
Prediction and Indexing of Moving Objects with Unknown
Motion Patterns

Yufei Tao† Christos Faloutsos‡ Dimitris Papadias§ Bin Liu§
†Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

‡Department of Computer Science
Carnegie Mellon University

Forbes Avenue, Pittsburgh, USA
christos@cs.cmu.edu

§Department of Computer Science
HKUST

Clear Water Bay, Hong Kong
{dimitris, liubin}@cs.ust.hk

ABSTRACT
Existing methods for prediction in spatio-temporal databases
assume that objects move according to linear functions. This
severely limits their applicability, since in practice movement is
more complex, and individual objects may follow drastically
different motion patterns. In order to overcome these problems,
we first introduce a general framework for monitoring and
indexing moving objects, where (i) each object computes
individually the function that accurately captures its movement
and (ii) a server indexes the object locations at a coarse level and
processes queries using a filter-refinement mechanism. Our
second contribution is a novel recursive motion function that
supports a broad class of non-linear motion patterns. The function
does not presume any a-priori movement but can postulate the
particular motion of each object by examining its locations at
recent timestamps. Finally, we propose an efficient indexing
scheme that facilitates the processing of predictive queries without
false misses.

1. INTRODUCTION
Spatio-temporal databases that manage information about objects
moving in two- (or higher) dimensional spaces are important for
several emerging applications including traffic supervision, flight
control, mobile computing, etc. A large part of the related
research (e.g., [KGT99, AAE00, HKTG02, SJLL02, CC02,
TSP03, HKT03]) focuses on predictive queries, which forecast
the objects that will qualify a spatial condition at some future time
based on the current knowledge (e.g., "which flights are expected
to enter the airspace of California in the next 10 minutes"). In
order to avoid frequent location updates, the database stores the
motion function o(t) of each object o, which returns its location at
any future timestamp t. With a single exception ([AA03] that
investigates theoretical indexes on non-linear trajectories for
nearest neighbor search), existing work on spatio-temporal
prediction assumes linear movement. Specifically, o(t) = o(to) +
vo(t−to) where to is the last timestamp that object o issued an
update, o(to) is the location of o at time to, and vo denotes its
current velocity (constant since to). Both o and vo are d-
dimensional vectors (where d is the dimensionality of the data
space) since they capture the information of o on all axes. An
update is necessary whenever vo (i.e., the speed or direction of the
movement) changes.

1.1 Motivation
While in practice most movements are not linear, the adoption of
the linear model is often justified in two ways: (i) it avoids the
complications of arbitrary motion patterns and permits the
analysis of several interesting spatio-temporal problems [TP02,
ISS03] that otherwise would be very difficult or intractable, and
(ii) piece-wise linear segments can approximate (virtually, to
arbitrary precision) any curve, which seems to suggest that linear
prediction trivially covers the forecasting of other motion types.
This, unfortunately, is not true. Figure 1.1a explains the
inadequacy of linear prediction by showing the locations (black
dots) of an object o, moving along a curvature during 6
timestamps. Consider a query issued at time 1 that asks for the
location of o at the next 4 timestamps. According to the linear
velocity of o at the query time (computed using o(0) and o(1)), the
predicted positions (white dots) deviate from the actual ones
significantly. Similar observations hold for a predictive query
issued at timestamp 2, where estimation is based on o(1) and o(2).
Although piece-wise line segments can approximate curves, they
cannot be effectively applied for prediction, especially in the
distant future. Further, note that the object needs to issue an
update at every single timestamp to reflect the continuous
direction changes.

x

y

o(1)
predicted positions
at time 1

o(0)

o(2)

o(3)

o(4)
o(5)

predicted positions
 at time 2

Figure 1.1: Failure of linear prediction

We use the term motion type or pattern to denote the general form
of the motion function (e.g., linear, quadratic, circular), as
opposed to its specific parameters, e.g., two linearly moving
objects follow the same pattern although their direction or speed
may differ. An obvious attempt to alleviate the above problems is
to apply a more complex motion type. For example, one could use
a quadratic function [AA03], o(t)=o(to)+vo(t−to)+½ao(t−to)

2, where
ao is the acceleration vector of o. Although this model captures
linearity as a special case (and therefore has higher applicability),
it still cannot represent the curve of Figure 1.1. Further, even if a
function describing the particular curve can be obtained, it would
not be able to capture other objects in the system, which may
follow totally different patterns. In general, due to the enormous
diversity of motion types, trying to formulate a universal motion
function that captures all possible trajectories would be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD’04, June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

unrealistic.

1.2 Contributions
This paper contains three important contributions that solve the
problems of prediction on arbitrary motion patterns. We first
propose a general client-server architecture for answering typical
spatio-temporal queries on objects with unknown, and possibly
variable, movement types. In particular, each client (object)
computes individually the function that best captures its motion,
while a server indexes the object locations at a coarse level using
a fixed function, which is common for all objects. Queries are
processed through a filter-refinement mechanism, where
candidate objects are contacted, if necessary, for more refined
information. Our solution enables the application of spatio-
temporal access methods specifically designed for a particular
type, to arbitrary movements without any false misses. Thus, the
framework bridges naturally the existing research on the linear
model with the non-linear world, permitting the utilization of
previous results.

The second contribution is the recursive motion function, a
systematic and mathematically rigorous technique that expresses,
in a concise format, a large number of movement types (e.g.,
polynomials, ellipses, sinusoids, etc.). In particular, unlike
conventional a-priori motion functions that represent location as a
closed formula with respect to time, a recursive function relates an
object’s location to those of the recent past. This broadens the set
of expressible trajectories, because they are no longer constrained
by a certain default motion; rather, the recurrence causes each
object to adapt itself, producing the next location according to the
trend of its own movement.

The third contribution is the STP-tree (spatio-temporal
prediction tree), an access method for indexing the expected
trajectories (at the server). Unlike existing indexes which target a
specific motion type (most often linear) known in advance, the
STP-tree can be used for polynomial functions of any degree. In
the special case where the degree is 1, the STP-tree degenerates to
the TPR-tree (the current state-of-the-art, discussed in Section 2).
Compared to the TPR-tree (or other indexes for linear movement),
the STP-tree reduces the number of location updates and false hits
during query processing by delivering more accurate
approximation of actual object movements.

The rest of the paper is organized as follows. Section 2
surveys previous work, focusing on the TPR-tree and related
structures due to their immediate relevance to the STP-tree.
Section 3 proposes the general framework for spatio-temporal
prediction and overviews our methods. Section 4 discusses
computation of unknown movements using the recursive motion
function. Section 5 describes the STP-tree as well as the
construction and query processing algorithms. Section 6 verifies
the effectiveness of the proposed techniques through extensive
experiments and Section 7 concludes the paper with directions for
future work.

2. RELATED WORK
Among the several spatio-temporal structures [TUW98, KGT99,
AAE00] that focus on predictive query processing, the most
popular one is the TPR-tree. Because the TPR-tree is an
adaptation of the R*-tree, we first provide a description of this
structure in Section 2.1. Then, Section 2.2 overviews the TPR-tree
and Section 2.3 the TPR*-tree, which improves the original
method with enhanced algorithms.

2.1 The R*-tree
The R*-tree [BKSS90] aims at indexing static multi-dimensional
data. Figure 2.1 shows a two-dimensional example where 10
rectangles (a,b,…,j) are clustered according to their spatial
proximity into 4 leaf nodes N1,…,N4, which are then recursively
grouped into nodes N5, N6 that become the entries of the root.
Each entry is represented as a minimum bounding rectangle
(MBR). Specifically, the MBR of a leaf entry denotes the extent
of an object, while the MBR of a non-leaf entry (e.g., N1) tightly
bounds all the MBRs (i.e., a,b,c) in its child node. The R*-tree
algorithms aim at minimizing the following penalty metrics: (i)
the area, (ii) the perimeter of each MBR, (iii) the overlap between
two MBRs (e.g., N1,N2) in the same node, and (iv) the distance
between the centroid of an MBR (e.g., a in Figure 2.1) and that of
the node (e.g., N1) containing it. As discussed in [PSTW93],
minimization of these metrics decreases the probability that a
node is accessed by a range query.

a

b

c

d
e

f

g

h

i
j

N 1

N2

N3

N4

N5

N6

N1 N2

a b c d e f g h i j

N5 N6

N3 N4

root

k

object to be inserted

level 0

level 1

level 2

Figure 2.1: An R*-tree

Given a new entry, the insertion algorithm decides, at each level
of the tree, the branch to follow in a greedy manner. Assume that
we insert an object k into the tree in Figure 2.1. At the root level,
the algorithm chooses the entry whose MBR needs the least area
enlargement to cover k; N5 is selected because its MBR does not
need to be enlarged, while that of N6 must be expanded
considerably. Then, at the next level (i.e., child node of N5), the
algorithm chooses the entry whose MBR enlargement leads to the
smallest overlap increase among the sibling entries in the node.
Note that different metrics are considered at level 1 (leaf nodes
are at level 0) and higher levels. An overflow occurs if the leaf
node reached (i.e., N1 in the example) is full (i.e., it already
contains the maximum number of entries). In this case the
algorithm attempts to remove and re-insert a fraction of the entries
in the node, trying to avoid a split if any entry could be assigned
to other nodes. The set of entries to be re-inserted are those whose
centroid distances are among the largest 30%. In Figure 2.1, b is
selected since its centroid is the farthest from that of N1
(compared to a,k,c). Node splitting is performed if the overflow
persists after the re-insertion (e.g., b is re-inserted back to N1 in
Figure 2.1, causing N1 to overflow again). The deletion algorithm
of the R*-tree is relatively simple. First, the leaf node that
contains the entry to be removed is identified. If the node does not
generate an underflow (i.e., it does not violate the minimum node
utilization), the deletion terminates. Otherwise, the underflow is
handled by simply re-inserting all the entries of the node, using
the regular insertion algorithm. Both overflows and underflows
may propagate to upper levels, which are handled in the same
way.

2.2 The TPR-tree
The TPR-(time parameterized R-) tree [SJLL00] extends the basic
concepts of the R*-tree to linearly moving objects. We illustrate
its functionality using the four points (a, b, c, d) in Figure 2.2a.
The black dots illustrate their position at the current time 0, and

the arrows (values) indicate the direction (speed) of their
movements. For example, the velocity value of a along the x-
dimension is 1, while that on the y-axis equals 2, i.e., a moves
northeast with slope 2 and speed 5. A negative velocity indicates
that the object moves towards the minus direction on the
corresponding axis. Figure 2.2b shows the object positions at
timestamp 1, estimated (based on the linear model) according to
their velocities at the current time. A node in the TPR-tree is
represented using a MBR and a velocity bounding vector (VBV),
which enclose the location and velocities of the covered objects,
respectively. For example, the VBV of node N1 in Figure 2.2a is
{−2, 1, −2, 2} where the first/second number equals the
smallest/largest object velocity on the x-dimension (decided by b,
a respectively). Similarly, the third and fourth values (−2, 2)
capture the object velocities on the y-axis (VBV velocities are
depicted by white arrows). The extent of a node grows with time
(at the speed indicated by its VBV) so that at any future
timestamp it contains the locations of the underlying objects,
although it is not necessarily tight. For example, in Figure 2.2b,
both N1 and N2 are considerably larger than the corresponding
minimum rectangles. The node extents for some future time are
computed dynamically based on the MBRs and VBVs at the
current time.

-2
-2

c-2

d

1

a
2

1
1

b
2

-2

-2 -2

1

N1

N2

20 4 6 8 10

2

4

6

8

10

x axis

y axis

1

1

q
P

ea

b

N1 N2

20 4 6 8 10

2

4

6

8

10

x axis

y axis

c

d

(a) MBRs & VBRs at time 0 (b) MBRs at time 1

Figure 2.2: Entry representations in a TPR-tree

Given a point qP, a distance e, and a future time interval qT, a
predictive range query finds all objects o such that dist(o,qP,qT)≤e,
i.e., the distance between o(t) and qP is equal to, or smaller than e
at some timestamp t∈ qT. The shaded circle of Figure 2.2b
corresponds to a range query with qT = [1,1]. A TPR-tree answers
such queries by accessing all nodes (N1 and N2 in Figure 2.2b) that
intersect the circle (qP,e) during qT. The same approach is used for
(window) queries with rectangular regions. TPR-trees are
optimized for queries with qT in the interval [TC, TC+H], where
the reference time TC is the current timestamp, and the horizon H
determines how far the tree should "see" in the future. The update
algorithms are exactly the same as those of the R*-tree, by simply
replacing the four penalty metrics with their integral counterparts.
Specifically, the area (or perimeter) of an entry N equals ∫TC+H

TC

A(N,t)dt (or ∫TC+H
TC

P(N, t)dt), where A(N,t) (or P(N,t)) returns the
area (perimeter) of N at time t. Similarly, the overlap (or the
centroid distance) between two MBRs N1 and N2 is computed as

∫TC+H
TC

OVR(N1,N2,t)dt (or ∫TC+H
TC

CDist(N1,N2,t)dt), where
OVR(N1,N2,t) (or CDist(N1,N2,t)) returns the overlapping area
(centroid distance) between N1 and N2 at time t. These integrals
are solved into closed formulae [SJLL00]. Saltenis and Jensen
[SJ02] describe a method for improving the performance of TPR-

trees when the time of the next update for each object is known in
advance.

2.3 The TPR*-tree
The TPR*-tree [TPS03] follows the general update methodology
of TPR- (and R-) trees, but includes some enhanced heuristics.
When an object o is inserted, the TPR*-tree first identifies the leaf
N that will accommodate o with the choose path algorithm, which,
instead of the greedy traversal of the R*- and TPR*-trees, follows
the path that leads to the minimization of the penalty metrics in a
branch-and bound manner. If N is full, a set of entries, selected by
pick worst, are removed from N and re-inserted. These objects are
such that, their removal minimizes the MBR and VBV of the
parent node. Any node that overflows during the re-insertion is
split using sorting split, which decides the entry distribution by
sorting all the spatial and velocity dimensions. Consider Figure
2.3a, where node N overflows, assuming that the node capacity is
3, and the minimum node utilization is 2. The algorithm first sorts
the objects by their x-coordinates (i.e., the sorted order is a, b, c,
d), and then groups the first two entries a, b into node N1, and c, d
into N2. Based on the MBRs and VBVs of N1 and N2 (shown in
Figure 2.3b), the algorithm computes the sum of their integrated
perimeters, and uses it as the penalty of this split. Next, the
algorithm performs another sorting on the x-velocities of these
objects, (i.e., order a, c, b, d), distributes the entries into N1 and N2
accordingly (Figure 2.3c), and computes the split penalty. The
same process is repeated on the y-axis and the final entry
distribution is the one (among the four possible) with the smallest
penalty.

-1

-1
a

1

1

1

b

1

-1

-1

N

c

d
1

1
-1

-1

-1

-1
a

1

1

1

b

1

-1

-1

N

c

d
1

1
-1

-1

1
-1

-1

11

N2

-1

-1
a

1

1

1

b

1

-1

N

c

d
1

1
-1

-1

-1

-1 1

N2

-1

1

1

(a) Node to split (b) Split on x-axis (c) Split on x-velocity

Figure 2.3: The split algorithm of the TPR*-tree

3. SYSTEM OVERVIEW
This section provides a general framework for spatio-temporal
prediction and describes the proposed methodology at an abstract
level, before proceeding with the details in subsequent sections.
We assume a client-server architecture, where each moving client
(object) o can measure its location through a GPS device (at
discrete timestamps) and has some processing power and
memory, so that it maintains the most recent locations and
continuously revises its individual motion function o(t). The
server collects information from objects over time, indexes their
expected trajectories, and answers predictive range queries1 issued
by the users.

While different objects can follow distinct patterns, the server
assumes the same motion type for all objects, which differs from
their individual functions. Thus, the server maintains only
imprecise information and has to process queries in a filter-
refinement manner. Specifically, at the filter step, it first retrieves
(i) a set of objects that definitely satisfy the query predicates, and
(ii) a set of candidates (which may or may not qualify the query).

1 For simplicity we focus on static range queries. Nevertheless,
our methods also capture moving queries as well as other types of
predictive queries (e.g., nearest neighbor search).

During refinement, the server contacts the objects of the second
set, which evaluate the query conditions using their own (precise)
motion function, and inform the server accordingly. Thus, the
correctness of a query is defined with respect to individual
objects’ motion functions. Figure 3.1 shows the overall system
architecture.

Figure 3.1: System architecture

Similar to [SJLL00, TSP03], we use a horizon parameter H, and
optimize the system for queries whose intervals qT fall in [TC,
TC+H] where TC is the reference time. Let mS

o(t) be the motion
function for object o at the server. In order to guarantee the
correctness of query results, each object transmits (i) the
parameters of mS

o(t), formulated according to its own motion
function o(t) and (ii) a maximum distance do (called the horizon
bound) between o(t) and mS

o(t) during the time interval [TC,
TC+H]. To illustrate this, consider Figure 3.2 which builds on the
example of Figure 1.1 assuming that TC =1, H=4 and that the
server accepts only linear movements. The object computes the
parameters of mS

o(t) based on its location at timestamps 0 and 1,
and estimates its future positions using both o(t) and mS

o(t)
(shown with black and white dots, respectively) at the next 4
timestamps. In this case, do equals the distance d(5) between o(5)
and mS

o(5). Consider now a range query (at time 1) asking for all
objects in the circle centering at qP with radius e during interval qT

= [4,5]. At the filter step, the server retrieves the objects such that
dist(mS

o,qP,qT) ≤ e+do, where dist(mS
o,qP,qT) equals the minimum

distance between mS
o and qP during [4,5] (in this example

dist(mS
o,qP,qT) = dist(mS

o(4),qP)). Although o does not satisfy the
query (both o(4) and o(5) are outside the range), it passes the filter
step and becomes a candidate. Therefore, it is requested to
evaluate the query based on its own prediction for o(4) are o(5),
which will cause its elimination from the actual query result.

Figure 3.2: Coordinating object and server functions (TC =1)

Subsequent object updates follow an error-driven strategy. In
particular, each object o records the last transmitted values of
mS

o(t) and do, and issues an update whenever this information
cannot correctly capture its current movement. Continuing the
example, at the next timestamp TC =2, o re-computes its location
during the next H (=4) timestamps using both mS

o(t) and o(t), as
shown in Figure 3.3. The distance d(6) between mS

o(6) and o(6) is
larger than the current horizon bound do and the server must be
informed in order to avoid false misses. Thus, the object derives a
new linear function mS'o(t) (based on its position at timestamps 1

and 2) and (using this function) revises the value of do to d'(6)
(i.e., the distance between mS'o(6) and o(6)). The new mS'o(t) and
do are then sent to the server. At timestamp TC =3, the distance
between o(7) and mS'o(7) is smaller than the last reported value of
do (=d'(6)); therefore, the object does not issue an update and the
server assumes that it continues moving according to the previous
motion parameters. This update policy trivially captures the case
where the object’s motion pattern changes over time (since the
object revises o(t) at each timestamp).

Figure 3.3: Error-driven update policy (TC =2 and TC =3)

Finally, it should be pointed out that the existing methods for
supporting predictive spatio-temporal queries constitute special
cases of our framework, where the motion types are identical for
all objects (and the server), and known in advance. As discussed
in the introduction, this severely restricts their applicability to
practical problems. On the other hand, the separation of motion
functions (at the object and server sides) and the filter-refinement
mechanism (i) lift these restrictions and, at the same time (ii) they
permit the application of previous spatio-temporal research on
linear movement. For instance, the TPR-tree (or any other spatio-
temporal index) can be used directly to index the object
representations at the server, while selectivity estimation
techniques [CC02, HKT03, TSP03] can predict the output size of
the filter step.

The above discussion serves as a high-level description,
omitting, however, two fundamental issues: (i) the derivation of
the individual motion functions for each object, and (ii) the
development of a novel access method, which reduces the number
of false misses by tuning the motion "resolution" depending on
the application needs. These issues are addressed in Sections 4
and 5, respectively.

4. DERIVATION OF MOTION FUNCTIONS
Let o be an object whose motion type is unknown. Given the
actual locations of o at the h most recent timestamps, our
objective is to derive a motion function that (i) can correctly
capture all these locations, and (ii) can predict the future trajectory
of o, by following the tendency of the movement (i.e., linear,
quadratic, curving, etc.). Section 4.1 proposes a novel recursive
motion function, which is significantly more powerful in terms of
expressive power than the existing closed functions of time. Then,
Section 4.2 presents a methodology for deciding the function
parameters.

4.1 Recursive functions and motion matrices
Although individual trajectories may vary significantly, most
motion types demonstrate a self-similar behavior, in the sense that
the current location can be usually predicted from those in the
recent past. This is most obvious for linear movements with fixed
velocity v, where the location o(t) of o equals oo(t−1) +

[oo(t−1)−oo(t−2)] = 2oo(t−1)−oo(t−2) (note that oo(t−1)−oo(t−2)
gives exactly the velocity vector v). Interestingly, it turns out that,
for a large number of movements, oo(t) can be represented as a
linear function of oo(t-1), oo(t-2), …. We demonstrate this with
two examples: accelerative and circular movements.

Example 4.1: Consider the motion function o(t) = o(to)+
vo(t−to)+½ao(t−to)

2, where o(to) is the location of o at the reference
time to, vo is the velocity vector at to, and ao is the acceleration.
This function can be easily re-written in the form
o(t)=c0+c1⋅t+c2⋅t2 where c0, c1, c2 are d×1 vectors of constants, and
d is the dimensionality of the data space. Taking the discrete
differentiation (with respect to t) on both sides of the equation
results in o(t)−o(t−1) = c1+2c2⋅t. A second differentiation yields
the linear form: [o(t)−o(t−1)]−[o(t−1)−o(t−2)]=2c2. The constant
can be eliminated by yet another differentiation, leading to:

 o(t)=3o(t−1)−3o(t−2)+o(t−3) (4-1)

In general, it is easy to verify that any polynomial motion function
of degree D can be converted to a linear recurrence after D+1
differentiations. ■

Example 4.2: If a 2D object moves with angular speed2 ω on a
circle that centers at (c1, c2) with radius r, its coordinates o(t).x1
and o(t).x2 at time t are given by: o(t).x1 = c1+ r⋅cos(ω⋅t) and
o(t).x2 = c2+r⋅sin(ω⋅t). Following a derivation similar to Example
4.1, we have:

o(t)=[]1+cos(ω) −sin(ω)
sin(ω) 1+cos(ω) o(t−1)+[]−cos(ω) sin(ω)

 −sin(ω) −cos(ω) o(t−2)

(4-2) ■

Motivated by these observations, we introduce the following
recursive motion function:

o(t) = C1⋅o(t−1) + C2⋅o(t−2) + … + Cf⋅o(t−f) (4-3)

where Ci (1≤i≤f) is a d×d constant matrix, and f is a system
parameter called retrospect. Equation 4-3 is much more powerful
than conventional motion functions, since it can express an
extensive number of simple and complex movement types (by
varying Ci), including polynomials, ellipses, sinusoids, etc.
Obviously, the expressive power increases with f (in our
experiments, the value f=5 already models accurately all the
motion types tested).

We define the motion state so(t) of an object o at time t as a
vector {o(t), o(t−1), …, o(t−f+1)} enclosing its location at the f
most recent timestamps (i.e., so(t) is a (d⋅f)×1 vector). Equation 4-
3 becomes much friendlier (especially for performing future
prediction, as elaborated shortly) when transformed to the
equivalent matrix form:

so(t) = Ko⋅so(t−1) (4-4)

where Ko is a constant (d⋅f)×(d⋅f) motion matrix for o. We use the
following notations: (i) kij is the element of Ko at the i-th row and
j-th column (1≤i, j≤d⋅f), (ii) ki* is the i-th row, i.e., a 1×(d⋅f)
vector, and (iii) o(t).xi is the co-ordinate of o(t) on the i-th
dimension. For clarity, in the following discussion we usually
illustrate the properties of Ko for d=2 (i.e., 2D space) and f=2 (i.e.,
each state captures the two most recent locations), before
extending to the general case. For the simple case, equation 4-4

2 Angular speed is the angle (with respect to the center of the
circle) traveled by the object in a time unit.

becomes:

()
()

()
()

()
()
()
()

1 111 12 13 14

2 221 22 23 24

1 1

2 2

. 1 .

. 1 .

1 . 2 .1 0 0 0

1 . 2 .0 1 0 0

t x t xk k k k

t x t xk k k k

t x t x

t x t x

 −
 − =
 − −
 − −

o o

o o

o o

o o

 (4-5)

Notice that we can immediately decide the third and fourth rows
of Ko, e.g., k3* ={1,0,0,0} is the only possible choice for making
o(t−1).x1 ≡ k3*⋅so(t−1). In general, we have:

kij=0 for i≥d+1 and i≠j+d
kij=1 for i≥d+1 and i=j+d

(4-6)

Equivalently, the motion matrix has only d2⋅f unknowns (i.e., the
number of unknowns in C1, C2, …, Cf of equation 4-3).

A very important observation is that all objects that follow the
same movement type have identical motion matrices. For example,
the motion matrices Kline (for linear movement) and Kcircle (for
circular movement) are:

2 0 1 0

0 2 0 1

1 0 0 0

0 1 0 0

line

−
 − =

K (4-7)

() () () ()
() () () ()

1 cos sin cos sin

sin 1 cos sin cos

1 0 0 0

0 1 0 0

circle

ω ω ω ω
ω ω ω ω

 + − −
 + − =

K

(4-8)

As another example, the quadratic polynomial function (for 2D
spaces) requires a motion matrix with six rows and columns. By
equation 4-2, the first two rows of the matrix are []3 0 -3 0 1 0

0 3 0 -3 0 1

(the other rows are set according to equation 4-6).
Motion matrices indicate whether there are dependencies

among the dimensions. For instance, the linear model (and
polynomial functions in general) is axis-independent, e.g., the x1-
coordinate of a point is decided solely by its velocity on the x1-
axis, and is unrelated to those on the other dimensions, because
k12=k14=k21=k23=0. On the other hand, circular movement is axis-
dependent because of the non-zero k12 and k21; for example, o(t).x1

=(1+cos(ω))⋅o(t−1).x1 − sin(ω)⋅o(t−1).x2 − cos(ω)⋅o(t−1).x1 +
sin(ω)⋅o(t−1).x2, (i.e., the x1-coordinate of o is related to the x2-
coordinate of its location at the previous timestamp). In general, a
type of movement is axis-independent if and only if3:

kij=0, ∀ 1≤i≤d and j%d ≠ i%d (4-9)

Another crucial observation is that all motion matrices should
satisfy the translation rule:

so(t) = Ko ⋅ so(t−1) ⇒ so(t) + c = Ko ⋅ (so(t−1) + c) (4-10)

where the translation vector c is a (d⋅f)×1 vector in the form
c=(c1,c2,…,cd, …, c1,c2,…,cd) (i.e., c1,c2,…,cd repeated f times),
for arbitrary constants c1, c2,…, cd. Since the intuition behind this
equation is not obvious, we give a concrete example. Assume that
the coordinates of a linearly-moving 2D object are o(0)={1,1},
o(1)={2,3}, o(2)={3,5} respectively (i.e., its x1- and x2-velocities
are 1 and 2). If we set up a state with f=2 locations, i.e.,
so(1)={o(0), o(1)} and so(2)={o(1), o(2)}, then they are captured
by the motion matrix of Kline (given in equation 4-7), namely,

3 Operator % returns the residue after the modulo operation (e.g.,
5%3=2, 6%3=0).

so(2)=Kline⋅so(1). Now consider that we translate all locations o(0),
o(1), o(2) by the same offsets c1=10, c2=20 on the two dimensions
respectively, obtaining o'(0) = {10,21}, o'(1) = {12,23}, o'(2) =
{13,25}. Obviously o'(0), o'(1), o'(2) still form a line and hence
should be captured by Kline, meaning that, for the resulting states
so'(1) = {o'(0), o'(1)} and so'(2) = {o'(1), o'(2)}, we have so'(2) =
Kline⋅so'(1). Notice that the effect of the translation on states so(0)
and so(1) is such that, each new state so'(i) (1≤i≤2) equals so'(i)+c,
where c = {c1,c2,c1,c2}, leading to the fact that so(2)+c =
Kline⋅(so(1)+c). In general, the translation rule indicates that, if Ko
captures a trajectory o1, it also expresses any other trajectory o2
translated from o1.

Equation 4-10 imposes some important constraints on the
elements of a motion matrix, i.e., the translation rule implies:

c = Ko⋅c (4-11)

where c is any translation vector. In case that Ko is a 2×2 matrix,
it can be shown that Ko satisfies equation 4-11 if and only if all
the following conditions hold: (i) k11+k13=1, (ii) k12+k14=0, (iii)
k21+k23=0, and (iv) k22+k24=1 (these conditions become obvious by
writing each component on the left-hand side c as a function of
the coefficients of Ko and the right-hand side c). Observe that
each condition is on the sum of elements of Ko in the same row,
interleaved by d (=2 in this case). For arbitrary values of d and f,
equation 4-11 holds if and only if:

kij + ki(j+d) + ki(j+2d) + … + ki(j+f⋅d) = 1 if j=i % d, and
kij + ki(j+d) + ki(j+2d) + … + ki(j+f⋅d) = 0 otherwise

(4-12)

The last, but not least, important property of Ko is that, based on
the motion state s(TC) at the current time TC, we can efficiently4
compute the state at TC+t (i.e., t timestamps later) as:

so(TC+t) = Ko
t⋅so(TC) (4-13)

Evidently, Ko
t (also a (d⋅f)×(d⋅f) matrix) must satisfy equation 4-

11, or specifically: c = Ko
t⋅c for any translation vector c. This is

implied by 4-11, since Ko
t⋅c = Ko

t−1⋅(Ko⋅c) = Ko
t−1⋅c =…= Ko⋅c =

c.
Finally, note that a motion matrix does not specify the

concrete function parameters, which are implicitly determined by
state so(t−1). For example, the velocity v in the linear model is
decided by o(t−1)−o(t−2), whereas Kline simply indicates a line
trajectory. Thus, the prediction task is now reduced to finding the
correct Ko (i.e., determining the corresponding movement type)
after which the parameters of this movement are automatically
finalized by so(t−1). In the next section, we provide a technique to
compute Ko and the individual recursive function for each object,
using its locations at the recent past.

4.2 Motion estimation
Let lo(t) be the actual location of object o at time t. Given
lo(TC−h+1), lo(TC−h+2), …, lo(TC) at the h most recent
timestamps, our goal is to decide a function o(t) that minimizes
the summed squared distances (ssd) between the computed (by o)
and actual locations:

2

1

| () () |
C

C

T

o

t T h

ssd t t
= − +

= −∑ l ο (4-14)

4 Ko

t can be computed in O(log2(t)). For example, if t=13, we first
calculate Ko

2, Ko
4 (obtained by Ko

2⋅Ko
2), K8 (=Ko

4⋅Ko
4) and

finally Ko
13=Ko⋅Ko

4⋅Ko
8.

where |lo(t)−o(t)|2=∑d
i=1[lo(t).xi−o(t).xi]

2 and lo(t).xi is the coordinate
of lo(t) on the i-th dimension. Equation 4-14 provides a metric to
evaluate the quality of any motion function o(t). For instance, in
the linear model minimizing ssd is equivalent to finding the best
fitting line (going through all o(i), TC−h+1≤i≤TC), which can be
easily computed using the least squared error method. On the
other hand, for recursive motion functions the objective is to
decide the optimal Ko that minimizes equation 4-11, using the
properties discussed in Section 4.1.

Recall that Ko involves d2⋅f unknowns, which constitute the
first d rows from k1* to kd*. The h locations define h−f+1 motion
states (where f is the retrospect)5, or specifically:

so(TC−h+f)={lo(TC−h+f), lo(TC−h+f−1),…, lo(TC−h+1)}
so(TC−h+f+1)={lo(TC−h+f+1, lo(TC−h+f),…, lo(TC−h+2)}

…
so(TC)={lo(TC), lo(TC−1),…, lo(TC−f+1)}

(4-15)

Therefore, the optimal Ko should satisfy the following h−f
equations:

so(t) = Ko⋅so(t−1) for TC−h+f +1≤t≤TC (4-16)

We solve the equations corresponding to a row (from k1* to kd*) at
a time. It suffices to elaborate the solution for k1* (i.e., an 1×(d⋅f)
vector) as the extension to the other rows is straightforward.
Consider, for simplicity, the case d=f=2, where each equation in
the set 4-16 is in the form of formula 4-5. Since we focus on k1*,
we extract the relevant part of the formula into equation 4-17:

l(t).x1=k11⋅l(t−1).x1+ k12⋅l(t−1).x2+ k13⋅l(t−2).x1+ k14⋅l(t−2).x2

 (4-17)

The above equation can be written into the following form which
also holds for general d and f (recall that s(i−1) is a (d⋅f)×1
vector):

l(t).x1 = k1*⋅s(t−1) (4-18)

Since a similar formula is obtained from all (h−f) equations in 4-
16, we obtain h−f (linear) equations for the d⋅f variables in k1* and
organize them into a matrix format (notice that k1* now appears
on the right of the multiplication sign):

()
()

()

()
()

()

1

1

1

1 .

1 .2

......

1 .

T

C C
T

CC

T
C

C

T T x

T xT

T h f xT h f

 −
 − − ⋅ =

 − + + − +

1*

s l

ls
k

ls

 (4-19)

where the superscript T stands for transpose. Let us denote:

()
()

()

()
()

()

1

1

1

1 .

1 .2
,and

......

1 .

T

C C
T

CC

T
C

C

T T x

T xT

T h f xT h f

 −
 − − = =

 − + + − +

S

s l

ls
l

ls

 (4-20)

where S is a (h−f)×(d⋅f) matrix and l a (h−f)×1 vector. A robust
solution of the linear equation set S⋅k1*=l can be obtained using
singular value decomposition (SVD) [PFTV02]. SVD
decomposes S into U⋅W⋅VT, where U is a (h−f)×(d⋅f) column-

5 We assume that f≤h, namely, the number of locations in one
state cannot exceed the total number of historical locations
maintained.

orthogonal matrix, W=[diag(w1,w2,…,wd⋅f)] a (d⋅f)×(d⋅f) diagonal
matrix with positive elements w1, w2, …, wd⋅f on the diagonal, and
V a (d⋅f)×(d⋅f) orthogonal matrix (i.e., V⋅VT=I, the identity
matrix). Thus, k1* is solved as:

k1* = V⋅[diag(1/w1, 1/w2,…, 1/wd⋅f)] ⋅(UT⋅l) (4-21)

Two points worth mentioning are: (i) if |wi| is sufficiently close to
zero (typically, wi<10-12), its corresponding element in equation 4-
21, is simply replaced by 0; (ii) when h−f≤d⋅f, equation 4-21
yields a k1* which strictly satisfies equation 4-19. On the other
hand, if h−f>d⋅f, we have more equations than unknowns, in
which case SVD produces a k1* that minimizes |S⋅k1*−l|2
[PFTV02]. This is exactly what we need in order to minimize ssd,
since equation 4-14 can be re-written as:

2

1 1

| (). (). |
C

C

Td

o i i
i t T h

ssd t x t x
= = − +

= −∑ ∑ l ο (4-22)

|S⋅k1*−l|2=∑TC
t=TC−H+1

|lo(t).x1−o(t).x1|
2, i.e., i=1 in the above equation.

Similarly, the solution for the i-th row ki* of Ko minimizes

∑TC
t=TC−H+1

|lo(t).xi−o(t).xi|
2; thus the overall Ko optimizes ssd. Note

that, if the object locations lo(TC−h+1), lo(TC−h+2), …, lo(TC) fall
perfectly on a curve represented by Ko, equation 4-21 will always
yield a perfect solution (i.e., strictly satisfying equation 4-19),
even if h−f>d⋅f (i.e., in this case, some equations are unnecessary
due to their linear dependence on the others).

We close this section with another heuristic that produces a
robust motion matrix Ko (prior to performing SVD). The heuristic
is based on equation 4-12, which gives d additional constraints for
solving k1* from equation 4-19. Let us introduce d translation
vectors (1≤i≤d) ci={c1,c2,…,cd, c1,c2,…,cd, …, c1,c2,…,cd} (as
mentioned in Section 4.1, c1,c2,…,cd is repeated f times) with cj=1
(1≤j≤d and j=i) and cj=0 (1≤j≤d and j≠i). For example, c1={1,0,
…,0, 1,0,…,0, …, 1,0,…,0} and cd={0,0,…,1, 0,0,…, 1,…,0,
0,…,1}. We modify equation 4-19 by adding d rows to S and L as
follows:

()
()

()

()
()

()

1

1

1* 1

1

1 .

1 .2

......

1 .

1

......
0

T

C C
T

CC

T
CC

d

T T x

T xT

k T h f xT h f

c

c

 −

 −−

 ⋅ = − + + − +

s l

ls

ls (4-23)

In general, when solving ki*, the i-th number added in L (i.e., the
right hand side vector of equation 4-23) should be 1 and the other
ones should be 0. After obtaining Ko, we can predict the motion
state at any future timestamp with equation 4-16, using the most
recent state s(TC).

5. THE SPATIO-TEMPORAL PREDICTION TREE
As discussed in Section 3, we can choose any function for
representing trajectories at the server, including the linear model,
in which case the TPR-tree can be applied directly. A coarse
function, however, may lead to poor performance, because it is
likely to generate (i) large horizon bounds do (and therefore
numerous false hits during query processing) and (ii) frequent
error-driven updates (and large communication costs). On the
other hand, although a refined function provides more accurate
approximation alleviating the above problems, it involves a large

number of parameters, requires more storage space, and is more
difficult to manipulate. Our solution constitutes a trade-off
between the two cases. In particular, we assume that the motion of
all objects at the server side is represented as a polynomial
function mS

o with arbitrary degree D:

 mS
o(t)=o(to)+c1⋅(t−to)+c2⋅(t−to)

2+...+cD⋅(t−to)
D (5-1)

where (i) to is the reference time of object o (i.e., the last
timestamp that o updated mS

o(t)), (ii) o(to) is its location at to, and
(iii) c1, c2, ..., cD are constant d×1 vectors decided based on the
precise motion function o(t). Equation 5-1 can be transformed into
the matrix form.

mS
o(t) = o(to)+B⋅{t−to, (t−to)

2, ..., (t−to)
D}T (5-2)

where the polynomial matrix B is a d×D constant matrix whose D
columns are c1, c2, ..., cD, and {t−to, (t−to)

2, ..., (t−to)
D} is a 1×D

vector (equation 5-2 uses its transpose). Following the
terminology of Section 4, bij is the element of B on the i-th row
and j-th column, and bi* (a 1×D vector) is the i-th row.

In addition to their flexibility for tuning the motion resolution
(by setting the appropriate value of D), polynomial functions are
axis-independent, which, as shown shortly, facilitates the design
of efficient spatio-temporal access methods. Section 5.1 discusses
the computation of mS

o(t) based on the individual object function
o(t), and clarifies the error-driven update algorithm. Section 5.2
presents the spatio-temporal prediction tree (STP-tree), used to
support general polynomial movements at the server. Finally,
Section 5.3 discusses processing of predictive range queries.

5.1 Optimal polynomial derivation
Given the degree D of mS

o(t) (which is set in advance based on the
aforementioned trade-off) and an individual motion function o(t)
(computed using the techniques of Section 4), our goal is to
compute the parameters of mS

o(t) that minimize the squared sum
of the distances between mS

o(t) and o(t) during the next H
timestamps:

2 2

1

| () () | | (). (). |
C C

C C

T H T Hd
S S S

o o i i
t T i t T

ssd t t t x t x
+ +

= = =
= − = −∑ ∑ ∑m mο ο (5-3)

where mS
o(t).xi is the coordinate of mS

o(t) on the i-th axis
(similarly for o(t). xi). Since mS

o(t) is axis-independent, it suffices
to discuss metric ssd1

S on the first dimension:

2
1 | (). (). |

C

C

T H
S S

o 1 1
t T

ssd t x t x
+

=
= −∑ m ο

2 T 2| (). { , () ,..., () } (). |
C

C

T H
D

0 1 0 0 0 1
t T

t x t t t t t t t x
+

=
= + ⋅ − − − −∑ 1*o b ο

(5-4)

The value of b1* that minimizes ssd1
S is the one that best satisfies

the following equation:

TC−to (TC−to)2 ... (TC−to)D

TC+1−to (TC+1−to)2 ... (TC+1−to)D

...
TC+H−to (TC+H−to)2 ... (TC+H −to)D

⋅b1*
T=

o(TC).x1− o(to).x1

 o(TC+1).x1− o(to).x1

...
 o(TC+H).x1− o(to).x1

(5-5)

The solution (similar to equation 4-19) is again based on SVD and
omitted. The point that requires clarification concerns the
frequency of the above computations. At every timestamp, each
object first calculates its individual function o(t) and the
maximum difference dmax between o(t) and mS

old(t) for the next H
timestamps, where mS

old(t) is its previous representation at the
server. According to the error-driven update policy of Section 3, if

dmax≤do (last reported value of the horizon bound), the object does
not need to issue an update (since it will not cause a false miss)
and the computation of mS

o(t) is avoided. On the other hand, if
dmax>do, the object calculates the new mS

o(t) and do (this time
based on mS

o(t)) and transmits them to the server. Figure 5.1
summarizes these procedures.

Algorithm object_update
Input lo(TC−h+1), lo(TC−h+2), …, lo(TC): object locations at the h
most recent timestamps, mS

old(t) and dold: last transmitted values
for the server motion function and the horizon bound
1. compute current motion function o(t)
2. dmax=max{dist(o(t), mS

old(t)), for TC≤t≤TC+H}
3. if dmax>dold
4. compute the new optimal mS

o(t)
5. do= max{dist (o(t), mS

o(t)), for TC≤t≤TC+H}
6. transmit mS

o(t) and do to server
End object_update

Figure 5.1: Error-driven update algorithm at each timestamp

The computations of mS
o(t) and the update messages can be

reduced at the expense of the query cost. In particular, instead of
the horizon bound do, the object can send a larger value in order to
delay its potential violation in the future. However, this will
increase the number of false hits during query processing. The
trade-off depends on the relative frequency of updates and
queries. In update-intensive applications a large bound would be
appropriate, while in systems with heavy query workload the
actual horizon bound should be used.

5.2 STP-tree construction algorithms
The STP-tree constitutes the generalization of the TPR and TPR*-
trees to arbitrary polynomial functions. Each leaf entry keeps the
reference time to of an object o, its location o(to) at to, the horizon
bound do, and the polynomial matrix B. A non-leaf entry e stores
(i) a timestamp te, which is the maximum of all the reference
timestamps of the objects in its sub-tree, (ii) a distance de which is
the largest horizon bound of its children (iii) two points emin and
emax that define the opposite corners of a d-dimensional rectangle
enclosing the locations of the children at time te, and (iv) two
matrices Bmin Bmax such that each element in Bmin (Bmax) is the
smallest (largest) of the corresponding element (i.e., at the same
row and column) of all the polynomial matrices in its sub-tree. For
D=1 (i.e., linear movement), the representation of the STP-tree
degenerates to that of the TPR-tree.

For an intermediate entry e, we define its MBR eMBR(t) at any
future timestamp t as the rectangle with opposite corners emin(t),
emax(t) computed as follows.

emin(t) = emin+Bmin⋅{t−te, (t−te)
2, ..., (t−te)

D}T
emax(t) = emax+Bmax⋅{t−te, (t−te)

2, ..., (t−te)
D}T

(5-5)

It can be shown that eMBR(t) covers the location o(t) of each child
object o, which is a prerequisite for avoiding false misses. We
further define the integrated perimeter of e during the horizon

[TC, TC+H] as ∑TC+H
t=TC

(2⋅Manh(emax(t) −emin(t))), where Manh is the

Manhattan norm of a vector, i.e., for a d-dimensional vector v,
Manh(v)=∑d

i=1(v.xi), where v.xi is its coordinate on the i-th axis.
The construction algorithms of the STP-tree follow those of

the TPR- and TPR*-trees as reviewed in Section 2. The insertion
algorithm first identifies the path (from the root to a leaf) that
incurs the minimum increase of the integrated perimeter sum
(among all the paths), using the TPR*-tree choose path method. If

the leaf node overflows, some entries, selected by the TPR*-tree
pick worst algorithm, are re-inserted, after which any node that
overflows is split. Deletion first locates the object (with
polynomial matrix B) to be deleted, using its location at the
current time, by descending nodes whose Bmin and Bmax include B
(i.e., each element of B falls in the range defined by the
corresponding elements in Bmin and Bmax). If the deletion causes
the corresponding leaf node to underflow (the minimum
utilization is set to 40% of the capacity), the node is removed and
its entries are re-inserted. Overflows and underflows at the upper
levels are treated in the same way; e.g., the removal of a leaf node
will delete an entry from its parent, which may lead to an
underflow at the next level etc.

The STP-tree also adapts the sorting split method of the
TPR*-tree (reviewed in Section 2.3), which obtains D+1 sorted
lists on the coefficients of the polynomial motion function (i.e.,
o(to), c1, ..., cD in equation 5-1) and decides the final split
according to the entry distribution that minimizes the integrated
perimeter sum. The efficiency of the original algorithm, however,
drops as D increases because, for larger D, the effect of each
coefficient on the MBR size diminishes; thus, lowering its value
may not decrease the MBR size considerably, which is also
decided by the other coefficients. Motivated by this, we present an
alternative split strategy called the rank split, which works as
follows. Starting with the first axis, the algorithm sorts the
coordinates of the current locations, and associates each object
with a rank, i.e., its sequence number in the sorted list. To
illustrate this, consider Figure 5.2, which shows the location
(black dots) of 4 linearly moving points at the current time TC=0,
and their location (white dots) at time H. The sorted list (at time 0)
on the x-dimension is {o1, o3, o2, o4}, and the ranks of o1, o2, o3,
o4 are 1, 3, 2, 4 respectively.

x

y

o1(0)
o4(0)

o4(H)

o1(H)

o2(0)

o2(H)
o3(0)

o3(H)

Figure 5.2: Illustration of the STP split algorithm

Next, the algorithm performs another sorting of the coordinates
(on the same dimension) at time H and assigns ranks accordingly.
The ranks of o1, o2, o3, o4 in the second sorted list are 2, 1, 4, 3.
The total rank of each object is the sum of its ranks in the two
lists, i.e., 3, 4, 6 and 7 for o1, o2, o3 and o4, respectively. Finally,
the objects are sorted on their total ranks and distributed
accordingly to the new nodes. Assuming that each node contains
at least two entries, o1, o2 are placed into the first node and o3, o4
into the second one. Having finished with the x-axis, the
algorithm repeats the above steps on the y-dimension, and the
final split is the better of the two distributions. The total number
of sorting operations is 3d (i.e., independent of D) as opposed to
d⋅(D+1) for the sorting split method. As shown in the
experiments, the rank split leads to a more efficient STP-tree for
D≥3. Finally, splitting a non-leaf node is reduced to the above
case by taking the centroids of the MBRs.

5.3 Query processing
We now illustrate the algorithm for answering a range query,
which constitutes the main target of predictive spatio-temporal

indexes (e.g., TPR- and TPR*- trees aim at the optimization of
range search). Given a query centered at qP, with radius e and
interval qT=[qT−, qT+], we first show how to decide whether a leaf
entry is a definite or a candidate result. Figure 5.3 illustrates the
approximate locations of two objects o1, o2 at timestamps qT−
(black dots) and qT+ (white) respectively. Particularly, the circle
around each dot indicates the area that contains the actual object
location at the corresponding timestamp, according to its horizon
bound. We can assert that o1 definitely satisfies the query (without
examining its individual motion function), since there exists a
timestamp t∈ qT such that dist(mS

o1(t),qP)+de≤e, i.e., the circle
centering at mS

o1(t) with radius do1 completely falls in the query
region. On the other hand, object o2 is not a definite answer
because dist(mS

o2,qP,qT)+de > e for each t∈ qT. Nevertheless, o2 is a
candidate since the circle around mS

o2(qT-) intersects the search
area, implying that the actual location o2(qT-) may be within the
area.

Figure 5.3: Qualifying and candidate objects

Figure 5.4 formally demonstrates the processing method based on
the above description. The algorithm starts from the root of the
STP-tree and descends each intermediate entry satisfying
dist(entry,qP,qT) ≤ e+de, where dist(entry,qP,qT) is the minimum
distance between entryMBR and qP during qT, and de is the
maximum horizon bound of all the children of entry. If
dist(entry,qP,qT) > e+de, the entry is pruned, because for all
objects o in its sub-tree: dist(o,qP,qT) ≥ dist(entry,qP,qT) > e+de ≥
e+do. When a leaf entry (e.g., an object o) is encountered, the
algorithm, (i) either reports o immediately, if it is a definite result,
or (ii) it requests its precise location, if o is a candidate.

Algorithm range_query (qP, e, qT, nd)
Input: query point q, search radius e, query interval qT=[qT−, qT+],
node nd being processed
Output: objects satisfying q
1. if nd is an intermediate node
2. for each entry in nd
3. if dist(entry,qP,qT) ≤ e+de
4. let cnd be the child node of entry
5. range_query(qP, e, qT, cnd)
6. else // nd is a leaf node
7. for each object o in nd
8. if dist(mS

o1,qP,qT)+do ≤ e
9. output o // definite result
10. else if dist(mS

o,qP,qT) < e+do //candidate
11. contact o and wait for o(t)
12. if dist(o,qP,qT) < e
13. output o
End range_query

Figure 5.4: The predictive range search algorithm

6. EXPERIMENTS
In this section, we demonstrate the effectiveness of the proposed
techniques with an extensive experimental evaluation. Section 6.1
first investigates the expressive power of the recursive motion
function, and then Section 6.2 studies the performance of the
query processing architecture.

6.1 Motion function evaluation
The first experiment aims at verifying the correctness of the
theoretical derivation in Section 4. Towards this, we use four
types of mathematical curves, namely, polynomial, sinusoid,
circle, ellipse as demonstrated in Figure 4.1. In particular,
polynomial is the composite of two independent movements x(t),
y(t) on the x- and y-axes respectively, where x(t)=v⋅t (i.e., constant
velocity v=10) and y(t)=v⋅t+(a⋅t2)/2 (i.e., v=10 and constant
acceleration a=1). Sinusoid is also the result of two independent
motions: x(t)=t, y(t)=sin(ω⋅t), where ω is fixed to π/50. The circle
and ellipse are obtained using a fixed angular speed ω=π/50; for
circle, x(t)=cos(ω⋅t), y(t)=sin(ω⋅t), while for ellipse x(t)=
100cos(ω⋅t), y(t)=50sin(ω⋅t) (i.e., the major and minor axes of the
ellipse have lengths 100 and 50, respectively). These curves are
regular, meaning that they can be captured precisely by the
proposed recursive motion function (RMF). The first two lines of
their motion matrices are: []2 0 -1 0 0 0

0 3 0 -3 0 1 (polynomial),

[]2 0 -1 0 0 0
0 1−α−β 0 α 0 β

 (sinusoid) and []1+cos(ω) -2sin(ω) -cos(ω) 2sin(ω)
sin(ω)/2 1+cos(ω) −sin(ω)/2 −cos(ω)

(ellipse), where α= 1−cos(ω)
 cos(2ω)−cos(ω) and β=2cos2(ω)−2cos(ω)

 cos(2ω)−cos(ω) . The remaining
lines are determined by equation 4-6, whereas the matrix for
circle is given in equation 4-8. Note that the motion matrices for
polynomial and sinusoid have 6 rows and columns, in contrast to 4
(rows/columns) for circle and ellipse.

(a) Polynomial (b) Sinusoid (c) Circle (d) Ellipse
Figure 6.1: Movements with known motion matrices

We utilize the techniques described in Section 4 to perform
prediction on these curves using, however, the minimum amount
of space. Specifically, the retrospect f (i.e., the number of
locations in one state) equals the minimum value that is necessary
for deriving the motion matrix of the corresponding trajectory. For
polynomial and sinusoid, f=3 (hence, their matrices have 6=3×2
rows, for dimensionality d=2), and for circle and ellipse f=2.
Further, the number of historical locations maintained at all times
equals 3f, which is the minimum requirement in order to correctly
solve the motion function; otherwise, the number of equations is
smaller than that of unknowns. We do not explicitly input the
motion matrices, but use our algorithm to discover them and then
apply equation 4-13 to compute the location of the moving point
at H (i.e., horizon) timestamps later. The error is defined by the
distance between the computed and actual locations. All the
curves are scaled so that their minimum bounding rectangles have
length 10000 on each axis. For comparison, we also employ a
linear model (denoted as LM in the sequel), where the velocity of
the line is decided from the same number of historical locations
using the least square error method, that minimizes the sum of
the squared distances between the actual and computed locations.

Figure 6.2 illustrates the average prediction error over 200
consecutive timestamps for all trajectories. It is clear that, even for
the farthest horizon (H=20 timestamps), RMF incurs negligible

error (i.e., below 1 in a data space 100002), confirming the
validity of our analysis. As expected, the linear model completely
fails to capture these movements, i.e., its largest error is over
2000. The slight degradation of RMF as H increases is caused by
some imprecision in the motion matrix, which is “magnified” in
the final prediction due to the matrix-power computation (i.e., we
need to calculate the power H of the motion matrix). Since LM is
erroneous in all cases, we omit it in the following discussion.

0.01
0.1

1
10

100
1000

10000

1 5 10 15 20

prediction error (distance)

LM(sinusoid)
RMF(poly)
LM(poly)

RMF(sinusoid)

number of predicted timestamps H

LM(circle)
RMF(circle)

LM(ellipse)
RMF(ellipse)

0.01
0.1
1

10
100

1000
10000

1 5 10 15 20

prediction error (distance)

number of predicted timestamps H
(a) Polynomial and sinusoid (f=3) (b) Circle and ellipse (f=2)

Figure 6.2: Prediction error for regular movements

The next experiment evaluates the expressive power of the
recursive function using unknown complex movements that
cannot be represented as the linear recursive form (see Figure 6.3)
in an obvious manner. Specifically, spiral is the composition of
the linear and circular movements, i.e., x(t)=v⋅t+cos(ω⋅t), and
y(t)=v⋅t+sin(ω⋅t). The values of v and ω are set to 10 and ω=π/50
respectively. Peach, swirl, parabola are generated using the
formula (in the polar space) r(t)p=cp⋅cos(c⋅ω⋅t), where c (=3) and
ω (=π/2) are constants deciding the curve size, and p another
constant that determines the motion type (p=0.5, 0.1, −0.5 for
peach, swirl, and parabola, respectively6). All curves are
normalized to the data space with axis length equal to 10000.

(a) Spiral (b) Peach (c) Parabola (d) Swirl

Figure 6.3: Movements with unknown motion matrices

The difference between the unknown and the regular movements
of Figure 6.1 is that, for unknown curves, the motion matrix varies
(sometimes periodically) with the concrete location of the point
(i.e., the matrix captures the tendency of the recent movement).
Therefore, we do not know the minimum number f of locations in
one state required to capture this movement. Further, unlike the
regular motions (where we can restore the entire curve using a
few locations), for unknown ones we may need longer history
(i.e., larger h) in order to sufficiently train the matrix. Obviously,
both f and h are highly related to H (i.e., how many timestamps in
the future we wish to predict). For example, a good estimation for
the near future may be possible by inspecting only recent history.

In order to study the relationship between these factors, in
Figure 6.4 we vary the retrospect f from 2 to 6 and measure the
average prediction error of 200 timestamps, after setting h=4f and
H to 10. When f=2, the error for spiral and peach is large (Figure
6.4a), indicating that RMF cannot capture these movements by

6 We mention that the parabola thus generated cannot be written
as the conventional form x(t)=y2(t)+2y(t)+1 (which can be
captured by RMF). Particularly, it is not the composition of two
independent x- and y- movements.

using a state with only two locations. However, if we allow only
one more location in each state, the estimation error drops from
around 500 to below 10. The precision continuously improves as
each state includes more locations and the error eventually drops
below 1. Figure 6.5 shows the trajectories of the predicted peach
for f=2 and 3, where the improvement is clearly visible. Similar
behavior is also observed for parabola and swirl in Figure 6.4b,
except that the error for f=2 is smaller.

100

retrospect f

prediction error (distance)
RMF(spiral) RMF(peach)

0.001
0.01
0.1

1
10

1000

2 3 4 5 6

 retrospect f

prediction error (distance)

RMF(parabola) RMF(swirl)

0.001

0.01

0.1

1
10

100

2 3 4 5 6

(a) Spiral and peach (b) Parabola and swirl

Figure 6.4: Prediction error vs. the retrospect (h=4f, H=10)

(a) f=2 (b) f=3

Figure 6.5: Improvements in peach with larger retrospect

In Figure 6.6 we fix f=4, H=10 and measure the prediction error as
a function of h (from 3f=12 to 5f=20). For spiral and swirl the
accuracy increases monotonically with h, but for peach and
parabola, the error initially decreases, and then grows
(nevertheless, the final error is still very small). In these cases, as
h becomes larger, it is more difficult for RMF to quickly adapt to
the motion changes since it is also influenced by old locations
leading to biased estimation. Therefore, blindly increasing the
history length does not necessarily enhance the prediction. Figure
6.7 illustrates the error of predicting different timestamps in the
future using f=4 and h=16. As in Figure 6.2, the accuracy
gradually decreases, but the highest error is still very small (25, or
0.25% of the length of the data axis) even for the farthest horizon.

number of historical locations h

prediction error (distance)

0.1

1

10

12 16 20

RMF(spiral) RMF(peach)

prediction error (distance)

RMF(parabola) RMF(swirl)

0.1

1

10

12 16 20
number of historical locations h

(a) Spiral and peach (b) Parabola and swirl
Figure 6.6: Prediction error vs. the history length (f=4, H=10)

number of predicted timestamps H

prediction error (distance)

RMF(spiral) RMF(peach)

0.001

0.01

0.1

1

10

100

1 5 10 15 20

prediction error (distance)
RMF(parabola) RMF(swirl)

0.001

0.01

0.1

1

10

100

1 5 10 15 20
number of predicted timestamps H

(a) Spiral and peach (b) Parabola and swirl
Figure 6.7: Prediction error vs. horizon (f=4, h=16)

6.2 Query processing evaluation
This section evaluates the efficiency of the STP-tree as well as the
filter-refinement processing strategy. Due to the lack of real
spatio-temporal data, we generate synthetic movements following
the methodology of previous work [SJLL00, TPS03]. Specifically,
1k terminals are first randomly selected from a real point dataset
([Tiger]) and the data space is scaled to length 10000 on each
axis. Each object decides a source and destination terminal, whose
distance is larger than 1000 (i.e., 1/10 of the axis length). The
movement from the source to the destination consists of three
phases. In the first phase, the object accelerates with constant
acceleration 2 on each axis towards the direction of the
destination. The accelerative phase lasts 10 timestamps after
which the velocity equals 20. In the second phase, the object
moves towards the destination along an arc of a circle or a
parabola. These two curves are representatives of the regular and
unknown movements examined in the previous section. Their
parameters are decided so that the object, maintaining constant
speed 20, travels roughly 50 timestamps to reach the position
where it starts the last decelerating phase. In this phase, the object
slows down with acceleration −2 on each dimension before
arriving at the destination (the phase lasts 10 timestamps). Then,
the object selects the next destination, and repeats the above
movements. The dataset contains the simulation of 10k objects
over 200 timestamps, i.e., a total of 2 million location changes.

At each timestamp, we execute 50 queries whose locations
follow the distribution of the terminals, and the radii of their
(circular) search area constitute a workload parameter e (denoted
as a percentage of the axis length). Each query is associated with a
(future) time interval qT=[qT−, qT+] such that (i) the interval length
qtlen is also a parameter, and (ii) qT randomly distributes in next
H=20 timestamps (i.e., the horizon). We measure two types of
costs: (i) the number of candidate objects that qualify the filter
step (which determines the communication overhead of the
refinement step), and (ii) the I/O cost (in terms of the number of
node accesses) at the server index. The page size is set to 4k bytes
for all experiments. The node capacity of the STP-tree depends on
the highest degree D of the polynomial motion function and
ranges from 37 (D=5) to 92 (D=1).

The first experiment studies the effect of D on the
communication overhead, which involves (i) the error-driven
object updates, and (ii) the refinement step of query evaluation.
Figure 6.8a illustrates the average number of updates per
timestamp, as a function of D. When D=1, every object must issue
an update at each timestamp, resulting in prohibitive overhead. In
this case an object is approximated by the line tangent to the
actual motion at its current location. As it deviates from the
location, its distance to the tangent line always increases (a
property for all smooth curves), thus triggering the update at the
next timestamp. The number of updates decreases sharply for
D=2, indicating that the expressive power of a 2-degree
polynomial is significantly higher. As D increases further,
however, the update savings diminish and the improvement for
D≥3 is only marginal. This indicates that the assumed
(accelerative, circular, parabola) movement types can be
adequately approximated using a 3-degree polynomial. Figure
6.8b plots the average number of refinement candidates per query
(e=2.5% and qtlen=10%). Similar to Figure 6.8a, the
improvement drops quickly when D exceeds 3.

num. of updates/timestamp

0

2000

4000

6000

8000

10000

1 2 3 4 5
highest polynomial degree D highest polynomial degree D

0

50

100

150

200

250

1 2 3 4 5

num. of candidate obj./query

(a) Update cost vs. D

(b) Refinement cost vs. D
(e=2.5%, qtlen=10%)

Figure 6.8: Influence of D on the network cost

Figure 6.9 shows the average number of node accesses for
answering a query (e=2.5% and qtlen=10) as a function of D, for
the trees obtained by the sorting split and rank split algorithms.
Interestingly, the query cost decreases until D reaches a certain
threshold 3 (for rank split) or 2 (for sorting split), but increases as
D grows further. To understand this, note that a larger D lowers
both the node fanout (which deteriorates query performance) and
the objects’ distance bounds (which improves performance).
When D is small, the benefits of increasing the node size
outweigh the shortcomings, explaining the initial performance
improvement. As D crosses the threshold, however, the
shortcomings dominate the benefits. Rank split outperforms the
sorting split for D≥3, while as discussed in Section 5.2 it incurs
smaller computational overhead. For the remainder of the section
we apply rank split and set D=3, since this value leads to a
balanced behavior with respect to update, refinement and query
processing costs.

15

highest polynomial degree D

0
5

10

20
25
30
35

1 2 3 4 5

num. of node accesses/query

rank splitsorting split

Figure 6.9: Server I/O cost vs. D (e=2.5%, qtlen=10)

The next experiment compares STP- and TPR-trees (we use the
TPR* implementation). Figure 6.10a (6.10b) fixes e to 2.5%, and
illustrates the refinement (I/O) cost, as a function of qtlen. In both
cases, the STP-tree outperforms the TPR-tree significantly. In
particular, the number of candidate objects in STP is about 15%
larger than the actual query size (also included in the diagrams).
On the other hand, the number of candidate objects retrieved by
TPR is 3-4 times larger. The difference in the performance of the
two structures increases with qtlen. Similar observations hold for
Figure 6.11, which measures performance with respect to the
range radius e, fixing qtlen to its median value 10.

num. of candidate obj./query

10
60

110
160
210
260
310
360
410

1 5 10 15 20
qtlen

STP TPR

35
43

48
59 71

size of the
actual result

num. of node accesses/query

qtlen

10
12
14
16
18
20
22
24
26
28
30

1 5 10 15 20

STP TPR

(a) Refinement cost (b) Server I/O cost

Figure 6.10: Query costs vs. qtlen (e=2.5%)

num. of candidate obj./query

e

STP TPR

0

100

200

300

400

500

600

1% 3% 5% 7% 9%

size of the
actual result 48

4
11

83

157

num. of node accesses/query

e

STP TPR

0

10

20

30

40

50

60

1% 3% 5% 7% 9%

(a) Refinement cost (b) Server I/O cost

Figure 6.11: Query costs vs. e (qtlen=10)

Figures 6.12a and 6.12b exhibit the average refinement and server
costs at individual timestamps, for queries with parameters
e=2.5% and qtlen=2.5%. Although the number of candidate
objects remains roughly the same with time, the I/O overhead
gradually increases due to the structural deterioration of the both
trees. This is consistent with the results of the previous work
[SJLL00, TPS03]. Nevertheless, the STP-tree still outperforms the
TPR-tree in all cases. The last experiment concerns the update
cost. Specifically, Figure 6.13a plots the number of updates per
timestamp, issued by objects whose horizon bound has been
exceeded. As discussed in the context of Figure 6.8a, in case of
D=1 (i.e., the TPR-tree) each object must issue an update at every
timestamp. Since the STP-tree uses a higher (D =3) degree, the
number of updates is significantly smaller. Figure 6.13b illustrates
the average cost of each update (including insertions and
deletions) in the corresponding structure. Similar to Figure 6.12b,
the increase in the update cost is caused by the structural
degradation.

50

200

num. of candidate obj./query
STP TPR

0

100

150

250

1 40 80 120 160 200
num. of elasped timestamps

num. of node accesses/query

num. of elasped timestamps

STP TPR

0
5

10
15
20
25
30

1 40 80 120 160 200

(a) Refinement cost vs. time (b) Server I/O cost vs. time
Figure 6.12: Query cost vs. time (e=2.5%, qtlen=10)

num. of updates

num. of elasped timestamps

0

2k

4k

6k

8k

10k

1 40 80 120 160 200

STP TPR

num. of node accesses/update

0
1
2
3
4
5
6
7

1 40 80 120 160 200
num. of elasped timestamps

STP TPR

(a) Number of updates vs. time (b) Server I/O cost
Figure 6.13: Update cost vs. time

7. CONCLUSION
Previous techniques for prediction in spatio-temporal databases
usually assume linear movements, which seriously hinders their
applicability in practice. Our paper overcomes the shortcomings
of linear prediction with a novel architecture that supports
arbitrary motion patterns, not necessarily known in advance.
Further, we propose the concept of recursive motion functions and

prove, both theoretically and empirically, that it can accurately
express a large number of movements. Finally, we develop a
spatio-temporal access method that generalizes the current state-
of-the-art indexes to polynomial of higher (than 1) degrees. We
believe that this work lays down a solid foundation for future
research on the management and indexing of moving objects. For
example, existing results on predictive selectivity estimation
[CC02, TSP03] are applicable only to the filter step of our
architecture, while the selectivity estimation of actual object
trajectories remains an open problem.

ACKNOWLEDGEMENTS
This work was supported by grant HKUST 6180/03E from Hong
Kong RGC.

REFERENCES
[AAE00] Agarwal, P., Arge, L., Erickson, J. Indexing Moving

Points. PODS, 2000.
[AA03] Aggarwal, C., Agrawal, D. On Nearest Neighbor

Indexing of Nonlinear Trajectories. PODS, 2003
[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.

The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles. SIGMOD, 1990.

[CC02] Choi, Y., Chung, C. Selectivity Estimation for Spatio-
Temporal Queries to Moving Objects. SIGMOD,
2002.

[HKT03] Hadjieleftheriou, M., Kollios, G., Tsotras, V.
Performance Evaluation of Spatio-temporal
Selectivity Estimation Techniques, SSDBM, 2003.

[HKTG02] Hadjieleftheriou, M., Kollios, G., Tsotras, V.,
Gunopulos, D. Efficient Indexing of Spatiotemporal
Objects, EDBT, 2002.

[ISS03] Iwerks, G., Samet, H., Smith, K. Continuous K-
Nearest Neighbor Queries for Continuously Moving
Points with Updates. VLDB, 2003.

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. On Indexing
Mobile Objects. PODS, 1999.

[PFTV02] Press, W., Flannery, B., Teukolsky, S., Vetterling, W.
Numerical Recipes in C++ (second edition).
Cambridge University Press, ISBN 0-521-75034-2,
2002.

[PSTW93] Pagel, B., Six, H., Toben, H., Widmayer, P. Towards
an Analysis of Range Query Performance in Spatial
Data Structures. PODS, 1993.

[SJ02] Saltenis, S., Jensen, C. Indexing of Moving Objects
for Location-Based Services. ICDE, 2002.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.
Indexing the Positions of Continuously Moving
Objects. SIGMOD, 2000.

[Tiger] http://www.census.gov/geo/www/tiger/
[TP02] Tao, Y., Papadias, D. Time-Parameterized Queries in

Spatio-Temporal Databases. SIGMOD, 2002.
[TPS03] Tao, Y., Papadias, D., Sun, J. The TPR*-Tree: An

Optimized Spatio-Temporal Access Method for
Predictive Queries. VLDB, 2003.

[TSP03] Tao, Y., Sun, J., Papadias, D. Selectivity Estimation
for Predictive Spatio-Temporal Queries. ICDE, 2003.

[TUW98] Tayeb, J., Ulusoy, O., Wolfson, O. A Quadtree-Based
Dynamic Attribute Indexing Method. The Computer
Journal, 41(3): 185-200, 1998.

