verify that our methods outperform Hilbert Cloak. Moreover, since we 
employ general-purpose spatial indices, the proposed system is not limited to anonymization, but supports conventional 
spatial queries as well. 
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1 INTRODUCTION

HE embedding of positioning capabilities (e.g., 
GPS) in mobile devices has triggered several excit-
ing applications. However, at the same time, it has 

raised serious concerns about the risks of revealing sen-
sitive information in location based services (LBS) [BS03, 
BWJ05]. Consider a user U that wants to issue a query 
about the nearest nightclub to an untrustworthy LBS 
through a non-secure channel, without being identified. 
U establishes a secure connection (e.g., SSL) with an 
anonymizer, which is a trusted server (services for 
anonymous web surfing are common). The anonymizer 
removes the user ID from the query and forwards it to 
the LBS. Nevertheless, the LBS requires the coordinates 
of U in order to process the query. If the LBS is mali-
cious (e.g., it collects and sells personal data and habits 
for unsolicited advertisements), it can relate these coor-
dinates to U through a variety of techniques. For in-
stance, U may issue the query from a residence, in 
which case the coordinates can be converted to a street 
address and linked to U using an on-line white pages 
service. Furthermore, since the communication channel 
between the LBS and the anonymizer is not secure, an 
eavesdropper who physically observes U can easily 

associate the user with the query. In general, removing 
the ID is not enough for hiding the identity. Moreover, 
simply perturbing the exact location with an area 
around U may not suffice. If, for instance, U is in a 
sparse rural region, even a relatively large area may not 
enclose other users. 

Several systems aim at solving these problems using 
the concept of spatial K-anonymity (SKA). SKA requires 
that an attacker can pinpoint the user that issues a 
query with probability not exceeding 1/K, even if, in 
the worst case, all user locations are known to the at-
tacker. Assume that the anonymizer receives a location 
based query from U. Then, it could pick K-1 random 
users and forward K independent queries (including 
the real one) to the LBS. This simple method achieves 
SKA because the query could originate from any client 
with equal probability 1/K. However, it has several 
problems: (i) depending on the value of K, a potentially 
large number of locations are transmitted to the LBS, 
(ii) the LBS has to process K independent queries and 
send back all their results, and (iii) the anonymizer re-
veals the exact locations of K users, which is undesir-
able in many applications.  

To overcome these problems, most existing systems 
use the framework of Fig. 1.1. (i) A user/client U sends 
its query and anonymity requirement K to the ano-
nymizer, which maintains the current locations of nu-
merous clients. (ii) The anonymizer removes the user 
ID and selects an anonymizing set (AS) that contains U 
and at least K-1 other clients in its vicinity. The K-
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anonymizing spatial region (K-ASR or ASR) is an area 
that spatially encloses AS. (iii) The anonymizer for-
wards the ASR to the LBS that stores the spatial data 
(e.g., nightclub dataset). (iv) The LBS processes the 
query and returns to the anonymizer a set of candidate 
results. (v) The anonymizer removes the false hits and 
forwards the actual result to U. 

As an example, consider that U3 in Fig. 1.2a issues a 
location-based nearest neighbor (NN) query with K=3. 
The anonymizer computes AS={U3,U4,U5}, generates the 
corresponding ASR (shaded rectangle), and forwards it 
to the LBS.  Because the LBS only obtains the ASR, but 
not the query point, it retrieves the NN for every possi-
ble location in the ASR. This candidate set is returned 
to the anonymizer that performs the filtering and for-
wards the actual NN to U3. The process of replacing a 
specific location with an ASR is called spatial cloaking. A 
cloaking algorithm is secure, if it satisfies SKA. In our 
example, given the ASR, an attacker should not be able 
to infer U3 as the query origin with probability that ex-
ceeds 1/3. Although the ASR can have arbitrary shape, 
it is common to use regular shapes, e.g., minimum 
bounding rectangles (MBRs), because they incur small 
network overhead (when transmitted to the LBS) and 
facilitate query processing. Furthermore, the ASR is 
independent of the query type; for instance, the ASR of 
Fig. 1.2a may have been created for a NN, or range 
query. 

Nevertheless, simply generating an ASR that in-
cludes K clients is not sufficient for SKA. Consider an 
algorithm, called Center Cloak in the sequel, that given a 
query from U, finds its K-1 closest users and sets the 
ASR as the MBR that encloses them. In fact, a similar 
technique is proposed in [CML06] for anonymization in 
peer-to-peer systems (i.e., the K-ASR contains the query 
issuing peer and its K-1 nearest nodes). Given a query 
from U3, U4, or U5, Center Cloak would generate the ASR 
of Fig. 1.2a. On the other hand, if the query originates 
from U6, the ASR is the shaded rectangle in Fig. 1.2b. 
The second ASR violates SKA because an attacker can 
be sure that the query is issued by U6, as the same ASR 
could not be generated for any other client. Specifically, 
any AS involving 3 users and created for U4 or U5, 
would contain U3 (as in Fig. 1.2a), but not U6. As we 

discuss in Section 2.2, most existing cloaking algorithms 
have similar problems1. 

To eliminate these problems, Kalnis et al. [KGMP07] 
introduced reciprocity, a sufficient property for SKA. 
Reciprocity requires that a set of users are always 
grouped together for a given K, or equivalently, each 
user in an AS lies in the ASRs of all other clients in the 
AS. Formally:  

Definition [Reciprocity2]. Consider a user U issuing a 
query with anonymity degree K, anonymizing set 
AS, and anonymizing spatial region ASR. AS satis-
fies reciprocity if (i) it contains U and at least K-1 ad-
ditional users, and (ii) every user in AS also gener-
ates the same anonymizing set AS for the given K.   

If every AS satisfies reciprocity, an ASR may have 
originated from every user in the corresponding AS 
with equal probability 1/|AS|, where |AS| is the car-
dinality of AS. Because |AS|≥K, the probability of 
identifying the query issuer does not exceed 1/K. For 
instance, in Fig. 1.2a AS = {U3,U4,U5} is reciprocal be-
cause it is generated (by Center Cloak) for each query 
with K=3 issued by U3, U4, or U5. Therefore, the three 
users are indistinguishable to an attacker. In contrast, 
AS = {U4,U5,U6} in Fig. 1.2b is not reciprocal because if 
the query were issued by U4 or U5, the AS would be 
{U3,U4,U5} as in Fig. 1.2a (in other words, U6 is not in 
the 3-ASR of U4 and U5). A cloaking algorithm is recip-
rocal, if every AS (i.e., for each possible user and K) satis-
fies reciprocity. It can be proved that reciprocal algo-
rithms are secure. 

In addition to being secure, spatial cloaking should 
be efficient and effective. Efficiency means that the cost 
of generating the ASR (at the anonymizer) should be 
minimized for better scalability and faster service.  Ef-
fectiveness refers to the area of the ASR, which should 
also be minimized. Specifically, a large ASR incurs high 
processing overhead (at the LBS) and network cost (for 
transferring numerous candidate results from the LBS 
to the anonymizer). In real-world services, users may  

 
1 Additionally, Center Cloak compromises SKA in another way: often, 

the querying user U is closest to the ASR center. Thus, a simple "cen-
ter-of-ASR" attack would correctly guess U with probability that far 
exceeds 1/K, especially for large values of K. 

2 Reciprocity has been independently formulated as the k-sharing 
property in [CM07]. 
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be charged depending on their anonymity require-
ments and the overhead that these requirements im-
pose on the system. Reciprocity has a negative impact 
on effectiveness because, in general, it leads to rela-
tively large ASRs. For instance, if U4, U5 and U6 are 
grouped in the same AS as shown in Fig. 1.2b for a 
query of U6, then this AS should also be used for que-
ries (with the same K) issued by U4 and U5. On the oth-
er hand, if reciprocity were not required, the ano-
nymizer could use the smaller ASR of Fig. 1.2a.  

Our work is motivated by the fact that the only exist-
ing reciprocal technique, Hilbert Cloak [KGMP07], re-
quires a specialized annotated B+-tree, which is used 
exclusively for spatial cloaking. In contrast, we envision 
a comprehensive anonymization service which, in addi-
tion to spatial cloaking, is capable of answering added-
value queries, such as “find buddies in my vicinity”. To 
support efficiently a variety of spatial queries, the ano-
nymizer must index the moving users by a general 
purpose spatial index, such as an R*-tree or a Quad-
tree. Consequently, spatial cloaking should also be im-
plemented on top of any existing spatial index.  Guided 
by these requirements, our contributions are: 
(i) We propose a general framework for obtaining 

reciprocal (i.e., secure) cloaking algorithms based 
on an underlying spatial index. We develop an al-
gorithm that, for a user U indexed by any tree 
structure, identifies the partition sub-tree which can 
be used independently to anonymize U, without 
violating reciprocity for any user.  

(ii) We present two novel reciprocal partitioning algo-
rithms, called GH and AR, which are based on our 
framework. Given a user U and the corresponding 
partition sub-tree, GH and AR generate the ASR for 
U. GH is best in terms of efficiency, whereas AR 
maximizes effectiveness.  

(iii) We introduce and incorporate in our framework, 
the frequency-aware reciprocity property, which 
guarantees SKA even if the query frequency varies 
among users and is known to the attacker (e.g., a 
taxi driver asks more location-based queries than a 
casual commuter). Previous work assumed that all 
users have the same query frequency. 

(iv) We present two implementations of the reciprocal 
framework, based on the R*-tree [BKSS90] and on 
the Quad-tree [S90], and evaluate the tradeoffs be-
tween efficiency and effectiveness. We show that, 
due to the superior clustering of the spatial indices, 
the proposed framework outperforms Hilbert Cloak.  

The rest of the paper is organized as follows: Section 2 
overviews the related work. Section 3 states our as-
sumptions, and introduces the reciprocal framework. Sec-
tion 4 presents the partitioning methods. Section 5 ad-
dresses the case of variable query frequencies. Section 6 
contains the experimental evaluation and Section 7 con-
cludes with directions for future work.  

2 BACKGROUND 
This section surveys relational and spatial K-anonymity 
methods and discusses the relationship among them.  

2.1 Relational K-anonymity (RKA) 
Relational K-anonymity has received considerable atten-
tion due to the need of several organizations to publish 
data (often called microdata) without revealing the iden-
tity of individual records. Consider a hospital authority 
that wishes to release information about its patients for 
medical research. Even if the identifying attributes (e.g., 
name) are removed, an attacker may be able to identify 
specific patients using combinations of other attributes 
(e.g., zipcode, gender, birth date), called quasi-identifiers 
(QI). A table is K-anonymized if each record is indistin-
guishable from at least K-1 other records with respect to 
the QI set [S01]. Records with identical QI values form 
an anonymized group. The most common form of ano-
nymization is generalization, which involves replacing 
specific QI attribute values with more general ones.  

Generalization can be applied to categorical and 
numerical attributes. In the first case, there is a prede-
fined hierarchy of possible generalizations (e.g., a city 
name is replaced by the state or country). For numerical 
attributes, the existence of a hierarchy is not necessary, 
but values may be substituted by arbitrary ranges, 
whose extent depends on their density. Fig. 2.1a illus-
trates a generalization example for a table T involving 
two numeric QI and a sensitive attribute SA (to be dis-
cussed shortly). AT is a 3-anonymized version of T. AT 
contains groups, each with at least 3 tuples that have 
identical QI values. Fig. 2.1b contains a visualization of 
AT, where each group is represented by a 2-D range.  

Several generalization algorithms have been pro-
posed. Optimal algorithms that consider each attribute 
individually (i.e., single-dimensional) appear in [BA05] 
and [LDR05]. Mondrian [LDR06] is a multi-dimensional 
technique (i.e., it maps the Cartesian product of multi-
ple attributes), which splits the space recursively simi-
larly to kD-trees. Another multi-dimensional method 
based on R+-trees is presented in [IN07]. Finally, 
[AFK+06, XWP+06] describe generalization approaches 
based on clustering. Since all algorithms replace spe-
cific values with ranges, they incur information loss.  
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In some cases, RKA is not sufficient for protecting 
the privacy of microdata. Returning to the example of 
Fig. 2.1, assume that AT stores patients' data and the 
sensitive attribute is a disease. Ideally, it should not be 
possible to link a disease (e.g., v1) to a specific record 
(e.g., t1) with probability that exceeds 1/3. This condi-
tion holds if v1 is different from v2 and v3. If, however, 
v1 is the same as one or both v2 and v3, this probability 
increases to 2/3 or 1, respectively. To overcome this 
problem, Machanavajjhala et al. [MGKV06] propose the 
concept of l-diversity. A table is l-diverse if each ano-
nymized group contains at least l “well-represented” 
sensitive attribute values. Ghinita et al. [GKKM07] de-
velop efficient algorithms for RKA and l-diversity by 
mapping the multidimensional space to one dimension. 

Permutation [XT06, ZKSY07] is an alternative to QI gen-
eralization that achieves l-diversity by randomly shuf-
fling the sensitive values among records in each ano-
nymized group. By avoiding generalization, permuta-
tion-based approaches have the potential of reducing 
information loss. However, the drawback is that QI 
values are disclosed in exact form, which makes the 
data vulnerable to linkage attacks (i.e., an adversary 
can confirm the presence of an individual in the micro-
data). Furthermore, as shown in [GKKM07], permuta-
tion-based methods such as [XT06, ZKSY07] do not 
account for QI proximity when creating groups, which 
may result in higher information loss than generaliza-
tion-based counterparts. 

 

2.2 Spatial K-anonymity (SKA) 
We focus mainly on systems based on the user-
anonymizer-LBS framework of Fig. 1.1. In Casper 
[MCA06], the anonymizer maintains the locations of 
the clients using a pyramid data structure, similar to a 
Quad-tree, where the minimum cell size corresponds to 
the anonymity resolution. Once the anonymizer re-
ceives a query from U, it uses a hash table on the user 
ID pointing to the lowest-level cell c where U lies. If c 
contains enough users (i.e., |c| ≥ K) for the anonymity 
requirements, it forms the ASR. Otherwise (|c|<K), the 
horizontal ch and vertical cv neighbors of c are retrieved. 
If |cch|≥ K or |ccv|≥ K, the corresponding union 
of cells becomes the ASR. If both unions contain at least 
K users, the ASR is the one with the minimum cardinal-
ity. On the other hand, if |cch| < K and |ccv| < K, 
the anonymizer retrieves the parent of c and repeats 
this process recursively. 

We use Fig. 2.2 to illustrate cloaking examples in 
Casper. Cells are denoted by the coordinates of their 
lower-left and upper-right points. Assume a query q 
with K=2. If q is issued by U1 or U2, the ASR is cell 
(0,2), (1,3). If q is issued by U3 or U4, the ASR is the 
union of cells (1,2), (2,3)  (1,3), (2,4). Finally, if q is 

issued by U5, the ASR is the entire data space. Interval 
Cloak [GG03] is similar to Casper in terms of both the 
data structure used by the anonymizer (a Quad-tree), 
and the cloaking algorithm. The main difference is that 
Interval Cloak does not consider neighboring cells at the 
same level when determining the ASR, but ascends 
directly to the ancestor level. For instance, a query with 
K=2 issued by U3 or U4 would generate the ASR (0,2), 
(2,4) (instead of (1,2), (2,4) for Casper). As we formally 
prove in the Appendix, Casper and Interval Cloak are 
secure only for uniform data because neither algorithm 
is reciprocal. In Fig. 2.2, although U1 to U4 are in the 2-
ASR of U5, U5 is not in the 2-ASR of any of those users. 
Consequently, an attacker that detects an ASR covering 
the entire space can infer with high probability that it 
originates from U5. 

To the best of our knowledge, the only provably se-
cure spatial cloaking technique is Hilbert Cloak 
[KGMP07], which has also been implemented on a 
Peer-to-Peer system [GKS07]. Hilbert Cloak uses the Hil-
bert space filling curve [B71] to map the 2-D space into 
1-D values. These values are then indexed by an anno-
tated B+-tree, which supports efficient search by value 
or by rank (i.e., position in the 1-D sorted list). The al-
gorithm partitions the 1-D sorted list into groups of K 
users (the last group may have up to 2K-1 users). For a 
querying user U the algorithm finds the group where U 
belongs, and returns the MBR of the group as the ASR. 
The same ASR is returned for any user in a given 
group; therefore the algorithm is reciprocal.  

While in all the above systems the cloaking mecha-
nism is independent of the query type, processing at 
the LBS depends on the query. Range queries are 
straightforward: assume that U wants to retrieve the 
data objects within distance d from its current location. 
Instead of the position of U, the LBS receives an ASR 
and d. In order to compute the candidate results, it ex-
tends the ASR by d on all dimensions and searches for 
all objects in the extended ASR. On the other hand, for 
NN queries the candidate results can be retrieved using 
range nearest neighbor search [HL05], which finds the NN 
of any point inside an area. Casper and Hilbert Cloak 
include specialized processing techniques. We assume 
that the LBS implements these query processing me-
chanisms, and focus on spatial cloaking. 
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Finally, the privacy of user locations has also been 
studied in the context of related problems. Clique Cloak 
[GL05] combines spatial with temporal cloaking. Each 
query q specifies a temporal interval �t that the corre-
sponding user U is willing to wait. If within �t, K-1 oth-
er clients in the vicinity of U also issue queries, all these 
queries are combined in a single ASR. Otherwise, q is 
rejected. Probabilistic Cloaking [CZBP06] does not apply 
the concept of SKA; instead, the ASR is a closed region 
around the query point, which is independent of the 
number of users inside. Given an ASR, the LBS returns 
the probability that each candidate result satisfies the 
query based on its location with respect to the ASR. 
Khoshgozaran and Shahabi [KS07] employ 1-D trans-
formation and encryption to conceal both the spatial 
data and the queries from the LBS. Kamat et al. 
[KZTO05] propose a model for sensor networks and 
examine the privacy characteristics of different sensor 
routing protocols. Hoh and Gruteser [HG05] describe 
techniques for hiding the trajectory of users in applica-
tions that continuously collect location samples. The 
recent work in [GKK+08] shows how to obtain query 
privacy with cryptographic techniques, without relying 
on SKA. Nevertheless, the proposed cryptographic pro-
tocol incurs very high communication and computation 
cost, even when deployed in a parallel architecture.  

2.3 Comparison between RKA and SKA 
Relational and spatial k-anonymity have some impor-
tant similarities, as well as differences. In terms of simi-
larity, microdata tuples are often viewed as points in a 
multi-dimensional space, where each quasi-identifier 
attribute corresponds to a dimension (see Fig. 2.1b). 
Generalization, like spatial cloaking, replaces a point 
with a multidimensional range (i.e., an ASR). In fact, 
some relational generalization algorithms are directly 
motivated by spatial indices [LDR06, IN07], or cluster-
ing techniques [AFK+06, XWP+06]. Furthermore, the 
certainty penalty [XWP+06], used to measure informa-
tion loss in RKA, is analogous to the effectiveness crite-
rion in SKA that aims at minimizing the ASR.  

Regarding the differences between RKA and SKA, 
RKA involves static data and a single value of K, whe-
reas SKA deals with moving users and variable K. RKA 
methods precompute a partitioning of the entire table 
into a set of groups containing at least K tuples each. 
Every tuple belongs to exactly one group; therefore, the 
reciprocity property is satisfied by default. However, 
RKA methods are not suitable for SKA, due to effi-
ciency considerations. Specifically, any RKA method 
(including bulk-loading of a spatial index, e.g., [IN07]), 
has computational complexity at least linear to the 
number of users. In contrast, SKA performs on-the-fly 
anonymization, involving only a small subset of the 
data in the neighborhood of the querying user. Al-
though such an approach is scalable, unless special care 

is taken, a user may belong to multiple anonymized 
groups. Consequently, guaranteeing reciprocity is not 
trivial. Furthermore, since SKA is initiated by a query-
ing user, suppression, often used in RKA to remove tu-
ples that cannot be effectively generalized, should be 
avoided in SKA because it would lead to service denial 
for the corresponding user. Finally, as opposed to RKA, 
in SKA there is no concept of information loss; a small 
ASR is beneficial in terms of processing cost and net-
work overhead, but a user will eventually obtain the 
correct results after they are filtered by the anonymizer, 
regardless of ASR size. 

Enforcing SKA when the query frequency differs 
among users (Section 5) is a more difficult problem, and 
resembles the t-closeness [LTV07] paradigm in RKA. t-
closeness requires that the distribution of sensitive val-
ues in each anonymized group must be the same as 
their table-wise distribution. However, existing t-
closeness solutions are not suitable for variable fre-
quency SKA for the same efficiency reasons cited ear-
lier. 

3 RECIPROCAL FRAMEWORK 
We consider the architecture of Fig. 1.1, where an ano-
nymizer receives queries from geographically distrib-
uted users, removes the user IDs, hides their locations, 
and forwards the resulting ASRs to the LBS. Each query 
has a variable degree of anonymity K, which ranges 
between 1 (no privacy requirements) and the user car-
dinality (maximum privacy). The value of K is not sub-
ject to attacks since it is transferred from the client to 
the anonymizer through a secure channel. Queries are 
related to the position of the user (e.g., a user asking 
about its nearest restaurant, or all the restaurants with-
in a range), but the type of query (i.e., NN or range) is 
not important for spatial cloaking.  

We assume an attacker that (i) intercepts the ASR, 
(ii) knows the cloaking algorithm used by the ano-
nymizer, and (iii) can obtain the current locations of all 
users. The first assumption implies that either the LBS 
is not trusted, or the communication channel between 
the anonymizer and the LBS is not secure. The second 
assumption is common in the literature since the data 
security techniques are typically public. The third as-
sumption is motivated by the fact that users may often 
issue queries from the same locations (home, office), 
which could be identified through physical observa-
tion, triangulation, telephone catalogs etc. In the worst 
case, an attacker may be able to obtain the positions of 
all users in the AS of the query. Since it is difficult to 
model the exact knowledge available to the attacker, 
the third assumption is necessary in order to prove 
theoretically that the anonymization method is secure 
under the most pessimistic scenario. On the other hand, 
because in practice the attacker does not have all user 
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locations, it is important that the anonymization me-
thod does not reveal the position of any user, to avoid 
giving away additional information. 

Similar to [GG03, GL05, CML06, MCA06, KGMP07] 
we focus on snapshot queries, where the attacker uses 
current data, but not historical information about re-
petitive queries by the same user at a specific location 
or time. This assumption is reasonable in practice be-
cause if a client obtains the items of interest (e.g., the 
closest restaurant), it is unlikely to ask the same query 
from the same location again in the future3. Finally, for 
ease of presentation, we consider that a query origi-
nates from any client with equal probability. We will 
remove this assumption in Section 5. 

The anonymizer indexes the user locations by a hier-
archical (i.e., tree-based) spatial index (e.g., R*-tree, 
Quad-tree, etc). Let U be the user issuing a query. We 
propose a general spatial cloaking algorithm, called 
Reciprocal, which traverses the tree and generates a re-
ciprocal AS that contains U and at least K-1 users in its 
vicinity. The resulting ASR is the area that encloses all 
elements of the AS.  Fig. 3.1 illustrates the pseudo-code 
for the reciprocal framework. Let N be the leaf node 
that contains U. Reciprocal traverses the tree in a bot-
tom-up fashion, starting from N. The important obser-
vation here is that even if N contains enough (K) 
points (we use the terms point, user and client, inter-
changeably) for the anonymity requirements, we still 
have to traverse the tree bottom-up (lines 1-2), if there 
is a node N' at the same level such that 0 < |N'| < K 
because N' may contain a user U' whose AS includes U.  

Let AN be the ancestor of N when the bottom-up 
traversal stops. Each node at the level of AN is either 
empty (non-balanced trees such as the Quad-tree can 
have empty nodes at any level), or contains at least K 
users in its sub-tree. This implies that the AS can be 
determined locally within AN because all other queries 
(originating outside AN) do not need to include users of 
AN in their AS. Having established that AN can auto-
nomously generate a K-ASR, Reciprocal traverses AN 
top-down towards U (lines 3-4) as long as each sub-tree 
has at least K points4. Let PN be the node in AN where 
the top-down traversal stops. PN includes U in its sub-
tree and some of its child nodes have fewer than K 
points. PN is called the partition node, and corresponds 
to the lowest ancestor of U where we can achieve recip-
rocity. This is because all nodes in the sub-tree of AN 
and at the level of PN or above, contain at least K 
points, and thus can generate ASRs without using any 
points in PN. 
 

 
3 We emphasize that, in the case of continuous queries, our solutions 

can be immediately adapted to support historical reciprocity using the 
framework introduced in [CM07]. 

4 While bottom-up traversal considers the cardinality of all nodes at 
a level, top-down only considers the cardinalities along a single path.  

PN may contain numerous (>>K) points, which is 
likely to yield very large ASRs. Partition (line 5) elimi-
nates this problem by grouping these points into dis-
joint buckets. The users in the same bucket bU as U form 
the AS for the query. Several partitioning methods can 
be used (see Section 4), provided that:  
(i) each bucket contains at least K and no more than 

2K-1 points. The lower bound is due to the K-
anonymity requirement. The upper bound is due to 
the fact that if the cardinality of a bucket exceeds 
2K-1, the bucket can be split into smaller ones, each 
containing at least K users.  

(ii) partitioning is independent of the query point. Each 
user in the node will generate the same partitioning 
for the same K. This property guarantees reciprocity. 

After determining the AS, we form the ASR as the 
minimum bounding rectangle (MBR) covering AS. Note 
that the MBR may enclose some additional users that 
are not in AS. Compared to the fixed cells of Casper and 
Interval Cloak, MBRs adapt more effectively to the den-
sity around the query, i.e., if the query lies in an area 
with numerous users, the ASR is likely to be small. The 
disadvantage is that the MBR reveals the coordinates of 
points on its boundaries. Furthermore, in case that 
there are K (or more) users at the same location, the 
ASR may degenerate to a single point and disclose the 
positions of these users. A simple way to overcome 
these problems is to superimpose a grid where the cell 
size corresponds to the anonymity resolution. Then, the 
ASR sent to the LBS is the minimum enlargement that 
aligns the MBR to the grid. For the following discussion 
we omit this modification because the cell size depends 
on the application requirements for the anonymity 
resolution. Furthermore, spatial cloaking should be 
secure even if the attacker has complete knowledge of 
all the user positions. 

 
Algorithm Reciprocal (query issuing user U, anonymity require-
ment K, node N) 
// initially N is the leaf node containing U 
1. While there is a non-empty node at the same level as N 
    with < K users 
2. N = parent of N    //bottom-up traversal 
3. While N is not a leaf and (each child of N is either empty or  
    contains  K users) 
4. N = child of N that contains U  //top-down traversal 
5. ASR=Partition(U, K, N) 
Fig. 3.1 Reciprocal Cloaking 

Reciprocal can be applied in conjunction with main-
memory, or disk-based, and space-partitioning, or data-
partitioning indices. The following example demon-
strates Reciprocal on top of a Quad-tree. We will present 
R*-tree examples in Section 4. 

Example [Quad-tree Cloak]: Fig. 3.2a illustrates an ex-
ample where 6 clients are indexed by a Quad-tree (level 
1 corresponds to the leaf cells). Assume a query with 
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K=2 originating from U1. Since the cell (0,2), (1,3) of U1 
already contains 2 clients, Casper (and Interval Cloak) 
would use it directly as the ASR. This violates reciproc-
ity because there are four level-1 cells that contain a 
single point; e.g., a query with K=2 from any of these 
cells could include U1 in its AS. In contrast, Quad-tree 
Cloak (QC) ascends to level 2, where there still exist 
non-empty cells (e.g. (0,0), (2,2)) with fewer than K 
users. Finally, QC reaches the root and sets 
AN=PN=(0,0), (4,4). The same partition node is ob-
tained for all users given K=2. In the above query, PN 
contains 6 points, although only 2 are necessary for the 
anonymity requirements. Partition groups these 6 
points into buckets of 2 or 3 (i.e. K to 2K-1), and in-
cludes in AS the users from the same bucket bU as U1. 
Assuming that AS={U1, U2, U6}, the ASR is the shaded 
MBR of Fig. 3.2a. 

U4

U2 U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,0)

(3,4)

(4,2)

U6

(0,1) (1,1)

U4

U2

U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,1)

(2,0)

(3,2) (4,2)

U6

(3,0)

(4,1)

 
(a) Partitioning at root level (b) Partitioning at leaf level 

Fig. 3.2 Examples of reciprocal Quad-tree Cloak (QC) 

Fig. 3.2b illustrates a second example, which also in-
volves top-down traversal. Given again a query with 
K=2 from U1, the bottom-up traversal stops at level 2 
with AN=(0,2), (2,4) because all non-empty cells at this 
level have at least 2 points. Furthermore, both non-
empty children of AN, (0,2), (1,3) and (1,3), (2,4), also 
include 2 points each. Therefore, QC descends to level 1 
and sets the partition node to PN=(0,2), (1,3). Since 
this cell contains only U1 and U2, Partition returns di-
rectly the MBR of these users, without performing 
grouping. In general, if |PN|<2K, then there is a single 
bucket containing all the points in PN.  

Theorem 1. Reciprocal guarantees spatial K-anonymity 

Proof. We show that each AS generated by Reciprocal 
satisfies reciprocity, by retracing the steps of the al-
gorithm. The bottom-up traversal terminates at an 
ancestor node AN such that each node at the level of 
AN is either empty or contains at least K users. 
Therefore, no user in AN belongs to the AS of any 
other user outside AN, and vice versa. The top-down 
traversal determines a partition node PN, that satis-
fies similar conditions, i.e., each sibling of PN (under 
the same parent) is either empty or has at least K 
points in its sub-tree. Thus, an AS can be assembled 
locally in PN without violating reciprocity. Finally, 
Partition generates buckets that by definition obey 

reciprocity, since each bucket contains at least K us-
ers, and each query with the same K from a user in 
PN will lead to exactly the same bucket.  

Note that RKA methods based on spatial indices (KD-
trees [LDR06] or R+-trees [IN07]) assume a fixed value 
of K, and compute a partitioning of the entire table into 
a set of groups containing at least K tuples. On the other 
hand, we consider variable K for each query, dynamic 
datasets, and we only care about the group containing 
the query. In this setting, methods such as [LDR06, 
IN07] would require bulk-loading an index for each 
query, leading to unnecessary (and very high) cost. An-
other simple alternative would be to maintain the spa-
tial index incrementally. Given a query with a require-
ment K, we could load all the points and apply Parti-
tion(U, K, root), i.e., directly set AN = PN = root, without 
performing bottom-up and top-down traversals. As 
opposed to RKA generalization techniques, Partition 
returns a single group (instead of the entire ano-
nymized table). However, this approach would also be 
inefficient because it has to access all the user locations, 
whereas Reciprocal only retrieves the users necessary for 
building the ASR.   

Reciprocal needs the cardinality of the node with the 
minimum number of points per level. These numbers 
(i.e., one per level) can be explicitly stored and updated 
when there is change in the tree structure. Alterna-
tively, if the index has a minimum node utilization M 
(e.g., R-trees), we can set the minimum cardinality at 
level i to its lower bound Mi (leaves are at level 1). This 
does not affect correctness, but may have a negative 
impact on performance, if the actual minimum cardi-
nality is significantly higher than the lower bound. Fur-
thermore, the top-down traversal requires the number 
of points in each entry of an intermediate node (line 3). 
We assume that this number is stored with the corre-
sponding entry. Such structures are called aggregate 
indices, and have been used extensively in spatio-
temporal data warehouses [TP05]. Finally, the location 
updates issued by the users are handled by the default 
algorithms of the indices, without any effect on ano-
nymization.  

4 PARTITIONING METHODS 
Given a partition node PN, Partition (line 5 in Fig. 3.1) 
splits the users inside the sub-tree of PN into buckets 
containing between K and 2K-1 users. Sections 4.1 and 
4.2 present alternative partitioning algorithms with 
different tradeoffs in terms of efficiency and effective-
ness. Although both techniques can be used with any 
spatial index, the examples assume an aggregate R*-tree 
(aR*-tree [TP05]), i.e., an R*-tree where each intermedi-
ate node entry stores the total number of points in the 
corresponding sub-tree. The resulting implementation 
is called R-Tree Cloak (RC). For ease of presentation, we 
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assume that the minimum node cardinality Mi per level 
i is M, where M is the R*-tree minimum node utilization 
(usually 40% of the node capacity).  

4.1 Greedy Hilbert Partitioning (GH) 
Let LN be the leaf node containing the query issuer. We 
first consider that partitioning takes place at the leaf 
level, i.e., K ≤ M and PN=LN. Similar to Hilbert Cloak 
[KGMP07], GH sorts the points in LN according to their 
Hilbert value. The Hilbert space filling curve trans-
forms the multi-dimensional coordinates of each user U 
into an 1-D value H(U). Fig. 4.1 illustrates the Hilbert 
curve for a 2-D space using a 8x8 space partitioning. A 
point U is assigned the value H(U) of the cell that cov-
ers it. If two users are near each other in the 2-D space, 
they are likely to be close in the 1-D transformation. 
Given a query with required anonymization degree K, 
GH assigns the first K points (in the Hilbert order) to 
the first bucket, the next K points to the second bucket 
and so on. Consequently, each bucket contains exactly 
K users, except for the last one that may include up to 
2K-1 users. Let r(U) be the rank of U in the Hilbert or-
der (1≤ r(U) ≤ |LN|). The bucket bU of U contains all 
clients whose ranks are in the range [s, e], where s = rU-
(rU-1) mod K and e =s + K-1 (unless bU is the last bucket).  

Fig. 4.1 elaborates the application of GH to a leaf 
node containing 10 users, whose IDs are ordered ac-
cording to their Hilbert value. Consider a query from 
U7 with K=5. The rank of U7 is r(U7)=7. The bucket con-
taining U7 starts at s =7 - 6 mod 5 = 6 and ends at e=10, 
i.e., it contains all users U6 to U10. Its ASR is the MBR 
(shaded rectangle at the upper-right corner) covering 
the corresponding points. Any query with K=5 originat-
ing from these users will generate the same bU, AS and 
ASR, thus, guaranteeing reciprocity. Note that GH con-
structs on-the-fly only bU, as the remaining buckets are 
irrelevant to the query. Fig. 4.1 illustrates another ASR 
(shaded rectangle at the lower-left corner) for a query 
with K=3 originating from one of U1 to U3.  

U3

U1

U2 U10

U9

U6

U8

U7

U5U4

Hilbert Curve

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

Buckets for K=3

Buckets for K=4

Leaf node LN

3-ASR

Buckets for K=5

for U , U , or U2 31

5-ASR
for U  to U 106

Ranks: 1    2    3    4     5    6     7     8    9   10

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

 
Fig. 4.1 GH partitioning for (leaf) level 1 

In case that partitioning takes place above the leaf 
level, GH could simply load the entire sub-tree of the 
partition node PN and compute bU (and its ASR) as 
above, similarly to Hilbert Cloak. However, this process 
is not necessary since we only need bU (and not the oth-
er buckets at this level). Fig. 4.2 shows an example, 

where the query issuer U is in leaf node LN4. The leaves 
are numbered according to their Hilbert order in the 
parent PN. I.e, each node is assigned the Hilbert value 
of the cell that covers its center in the data space de-
fined by the MBR of PN. The cardinality of each leaf 
node is shown in the corresponding entry of PN.  

If K=30, the bucket bU includes 5 users from LN3, 10 
users from LN4 and 15 users from LN5. The nodes that 
must be accessed are LN4, PN, and LN3. Inside LN3, only 
the 5 last users in the Hilbert order (in the data space 
defined by the MBR of LN3) contribute to bU, while the 
rest are assigned to the first bucket (not computed). 
Note that since the entire LN5 is included in bU the node 
is not visited, but its MBR is simply merged to that of the 
bucket. In some cases the leaf node containing U may 
fall on the boundary between two buckets. In Fig. 4.2, if 
K=20, the first 5 users of LN4 are assigned to the second 
bucket, and the remaining to the third one. Depending 
on the position of U in the Hilbert order, either of these 
two buckets constitutes bU.  

Fig. 4.3 illustrates the general GH method. First, GH 
computes the extent of the bucket bU that contains U. 
Recall that this requires the rank of U in the Hilbert 
order of N. The function compute-rank performs this 
computation in a recursive manner. Specifically, rU is 
the rank of U in LN plus the sum of cardinalities of all 
nodes that precede the ancestors of U in the path from 
LN to PN. For instance, if K=30 in Fig. 4.2, then rU is the 
rank of U among the points of LN4 added to the cardi-
nalities of LN1 to LN3. Once bU has been determined, all 
the leaf nodes that contribute points to bU participate in 
the ASR construction through the merge function. The 
merging process is also recursive: If an entry E is totally 
included within the bucket, it causes the replacement of 
the ASR with a larger one, whose maximum (mini-
mum) coordinate on each axis is the maximum (mini-
mum) between the corresponding coordinates of E and 
the original ASR. If E is only partially included, we 
have to read its contents and repeat this process; there 
can be at most two such entries per level.  

GH involves accessing only (i) the nodes in the path 
LN to PN (i.e., one node per level) (ii) leaf nodes that 
are partially (but not totally) included in bU (i.e., at most 
two nodes). The first set of nodes is used for the com-

PN 

...... ...

leaf level 1

... U ...... ...... ...... ...

10

... ...

10 15 10 15

LN1 LN2
LN3 LN4 LN5

level 2

10 from LN1

Buckets for K=30

Buckets for K=20

2 3 5 from LN310 from LN 10 from LN 410 from LN 515 from LN

10 from LN1 210 from LN 315 from LN 45 from LN 45 from LN 515 from LN

...

...

...

potential bU

bU

Fig. 4.2 GH partitioning for level 2 
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putation of rU. Other intermediate nodes are not neces-
sary since their contribution to rU is determined by their 
cardinalities, which are stored with their parent entries 
(lines 13-14). Furthermore, leaf nodes that do not inter-
sect bU are ignored, whereas the MBRs of those totally 
included in bU, are directly aggregated in the ASR. 

For index structures that impose a minimum occu-
pancy constraint M, such as the R-tree, the PN node is 
situated at height at most logMK. At each level below 
the PN node, at most two nodes are accessed, hence the 
I/O cost is O(logMK). The computation complexity of 
GH includes: (i) sorting of entries according to Hilbert 
values (line 8) in each accessed node, which takes 
O(Mlog2MlogMK), (ii) computation of bucket extent 
(lines 3-5) which has O(1) cost, and (iii) determining the 
ASR extent (17-23) with O(MlogMK) cost. Therefore, the 
overall computational complexity is O(Mlog2MlogMK).  

4.2 Asymmetric R-tree Split (AR) 
The AR partitioning method is inspired by the R*-tree 
construction algorithm5, which is known to have good 
locality properties. A straightforward approach is to 
apply the R*-split [BKSS90] on the partition node, after 
setting the minimum node utilization to K. Specifically, 
R*-split first sorts all points by their x-coordinates. 
 

 
5 Although AR is inspired by R*-tree, the method can be used on top 

of any spatial index including the Quad-tree (see experimental evalua-
tion). 

Then, it considers every division of the sorted list in 
two nodes N, N' so that each node contains at least K 
points, and computes the perimeters of N and N'. The 
overall perimeter on the x-axis equals the sum of all the 
perimeters. The process is repeated for the y-axis, and 
the axis with the minimal overall perimeter becomes 
the split dimension. Subsequently, R*-split examines 
again all possible divisions on the selected dimension, 
and selects the one that yields the minimum overlap 
between the MBRs of the resulting nodes. The split is 
recursively applied on each partition with more than 
2K users. 

R*-split has some shortcomings with respect to the 
problem at hand. First it attempts to minimize factors 
such as perimeter and overlap of the resulting nodes, 
whereas we aim at minimizing the ASR area. Even if 
we modify the algorithm to consider only the ASR area, 
R*-split can still lead to fragmentation, i.e., a split may 
create partitions with a large number of redundant us-
ers, such that no subsequent splits are possible. As an 
example, consider that we want to partition the 6 points 
of Fig. 4.4a into buckets, so that each bucket contains at 
least K=2 users. The split point that minimizes the sum 
of resulting areas is x=C, which eliminates the largest 
gap (i.e., “dead area”) between partitions P1 and P2. No 
further split can be performed, since each new node 
contains 3 users.  

To address the problem of fragmentation, AR takes 
into account both the area and the cardinality of the 
resulting partitions. Specifically, AR generates parti-
tions P1 and P2 that minimize the objective function: 

[ASR(P1)+ ASR(P2)]|P1||P2| 

subject to the constraint that |P1| and |P2| are at least 
K. AR favors unbalanced splits, which are desirable, 
since they achieve low fragmentation. Continuing the 
example in Fig. 4.4b, any of the split points C1 or C2 

would yield split cost (200+620)24 = 6560, compared to 
240033 = 7200 generated by C.  Hence, AR would split 
on either C1 or C2, and subsequently allow a second 
split, resulting in three ASRs, with a total weighted 
ASR area of 2(200+110+200) =1020, compared to 2400 
for R*-split. 
Fig. 4.5 shows the pseudocode for AR. Lines 6-15 of 
compute-ASR(U,N) identify the best split_point (accord-
ing to the objective function) for splitting node N by 
looping over all dimensions and split points in the 

GH-partitioning(query issuing user U, anonymity requirement K, 
partition node PN)  
1. ASR = 
2. rU = compute-rank(PN,0) 
3. s = rU -(rU -1) modulo K ; e =s + K-1 // extent of bU  
4. If |PN|-e < K  // bU is the last bucket 
5.  e=|PN|; s = e - (e mod K) - K + 1  
6. For each entry E of PN intersecting bU=[s,e] //E is point or node 
7.  ASR = merge(E,ASR)  
 
compute-rank(N, rU) 
8. list=sort entries of N according to their Hilbert value in the data 
space defined by the MBR of N 
9. If N is a leaf node  
10. rU= rU +position of U in list 
11. Else // N is an intermediate node 
12. Let E be the entry that contains U 
13. For each entry E' before E in list  
14.  rU= rU +| E'| 
15. rU =compute-rank(E, rU) 
16. Return rU 
 
merge(E, ASR) 
17. If E is totally included in bU = [s,e]  
18.   For each dimension d 
19.  ASRd-min=min(ASRd-min, Ed-min) 
20.  ASRd-max=max(ASRd-max, Ed-max) 
21. Else // E intersects but is not included in bU 
22.  For each entry E' of E that intersects bU = [s,e] 
23.  ASR = merge(E', ASR) 
Fig  4 3 G d  Hilb t  l th d 
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range K to |N|–K. Let listsplit_dim be the list of points 
sorted on the split dimension. The position of U in lists-

plit_dim determines the partition N' that contains it. If U is 
before split_point, then N' includes all points of listsplit_dim 
in the range [1, split_point]. Otherwise, N' includes all 
points in the range [split_point+1, |listsplit_dim|]. In either 
case, N' is split recursively. Note that the other parti-
tion of N is not split as it is not necessary for the com-
putation of bU.  

Similarly to GH, if an index with minimum node oc-
cupancy is used, the PN node is situated at height at 
most logMK. However, this time all nodes under PN 
need to be accessed, with an I/O cost of 
O(1+M+M2+…+M�) where � = logMK, which equals to 
O(K). The computation complexity of AR is a function 
of K and |PN|: at each split of a partition P with more 
than 2K–1 points, a sorting phase is employed, with 
cost |P|log|P|. In the worst case, each split is unbal-
anced, and yields two partitions with cardinalities |P|–
K and K; the former is split further, until it has less than 
2K points. The complexity is: 
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The proposed partitioning techniques provide dif-
ferent tradeoffs of efficiency and effectiveness. GH, 
which is very localized, is fast in terms of both I/O and 
CPU cost but may yield large ASRs. On the other hand, 
AR is more expensive, since it has to read the entire 
sub-tree of PN and perform CPU-intensive computa-
tions, but it yields smaller ASRs. The choice of the parti-
tioning technique depends on the application character-
istics. If, for instance, the anonymizer charges clients 
according to their usage, and the LBS is a public ser-

vice, it may be preferable to use GH. On the other hand, 
if the LBS imposes limitations (e.g., on the number of 
results, processing time, etc) AR is a better choice. In 
Section 6, we experimentally evaluate these tradeoffs. 

5 SKA WITH VARIABLE QUERY FREQUENCIES 
So far, we assumed that every user may issue a query 
with equal probability. However, in practice, the query 
frequency distribution among users can be skewed. For 
instance, a taxi driver may issue numerous queries due 
to the nature of his occupation. In this section we ex-
tend the reciprocal framework to variable query frequen-
cies. Assuming the worst case scenario, we consider 
that the attacker knows the query frequencies of all us-
ers (e.g., by obtaining billing records).  

The definition of SKA is the same as for uniform 
query frequencies, but the reciprocity property as dis-
cussed so far is not sufficient to guarantee SKA. Con-
sider, for instance, AS={U1,U2,…,UK}, with user query 
frequencies F1,F2,…,F|K| and that U1 has twice the query 
frequency of the other users in AS. Even if AS satisfies 
reciprocity, based on the knowledge of frequencies, an 
attacker can pinpoint U1 as the source with probability 
F1/(F1+F2+…+FK) = 2/(K+1) > 1/K for all values of K>1. 
If a query has anonymity degree K, in order to preserve 
SKA it is necessary that, Fi/(F1+F2+…+FK) ≤ 1/K, 
UiAS. Below, we generalize the reciprocity require-
ment to incorporate information about query frequen-
cies: 

Definition [Frequency-Aware Reciprocity (FQR)]. Con-
sider a user U with query frequency F issuing a 
query with anonymity degree K, anonymizing set 
AS = {U1,U2,…,U|AS|}, and anonymizing spatial region 
ASR. AS satisfies the frequency-aware reciprocity 
(FQR) property if (i) it contains U, (ii) every UiAS 
generates the same anonymizing set AS for the same 
value of K and (iii) UiAS, it holds that 
Fi/(F1+F2+…+F|AS|) ≤ 1/K.  

An immediate consequence of condition (iii) is that 
KFmax ≤ (F1+F2+…+F|AS|), where Fmax is the maximum 
query frequency of any user in AS. Note that the recip-
rocity property discussed in the previous sections is a 
special case of FQR where all users have equal query 
frequency. 

The reciprocal framework can be extended to achieve 
FQR by incorporating frequency-related information. 
Assume frequency is represented as the number of que-
ries issued by each user in a previous time interval. For 
each sub-tree, i.e. internal index node N, we store the 
sum of frequencies F of users rooted at N, together with 
the maximum frequency Fmax in the sub-tree. N can ac-
commodate by itself any query with K < F/Fmax. The 
algorithm of Fig. 3.1 remains the same, except from line 
3, which changes to: 

AR (query issuing user U, anonymity requirement K, partition 
node PN) 
1. Load all points in PN  
2. compute-ASR (U, PN) 
 
compute-ASR(U, N) 
3.   If |N| < 2K 
4.      return MBR(N) 
5.   min_split_cost =   
6.   For d = 1 to #dimensions // for each dimension 
7.     listd = sort  points according to d coordinate 
8.     For point = K to |N|- K 
9.   P1 = listd[1 .. point] 
10.   P2 = listd[point +1 .. |listd|] 
11.       split_cost = (ASR(P1) + ASR(P2))|P1||P2| 
12.       If split_cost < min_split_cost 
13.       min_split_cost = split_cost;  
14.       split_point = point; 
15.       split_dim = d; 
16. If rank(U) in listsplit_dim  split_point 
17.       N'=points in listsplit_dim[1 .. split_point]) 
18. Else // U is in the second node of the split 
19.       N'=points in listsplit_dim[split_point+1..|listsplit_dim|]) 
20. Return compute-ASR(U, N') 
Fig. 4.5 Asymmetric R-tree Split (AR) 
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3. While N is not a leaf and (each child of N is empty or K < 
F/Fmax) 

Next, we discuss how GH can be extended to ac-
commodate FQR. Recall that, after the partition node 
PN has been determined, GH sorts the points accord-
ing to Hilbert values, and creates buckets that contain 
at least K consecutive points. In the case of Frequency-
Aware GH (FQGH), each point is conceptually repli-
cated a number of times equal to its query frequency. 
Hence, each point appears multiple times in the Hilbert 
sequence, although it is physically stored only once in 
the index, along with its frequency. The resulting se-
quence is split into buckets of KFmax each, where Fmax is 
the maximum frequency that occurs in PN. Fig. 5.1 il-
lustrates an example: each node stores the additional 
frequency information. At the level 2 PN node, the total 
number of queries in the sub-tree is F=28, whereas 
Fmax=7. Assume a query with K=2: the splitting into 
buckets is performed with respect to KFmax = 27 = 14, 
and buckets B1 and B2 are obtained.  

PN 

leaf level 1

U

7 4 11 6

LN1 LN2 LN3 LN4

level 2

F=28, Fmax=7

U
2

UU U U U U U U U
2 3 1 2 1 2 2 3 1 2

3 4
7

U

Bucket B (14)

1 2 3 4 5 6 7 8 9 10 11 12

Bucket B (14)
1 2  

Fig. 5.1 FQGH partitioning, K=2 

Since the split is performed with respect to frequen-
cies, it is possible for a user to belong to more than one 
bucket. However, because the bucket size is at least 
KFmax, it is straightforward to show that a user can be-
long to at most two buckets. Assume that querying user 
U contributes with a fraction p of its queries to B1, and 
(1-p) to B2. Then, B1 will be chosen as ASR with prob-
ability p, and B2 with (1-p). In Fig. 5.1, U7 contributes 
with 3/7 of its points to B1, and 4/7 to B2; hence, if U7 
issues a query with K=2, the respective generation 
probabilities for the two buckets are 0.43 and 0.57.  

Similar to GH, FQGH only needs to access at most 
two leaf nodes for each query, therefore it is efficient. 
Furthermore, the Hilbert sorting is performed based on 
user locations, and it is oblivious to the query frequen-
cies; hence, the complexity of FQGH is similar to that of 
GH. AR can be extended to accommodate FQR in a 
similar manner. However, in practice, query frequency 
distribution is expected to be skewed, in which case 
partitioning techniques that require the retrieval of the 
entire PN sub-tree are not practical because a much 
larger number of users than K are required to achieve 
SKA. We experimentally verify this claim in the next 
section.  

6 EXPERIMENTAL EVALUATION 
We implemented a C++ prototype of the anonymizer 
and deployed it on an Intel Xeon 2.8GHz machine run-
ning Linux OS. The anonymizer indexes the user loca-
tions, which are taken from the NA dataset (available at 
www.rtreeportal.org) containing 569K intersections of 
the North American road network. K ranges from 10 to 
1000. In each experiment, we generate 1000 queries ori-
ginating at random users. Effectiveness is measured as 
the average ASR area, expressed as a percentage of the 
entire data space. Efficiency is measured in terms of 
average ASR generation time. The average cost per 
random I/O is 5ms, and each index has a cache equal to 
10% of the entire index. For I/O efficiency, we imple-
mented Quad-trees using linear representation [A84], 
which is easily embeddable into B+-trees.  

6.1 Evaluation of Partitioning Techniques 
First, we consider the RC implementation of Reciprocal 
and compare the proposed partition methods (GH and 
AR) against a benchmark from the RKA literature. Spe-
cifically, we adapt Top Down (TD), a divisive clustering-
based approach that builds anonymized groups with 
cardinality bounded between K and 2K–1 [XWP+06]. 
The adaptation works as follows. Once the partition 
node PN has been determined, all points of PN form 
one large cluster. TD chooses as seeds two of the most 
distant points (through an approximate, iterative, linear 
technique) and divides the cluster among the seeds, so 
that the extents of the resulting clusters are minimized. 
The process is repeated recursively for all resulting 
clusters with cardinality 2K or higher. After completion 
of this step, some clusters (called runts) may have fewer 

 
(a) Area (b) Time 

Fig. 6.1 RC: Partitioning methods versus K 

(a) Area (b) Time 
Fig. 6.2 QC: Partitioning methods versus K 
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than K items. To preserve the K-anonymity require-
ment, a runt may either be merged with another runt, 
or borrow points from one of the clusters with more 
than K items. The algorithm terminates when all clus-
ters have at least K items. TD has O(|PN|2) computa-
tion complexity and O(K) I/O cost. 

Fig. 6.1 illustrates the ASR area and generation time 
as a function of K, for 4KB page size. AR has the clear 
advantage in ASR area, while GH is considerably faster. 
Note that generation time exhibits a jump after K=80 for 
all methods except GH. For the 4KB page size, the min-
imum occupancy of the underlying R*-tree index is 85. 
Hence for K  85, ASRs are generated within one leaf 
node (at level 1). As K increases beyond this threshold, 
the ASR is created in a partition node PN at level 2. GH 
retrieves only a small number of leaf nodes (under PN). 
On the other hand, AR and TD need to scan the entire 
sub-tree of PN, leading to significantly more I/Os. Fur-
thermore, the processing time, which is a function of 
the input size, increases accordingly. For a fixed num-
ber of data points under PN, the generation time of AR 
decreases with larger K because the number of splits 
drops (i.e., there are fewer, larger buckets). TD is ex-
pensive for partitioning at level 2 (in some cases up to 
100 sec per query) and omitted for K >80. 

Fig. 6.2 repeats the same experiment for the Quad-
tree (QC) implementation of Reciprocal. While the ASR 
area is similar to RC, the generation time is considera-
bly higher for QC due to the lack of balance in the in-
dex structure, resulting in a large number of points un-
der the PN node. 

In Fig. 6.3 we vary the page size, and measure the 
ASR area and generation time for RC, when K = 400. As 

the page size increases, ASRs need to span across fewer 
leaf nodes. Therefore, we expect the effectiveness to 
improve, as the good locality properties of the underly-
ing R*-tree index are better exploited. For page sizes 
from 2 to 8KB, this is indeed the case. However, ini-
tially GH exhibits an increasing trend because, for 1KB 
page size, the K = 400 setting coincides with the mini-
mum occupancy at level 2. Hence, a point of conver-
gence occurs, which helps GH to obtain smaller ASRs. 
A larger page size also translates into increased genera-
tion time, as the cardinality of the partition node in-
creases. TD is very expensive for sizes exceeding 2KB 
(for 8 KB page size, it needs 400sec per query). The cost 
of AR grows due to the recursive splits. GH is rather 
insensitive to the page size since it computes a single 
bucket, independently of node cardinality. 

Fig. 6.4 shows the same experiment for QC. Observe 
that the page size does not affect the ASR area, which 
only depends on the Quad-tree hierarchy. On the other 
hand, a larger page increases the occupancy of leaf 
nodes, and reduces the I/O cost, as shown in Fig. 6.4b 
(TD is omitted due to very high values). 

Summarizing, GH is the most efficient partitioning 
method, whereas AR is the most effective. The per-
formance of TD is unsatisfactory, as it is extremely ex-
pensive and produces ASRs with quality comparable to 
GH. Regarding the R-tree and Quad-tree implementa-
tions, they offer similar ASR areas, but RC is faster. 
Based on the above, RC-GH is the method of choice for 
efficiency (e.g., when the anonymizer charges clients 
according to their usage and the LBS is a public service) 
and RC-AR the winner when effectiveness is more im-
portant (e.g., free anonymizer service and expensive 
LBS). 

6.2 Comparison with Hilbert Cloak (HC) and       
R-Tree Bulk Loading 

We compare the RC-GH and RC-AR methods against 
two baseline solutions: Hilbert Cloak (HC) [KGMP07], 
and Sort-Tile-Recursive (STR) [LEL97] – a state-of-the-art 
bulk-loading method for R-trees. The STR baseline re-
lies on the same principle as [IN07], i.e., bulk-loading a 
spatial index with an occupancy constraint of at least K 
users per leaf node. However, [IN07] employs an R+-
tree index that does not allow overlaps between node 

  
(a) Area (b) Time 

Fig. 6.5 RC-GH and RC-AR versus HC and STR bulk loading 

  
(a) Area (b) Time 

Fig. 6.3 RC: Partitioning methods versus page size 

  
(a) Area (b) Time 

Fig. 6.4 QC: Partitioning methods versus page size 
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extents. In contrast, SKA does allow ASR extents to 
overlap, therefore we use STR in conjunction with R*-
trees6 that obtain lower extents for leaf nodes than their 
R+-tree counterparts. 

Fig. 6.5 shows the relative performance of RC-GH, 
RC-AR, HC and STR. In terms of ASR area, STR is 
slightly better than RC-GH, but considerably worse 
than RC-AR. Furthermore, since STR performs parti-
tioning with respect to the entire dataset, it incurs high 
overhead. As shown by the log-scale graph in Fig. 6.5b, 
the time required by STR is close to 10 seconds, up to 
one order of magnitude worse than RC-AR. Therefore, 
STR is not suitable for on-line queries where users re-
quire short response times. On the other hand, RC-AR 
performs a high-quality partitioning of users with re-
spect to a single index sub-tree within a short time. 

RC-GH is slightly better than HC in terms of ASR 
size and up to one order of magnitude faster. Although 
HC applies a Hilbert sorting method similar to RC-GH 
and does not incur the overhead of finding the PN 
node, it still needs to retrieve from the disk O(K) leaf 
entries. In contrast, RC-GH, which maintains MBR in-
formation in the internal nodes, only needs to access 
two leaf nodes per query. Note that the RC-GH genera-
tion time exhibits an initial increase with increasing K, 
as the PN node moves from the leaf level to level 2. RC-
AR generates significantly smaller ASRs, but it is much 
slower than both RC-GH and HC. 

6.3 Variable Query Frequencies 
As discussed in Section 5.2, local partitioning methods 
 

 
6 We used in our STR implementation the Spatial Index Library, avail-

able online at http://research.att.com/~marioh/spatialindex 

that require loading the entire PN node (e.g., AR, TD) 
are not I/O and CPU efficient, when the query fre-
quency distribution is skewed. We support our claim 
with an experiment which measures the I/O cost to 
retrieve the PN node, and the number of points in-
cluded in PN. We generated 1000 queries, each as-
signed to a user according to the zipf distribution with 
parameter 0.8. Page size is 4 KB. The results are shown 
in Fig. 6.6. Due to its unbalanced structure, QC incurs 
higher I/O cost than RC, and it requires retrieving the 
entire dataset for values of K > 600. Although RC incurs 
less I/O, for K > 800, PN corresponds to the root node 
of the index; therefore, all points need to be retrieved. 
Consequently, AR and TD are impractical for skewed 
frequency distribution.  

Finally, we evaluate RC-FQGH, which is feasible for 
skewed query distributions because it does not retrieve 
the entire PN sub-tree. For comparison, we use a fre-
quency-aware variant of HC (called HCf), which is 
similar to RC- FQGH, except that partitioning is ap-
plied to the entire  user set, as opposed to the PN node. 
We consider 1000 random queries with constant (Cst), 
uniform (Unif) and zipf-0.8 distribution (Zipf). Fig. 6.7 
shows that guaranteeing privacy for variable query 
frequency comes at an additional increase in ASR size, 
which grows with the skewness of the frequency distri-
bution. RC-FQGH is slightly better in terms of ASR 
area, but the advantage of the reciprocal framework is 
clear in terms of generation time, where RC-FQGH is 
much faster than HCf for all query distributions. 

7    CONCLUSIONS 
In this paper we proposed a reciprocal framework that 
allows the implementation of a variety of secure algo-
rithms for spatial K-anonymity on top of a spatial in-
dex. We also extended the framework to support users 
with variable query frequencies. We demonstrated the 
versatility of our framework by using it to implement a 
variety of partitioning techniques on top of two popu-
lar spatial indices. Finally, we showed experimentally 
that our methods outperform the only existing secure 
technique.    

In the future, we plan to address more attack scenar-
ios, such as attacks based on user preferences. Assume 
that each user is interested in certain types of queries, 
e.g., traffic conditions, restaurants, etc. An attacker may 
use the additional knowledge to infer the query source. 
To prevent this, users can be classified into groups ac-
cording to their interests. Then, spatial diversity would 
take into account these groups when forming ASRs; i.e., 
an ASR should contain users with similar interests, from 
the same group. Another interesting problem concerns 
continuous SKA [CM07]. In this setting, a client poses a 
long running query about its surroundings (e.g., “find 
the nearest gas station”), whose results are updated as 

  
(a) Number of I/Os (b) |PN| 

Fig. 6.6 PN overhead for variable query frequency 

  
(a) Area (b) Time 

Fig. 6.7 RC-FQGH versus HCf 
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the client moves. The cloaking algorithm should gener-
ate a continuously changing ASR in a way that it does 
not reveal information about the user through inspec-
tion of the individual ASR snapshots.  
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APPENDIX A 
Among the systems reviewed in Section 2.2, Casper and 
Interval Cloak perform spatial cloaking, using the same 
architecture and following the same assumptions as our 
techniques. Next, we show formally that both ap-
proaches are not secure. Recall that the shape of an ASR 
in Casper can be either a square, or the horizon-
tal/vertical union of two adjacent cells under the same 
parent. We first analyze the case of square ASRs assum-
ing that an attacker detects the ASR of Fig. A.1a. Then, 
s/he can infer that it was created due to a query from a 
user U in A, B, C, D. If U is in cell A, the required de-
gree of anonymity KA must be in the range [MA+1, 
|A|+|B|+|C|+|D|]. MA =|A| + max{|B|, |C|} is 
due to the fact that neither AB, nor AC contains suf-
ficient points (otherwise the ASR would be AB, or 
AC). Similar to KA, we can calculate the ranges of KB, 
KC and KD which have the same maximum value 
|A|+|B|+|C|+|D|, but different lower bounds MB = 
|B| + max{|A|,|D|}, MC = |C| + max{|A|,|D|} and 
MD = |D| + max{|B|,|C|},  respectively.  



  

 

 

15 

Summarizing, the ASR is generated by a query ori-
ginating from (i) A with anonymity KA, i.e., 
|A|(|A|+|B|+|C|+|D|-MA) events, or (ii) B with 
KB, i.e., |B|(|A|+|B|+|C|+|D|-MB) events, or (iii) C 
with KC, i.e., |C|(|A|+|B|+|C|+|D|-MC) events, or 
(iv) D with KD, i.e., |D|(|A|+|B|+|C|+|D|-MD) 
events. The total number of events is 
(|A|+|B|+|C|+|D|)2-|A|MA-|B|MB-|C|MC-
|D|MD. Given no additional knowledge about the 
query frequency and the anonymity degree distribu-
tions, the attacker considers that these events have 
equal probabilities, e.g., s/he assumes that the query 
originates from A with probability: 

 
 2

A
A

A B C D

A A B C D M
P

A B C D A M B M C M D M

    


          
 

Within A, each individual user can issue the query 
with equal probability PA/|A|. For SKA to be pre-
served, it must hold that PA/|A| ≤ 1/ KA. Since the 
maximum value of KA is |A|+|B|+|C|+|D|, we have 
PA/|A| ≤ 1/(|A|+|B|+|C|+|D|). Applying the 
same reasoning to PB/|B|, PC/|C| and PD/|D| and 
some algebraic simplifications, we derive the following 
system of linear inequalities: 

B C D
A

A C D
B

A B D
C

A B C
D

B M C M D M
M

B C D

A M C M D M
M

A C D

A M B M D M
M

A B D

A M B M C M
M

A B C

     
  

     
 

 


       

     

  

 

The solution to the above system has the only form 
MA = MB= MC = MD. MA=MD implies that |A|=|D|, 
and MB=MC that |B|=|C|. In other words, each pair of 
diagonal cells should have the same cardinality; other-
wise Casper fails to preserve SKA. As an example con-
sider Fig. A.1a, where A, C and D contain one user 
each, and B includes 10 users (MA=MB=MD=11, MC=2). 
Assuming that the query originates from UC in cell C, 
then KC must be in the range [3, 13]. The attacker will 
infer UC as the origin with probability PC/|C|=11/35, 
which exceeds 1/KC for 4 ≤ KC. Thus, the anonymity of 
UC is breached for all, but one, queries involving this 
ASR.  
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(a) Square ASR (b) 2x1 Rectangular ASR 

Fig. A.1 Examples of Casper ASRs 

Having established that diagonal neighbors must 
have the same cardinality (in order not to compromise 
square ASRs), we will show that the horizontal and 
vertical neighbors must also satisfy the same condition. 
Assume a rectangular ASR consisting of cells A and B 
(see Fig. A.1b). Clearly, the query may have originated 
from a user U in A or B. If U is in A, the required degree 
of anonymity KA must be in the range [|A|+1, 
|A|+|B|]. This is because if KA ≤ |A|, the ASR would 
not include B (as the points in A would suffice). Other-
wise, if KA > |A|+|B|, the ASR should be larger than 
the union of A and B. Similarly, if the query is issued by 
any user from B, the degree of anonymity KB is in the 
range [|B|+1, |A|+|B|]. By applying the previous 
methodology, we conlude that |A|, |B|, |C|, |D| 
must all be equal to guarantee anonymity. 

Therefore, Casper achieves SKA only when each cell 
(at any level) contains exactly the same number of users 
as its neighbors, i.e., only for perfectly uniform user distri-
bution. The analysis also applies to the simpler case of 
Interval Cloak. 


