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ABSTRACT

In Geo-Social Event Organization (GSEO), each user of a geo-social
network is assigned to an event, so that the distance and social costs
are minimized. Specifically, the distance cost is the total distance
between every user and his assigned event. The social cost is mea-
sured in terms of the pairs of friends in different events. Intuitively,
users should be assigned to events in their vicinity, which are also
recommended to their friends. Moreover, the events may have con-
straints on the number of users that they can accommodate. GSEO
is an NP-Hard problem. In this paper, we utilize a game-theoretic
framework, where each user constitutes a player that wishes to
minimize his own social and distance cost. We demonstrate that the
Nash Equilibrium concept is inadequate due to the capacity con-
straints, and propose the notion of pairwise stability, which yields
better solutions. In addition, we develop a number of optimization
techniques to achieve efficiency. Our experimental evaluation on
real datasets demonstrates that the proposed methods always out-
perform the state-of-the-art in terms of solution quality, while they
are up to one order of magnitude faster.
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1 INTRODUCTION

Let G = (V, E, W) be an undirected graph, where the set V of nodes
represents the users of a geo-social network, the set E of edges
denotes their friendships, and W is the set of edge weights. Given a
set of events P, with minimum and maximum capacity constraints
miny,, maxp, ¥p € P, constrained GSEO assigns each user to a single
event according to the following conditions:
o The capacity constraints are satisfied:
miny < |p| < maxp,Vp € P
where |p| is the number of users assigned to event p. Constraints
capture real-life situations e.g., an event may require a minimum
number of participants, or may be imposed by the available bud-
get that an event advertiser is willing to spend for its campaign.
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e Objective Function (1) is minimized:
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where p,, is the event assigned to user v, d(v, py) is the distance
between v and p,,, and w(v, f) is the weight of the edge (v, f) € E.
The first sum measures the quality of a solution in terms of the
total distance cost between users and their assigned events. The
second sum is the social cost, and equals the total weight of the
edges between friends assigned to different events. The parameter
a adjusts the relative importance of the two factors.

Objective Function (1) implies that users should be assigned to
events in their vicinity, which are also recommended to their friends.
Unconstrained GSEO constitutes an instance of Uniform Metric
Labeling (UML) [6], a well-known NP-Hard problem, which is a
generalization of Multiway Cut [5]. Several vision problems such
as stereo matching [4], photomontage [2] and interactive photo
segmentation [10] can also be modeled as UML. Correspondingly,
those problems are solved by approximations such as graph cuts [4],
generalized belief propagation [12], and tree reweighted message
passing [11]. However, these algorithms aim at graphs with up to a
few hundred of nodes.

For very large graphs, commonly found in social networks, Ar-
menatzoglou et al. [3] study GSEO without considering capacity
constraints, and propose a best-response algorithm that always con-
verges to a Nash equilibrium (i.e. a local minimum). Their algorithm,
however, is inapplicable in the presence of capacity constraints. Li
et al. [8] propose algorithms for Social Event Organization (SEO), a
utility maximization problem similar to constrained GSEO. In SEO,
(i) some events may be left empty despite the existence of sufficient
users, (ii) some users may remain unassigned despite the fact that
the maximum capacities are large enough to accommodate all users.
On the contrary, in GSEO we consider that, if the number of users
is adequate and the maximum capacities are sufficient, no event will
be left empty, and no user will be left unassigned.

We model constrained GSEO as a game, where users are players
that choose their most preferred event. The objective is then to
obtain an assignment, where no player has an incentive to deviate
from his current event. Our contributions are summarized as fol-
lows: (i) We introduce the notion pairwise stability and develop a
novel type of dynamics that generates high quality assignments.
(if) We propose various optimizations and data structures for fast
real-time performance. (iii) We experimentally demonstrate that
our framework achieves superior solutions than the current state-
of-the-art, while substantially dropping the execution time. Section
2 introduces the game-theoretic framework for the GSEO problem.
Section 3 presents a concrete implementation of our framework and
the associated data structures. Section 4 contains the experimental
evaluation. Section 5 concludes the paper.
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2 GAME-THEORETIC FRAMEWORK

We model GSEO as the game G =<V, (Py,)yev, (co)vey >, where
the set of players V corresponds to the users and the strategy set P,
of user v coincides with the set of events P. Each event p € P may
have capacity constraints min, < |p| < max,, i.e., the number of
users assigned to event p must be between min,, and max,. Equation
(2) describes the individual cost of user v for assignment p,, given
the strategies p,, of the other users. It consists of the weighted
sum of the distance cost, i.e., the distance between v and event
pu, and the social cost, i.e., half of the total weight of the edges
connecting v to friends assigned to different events. Since each edge
(v, f) is considered in the cost of both v and f, by summarizing
the individual costs of all users, we obtain Objective Function (1).
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An assignment is a mapping from the set of users V to the set
of events P, which is (1) total, i.e., every user must be assigned
to exactly one event, assuming that the total event capacity can
accommodate all users, and (2) feasible, i.e., it satisfies the upper and
lower capacity constraints. We consider that 3 ,cp minp < [V| <
2. pep maxp, so that all events can reach their minimum capacity,
and all users can be assigned to some event.

From a game-theoretic perspective, the goal of each player is
to select the event that minimizes his own cost, as expressed by
Equation (2). Player v has an incentive to perform a unilateral
deviation from his assigned event p,, to another one p,,, if p, yields
a smaller cost for v. However, this swap may violate the minimum
capacity of py,, or the maximum capacity of p;,. Now consider two
users v and u, assigned to p, and p,, respectively, and that both p,,
pu are at their minimum (or maximum) capacities. Also, assume
that both v and u would benefit by swapping events. Although
individual unilateral deviations would violate the constraints, it
is possible for v and u to exchange events by a bilateral deviaton.
In order to cover such cases, we introduce the concept of pairwise
stability: an assignment is stable, iff for all pairs of users (v,u) € V,
exchanging their events will not decrease the cost of both v and u.

Figure 1 presents the general framework. Line 1 computes an
initial assignment. During that step, all users are assigned to some
event, and all events reach their minimum, but do not exceed their
maximum capacity. The outer loop (Lines 2-9) corresponds to a
super-round. Each super-round performs rounds of unilateral de-
viations (Lines 3-5), until reaching a Nash equilibrium, i.e., a local
minimum where no user can decrease his cost without violating
some capacity constraint. Then, rounds of bilateral deviations allow
pairs of users to swap events, until reaching a stable assignment
(Lines 6-8). Observe that after a bilateral deviation, a user v may
be assigned to an event p, which was not allowed by a unilateral
deviation because p was full. This may create new opportunities
for v to further drop his cost in subsequent unilateral deviations.

As shown in the long version of this paper [9], the framework
of Figure 1 always converges to a solution, which is both a Nash
equilibrium and pairwise stable. [9] also contains details about the
price of stability and the price of anarchy that provide bounds on
the quality of the solutions achieved.

Input: Strategic game G =< V, (Py)vev, (co)vev > with capacity
constraints
Output: Nash equilibrium and pairwise stable assignment

1: Compute a feasible initial assignment
2: repeat
3: repeat
perform legal unilateral deviations
until Nash equilibrium
repeat
perform bilateral deviations
8:  until pairwise stability
9: until Nash equilibrium and pairwise stability
10: return the event assigned to each user v € V

Figure 1: Combined Dynamics

3 ALGORITHMS

We first propose an INIT algorithm for generating initial assign-
ments. INIT involves two phases: Phase 1 fills all events to their
minimum capacity, whereas Phase 2 assigns all the users left unas-
signed during Phase 1. Both phases adopt an iterative approach
based on sampling. At each iteration, a sample of users is randomly
selected and the cost of their possible assignments is computed.
The assignment with the lowest cost is then performed. Figure 2
illustrates the pseudocode of INIT. Lines 1-6 perform a precompu-
tation step that calculates the cost c(v, p) of assigning each user v
to every event p according to Equation (2). These costs are stored
in a |V||P| array, called the cost table. Since initially all users are
unassigned, we set a maximum social cost per user v and event p,
assuming that all the friends of v are at events other than p. For a
user v, the costs for all events are stored in a min-heap H, of size
|P|; the event p* with the lowest cost for v is at the top of Hy,. Since
there is a heap per user, the total number of user heaps is |V|.

Lines 7-24 implement Phase 1. Let Py, be the set of open events
that have not reached their minimum capacity, and V,,,, be the set
of unassigned users (initially, Pop = P and V;,, = V). While there
are still open events, INIT selects a random set S of distinct users
from V,,,,. For each user v in S it obtains the event p* with the
lowest cost among events in Py, which is at the top of Hy, (Lines
13-14). Let v’ be the user with the minimum lowest cost and p’ be
the corresponding event; v’ is assigned to p’ and removed from
Vun (Line 17). Lines 18-20 decrease the costs of the friends of v’ for
p’, to reflect the new assignment, and update the corresponding
heaps. Finally, if the user cardinality |p’| of p’ reaches its minimum
capacity min,, p’ is excluded from Pop, and the event closes (i.e., it
will not receive more assignments at Phase 1). Lines 23-24 remove
closed events from the heaps of all unassigned users (the rest of the
users will not be re-assigned during INIT and their heaps will not
be used again). At the end of Phase 1, since all events close, all heaps
become empty. Phase 2 (Lines 25-26) repeats the process with the
following differences: (i) The heaps are re-built using the user/event
costs computed during Phase 1 and stored in the cost table; (ii) Pop
now contains events that have reached their minimum, but are
below their maximum capacity (initially, Pop = P); (iii) the loop
is repeated while there are unassigned users (|V,,| > 0 instead of
|Pop| > 0 in Line 7); and (iv) an event p from Py, closes when it
becomes full (|p’| = max,) in Line 21.

Next, we discuss unilateral deviations, corresponding to Lines
3-5 of the general framework in Figure 1. Figure 3 illustrates the



Input: Geo-social Graph G = (V, E, W), set of events P with constraints
ming, maxp, Vp € P, Vyn =V, Pop = P, S =0, |S]|
Output: Initial assignment

Input: Geo-social Graph G = (V, E, W), set of events P with constraints
mingy, max, Vp € P, initial assignment of users V to events P
Output: Nash equilibrium assignment

1: for each user v

2:  for each event p

3 C(U’p)<_ @ d(U’P)

4 for each friend f of v

5 c(v, p) & c(v, p) + 3(1 - @) - w(o, f)

6:  H, = min-heap containing c(v, p) for each event p
7: while |Pop| > 0

8

9

Cm — 0
if [Vunl| > |S|

10: S « {|S| random distinct users from V,,, }

11:  else

12: S — Vun

13:  for eachuserv € S

14: p* — top(Hy) (p* is event with min cost for v in Pyyp)

15: if ¢(v, p*) < cm

16: cm — c(v, p*), v — v, p’ «p*

17: Por P/’ Vun < Vun — {v"}
18:  for each friend f € Vy; of v/

19: c(fp) e e(f, p') = 5(1=a) - w(@', f)

20: decrease key(Hy, p', c(f, p))
2t if [p'| = miny

22: Pop — Pop — {p"}

23: for each user v € V,,,

24: remove p’ from Hy,

25: re-build heaps; Pop = P
26: Repeat 7-25, except Line 7: Py, — Vyp, Line 21: miny — maxy
Figure 2: INIT Function

pseudo-code of the UNI function, which takes as input the initial
assignment generated by INIT, and performs a series of rounds
until reaching a point where no player can deviate from his current
assignment. A unilateral deviation for user v is allowed only if his
current event p = p,, exceeds its minimum capacity min,, (Line 4).
In this case, the event p” # p with the minimum cost ¢(v,p”) for v
is retrieved from his heap H,,. If p’ is full, UNI retrieves the next
cheaper event, until finding one that can receive more users, or until
encountering p (in which case all non-full events have cost higher
than the current assignment, and there is no unilateral deviation
for v at this round). If a deviation from p to p’ occurs, Lines 9-11
update the costs of each friend f of v; specifically the cost c¢(f, p)
increases by % (1 - a) - w(v, f) due to the departure of v, while
c(f,p’) decreases by the same amount.

Figure 4 illustrates BI, the function that implements stability.
Given that in practice |P| < |V|, to enhance efficiency, we perform
bilateral deviations for pairs of events, instead of pairs of users.
Consequently, in addition to the user heaps, utilized by INIT and
UNTI, BI uses event pair heaps. Specifically, for each pair of events
pi, pj there is a min-heap EPp, , that contains, for every user v
currently assigned to p;, the cost change incurred by moving to
pj: 8co(pi,pj) = c(v,pj) — c(v, p;). The top contains the user with
the minimum &cy, (p;, pj), which may be positive or negative (if the
swap benefits v). Each user v exists in a single heap EP),, p, which
contains |P| entries with the assignment costs of v to all events.
Therefore, the total space requirement for all the event heaps is
[V]|P]. For each pair of events p;,p;, we obtain the users v and
u at the top of the heaps EPp;, p; and EPpj, p;, respectively. Let
Ay — dcy(pi,pj), and Ay < dcy(pj, pi). Swapping the events of

1: repeat

2:  foreachuserv € V

3: P < po

4: if [p| > miny,

5: repeat

6: p’ « get next(Hy)

7: if p" # pand [p’| < max,

8: po =P | Ip 1+ 1 pl — Ipl -1

9: for each friend f of v

10: c(fsp) —c(fsp)+ 5 -(1—a) w(o, f)
11: C(f’p,)(_ C(f’P/)_ % -(l—a)-w(v,f)
12: Goto Line 2

13: until p’ = p,,

14: until Nash equilibrium
Figure 3: UNI Function

Input: Geo-social Graph G = (V, E, W), set of events P with constraints
miny, maxp, Vp € P, assignment of users V to events P
Output: Stable assignment

1: repeat

2:  for each event p;

3 for each event p; # p;

4 v« top(EPp,,p;), u < top(EPp; p,)

5 Ay Sco(pis pj)s Au — Scu(pj, pi)
6: if v and u are friends
7
8
9

Av<—Av+%~(1—(x)-w(U,u)
Au<—Au+%-(1—a)-w(v,u)
: if A, <0and A, <0
10: Pov < Pj> Pu < Pi

11: for each friend f;, of v

12: (fos pj) & (fos pj) = 5 - (1= @) - w(o, fo)
13: (fos pi) — c(fos pi) + 3 - (1= @) - w(o, fo)
14: for each friend f;, of u

15: c(fu, pi) < c(fu> pi) — % (=) wu, fu)
16: (fus pj) — (fus pj) + 3 - (1= @) - w(u, fu)
17: if v and u are friends

18: c(v, pi) « c(v, pi) — % c(1-a)-w(v, u)
19: c(u, pi) « c(u, pi) + % -(1-a) - w(v, u)
20: c(v, pj) « c(v, pj) + % -(1-a)-w(v, u)
21: c(u, pj) « c(u, pj) — % c(1-a)-w(v, u)

22: until Pairwise stability
Figure 4: BI Function

v and u benefits both, if A, < 0 and A, < 0 (Line 9). However, if
v and u are friends, A, (A,) must increase by % -(1-a) - w(v,u)
to take into consideration! the departure of u (v) from p; (p;). If
the swapping occurs, Lines 11-16 update the costs of the friends
of v and u for both events. Finally, if v and u are friends, we also
have to update their costs for both events (Lines 17-21); e.g., c(v, p;)
decreases because of the inclusion of u in p;.

4 EXPERIMENTS

For our experimental evaluation we use the Gowalla and Foursquare
datasets. Gowalla [1] contains 12,748 users, connected through

!Recall that Ay, = c(v, p;) — c(v, p;). After the swap, u will be reassigned from
pj to p;i. Thus, if v and u are friends, % - (1= a) - w(v, u) must be added to c(v, pj),
and consequently to A, to reflect the actual cost difference.
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48,419 edges, who checked-in at Austin and Dallas during a week-
end in February 2009. For the same time and place, we collected 128
social events from Eventbrite. Foursquare [7] contains 2,153,371
users and 1,143,092 events/venues, over the world in September
2013. The number of edges is 27,098,490. In both datasets the weight
of all friendships is equal to 1. When we fix the number of events,
we randomly select a subset from the corresponding dataset. In
all experiments we set the parameter a of Equation (1) to 0.5, so
that the distance and social costs have equal weights, and apply
the normalization technique of [3] to make the distance and social
costs comparable. The proposed GAME framework applies the al-
gorithms of Section 3, using |S| = 8 samples in INIT. All methods
were implemented in C++ under Linux Ubuntu, and executed on
an Intel Xeon E5-2660 2.20GHz with 16GB RAM.

We compare GAME against SEOG, the best algorithm for the
social event organization (SEO) problem [8]. SEOG is a greedy tech-
nique that maintains all (user,event) pairs in a Fibonacci heap, with
key the distance between every user and event. Each time a pair
(v, p) is popped, if v is unassigned and the capacity constraints of p
are satisfied, v is assigned to p. For SEO, only events with at least one
user need to respect their capacity constraints. Consequently, SEOG
may leave some events empty and some users unassigned, even
though there are enough users and sufficiently large capacities. To
measure the number of such users and events we performed some
experiments (see [9]). For instance, in Foursquare, when |P| = 8,
only about 47% of the users are assigned and just 25% of the events
have a number of users within their capacity constraints.

In order to avoid the problems of unassigned users and empty
events of SEOG, for the following experiments we set the mini-
mum capacity constraints of all the events to zero. We generate 30
problem instances with the same events, but different maximum
capacities, following the methodology of [8], and report the mean
over all instances. The maximum capacities are sufficiently large
so that all users are assigned to some event. Figure 5 plots the solu-
tion quality of GAME against SEOG, as a function of the number
|P| of events ranging from 8 to 128. In all cases, GAME generates
the best solutions. An interesting observation is that the total cost
increases with the number of events. This can be explained by the
fact that, when there are numerous events, friends are more likely
to be divided, increasing the total social cost.

Figure 6 shows the running time versus the number of events.
GAME outperforms SEOG by a wide margin in all settings. For
example, in the largest problem instance (Foursquare, |P| = 128),
GAME terminates in 16 minutes, whereas SEOG requires 3.5 hours.
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Figure 6: Time Vs. |P| (a = 0.5)

This is because SEOG uses a large heap of size |V| - |P| that needs to
be updated numerous times. In contrast, GAME uses smaller heaps
(for each user and pair of events) that simplify the update process.
Summarizing the experimental evaluation, in terms of effective-
ness, GAME always achieves the maximum number of assignments,
by respecting the minimum capacities of all classes and not leav-
ing empty events. Regarding solution quality, GAME yileds up to
15% improvement with respect to SEOG, while it is never inferior.
Finally, GAME is significantly faster than SEOG, with the perfor-
mance gains exceeding an order of magnitude for some settings.

5 CONCLUSION

Geo-social Event Organization (GSEO) is becoming increasingly
important with the proliferation of geo-social networks and related
services. In this paper, we propose an effective and efficient frame-
work for capacitated GSEO based on a game-theoretic approach.
To address the limitations of the Nash equilibrium concept, we
introduce pairwise stability, which allows users to swap events if
this leads to better solutions. The proposed algorithms outperform
the state-of-the-art in effectiveness, solution quality and efficiency.
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