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Abstract. The proliferation of powerful mobile devices with built-in 

navigational capabilities and the adoption in most metropolitan areas of fast 

wireless communication protocols have recently created unprecedented 

opportunities for location-based advertising. In this work, we provide models 

and investigate the market for location-based sponsored search, where 

advertisers pay the search engine to be displayed in slots alongside the search 

engine’s main results. We distinguish between three cases: (1) advertisers only 

declare bids but not budgets, (2) advertisers declare budgets but not bids, and 

(3) advertisers declare both bids and budgets. We first cast these problems as 

game theoretical market problems, and we subsequently attempt to identify the 

equilibrium strategies for the corresponding games. 

Keywords: Location-based advertising, Game theory, Nash equilibrium. 

1   Introduction 

The growing popularity of powerful and ubiquitous mobile devices has recently 

created an immense potential for location-based advertising (LBA) [5]. Smartphone 

use is rapidly increasing in all parts of the world; in the US only, its penetration is 

currently approaching 50% of all mobile subscribers, while around 60 percent of the 

new phones in 2011 were smartphones1. This development has certainly been 

facilitated by the adoption of broadband wireless protocols, e.g., 3G/4G networks, and 

the prevalence of Wi-Fi hotspots. Moreover, modern mobile devices possess built-in 

navigational functionalities using variations of sophisticated technologies such as 

triangulation, GPS, and cell-ID [5]. Advertisers can utilize this positional information 

to send advertising material to relevant consumers, which has in turn created an 

exciting market for LBA with companies such as AdMob (acquired by Google) and 

Quattro Wireless (acquired by Apple) leading the charge. 

Location-based advertising, especially in its mobile form, is poised for tremendous 

growth because of its special characteristics [1]. First, it enables personalization: a 

mobile device is associated with the identity of the user so the advertising material 

                                                           
1See http://www.informationweek.com/news/mobility/business/231602163. 

http://www.informationweek.com/news/mobility/business/231602163


can be individually tailored. For example, users can state their preferences, or even 

specify the kind of advertising messages they are interested in. Second, it is context-

aware, i.e., the advertising messages can take into account the context such as time 

and location. Third, mobile devices are portable and allow instant access: users carry 

their device most of the time, and advertisers can target interesting consumers any 

time of the day. Finally, mobile advertising can be interactive since it is possible to 

engage the user to discussions with the advertiser; this can also serve as a means of 

market research. As a result of the aforementioned reasons, marketers can reach their 

audience of interest in a much more targeted, personal and interactive manner, and 

thus increase their advertising campaign’s success. 

On the other hand, currently the most profitable and thriving business model for 

online advertising is sponsored search advertising; Google’s total revenue alone in 

fiscal year 2010 was $29.3 billion and mainly came from advertising
2
. Sponsored 

search consists of three parties [12]: (i) users pose keyword queries with the goal of 

receiving relevant material; (ii) advertisers aim at promoting their product or service 

through a properly designed ad, and target relevant users by declaring to the search 

engine a set of keywords that capture their interest; (iii) the search engine mediates 

between users and advertisers, and facilitates their interaction. As several advertisers 

may match a given user query, an auction is run by the search engine every time a 

user poses a query to determine the winners as well as the price per click. Concretely, 

each advertiser declares to the engine a priori its bid for a given keyword, so the 

auction assigns ad slots to advertisers based on their bids. 

In this work, inspired both by the success of sponsored search advertising and the 

immense potential for LBA, we study the promising area of location-based sponsored 

search advertising. In particular, we examine how the spatial component can be 

incorporated into the current sponsored search models, and investigate algorithms for 

selling advertising opportunities to advertisers. Similar to prior literature on 

conventional sponsored search advertising [8], in order to model the advertisers we 

distinguish between the three following cases: (1) the advertisers declare a maximum 

amount of money that they are willing to pay per click, but are not bounded by a total 

daily budget, (2) the advertisers have a maximum daily budget at their disposal, but 

do not have an upper bound on the amount of money that they are willing to pay per 

click, and (3) the advertisers have both a total daily budget and a maximum amount of 

money that they are willing to pay per click. We will explicitly show how the 

introduction of the spatial component affects the underlying sponsored search auction 

in each of the cases above by using tools and techniques from game theory. 

The rest of the paper is organized as follows. Section 2 surveys related work. 

Section 3 provides a general model for location-based sponsored search. Sections 4-6 

investigate three interesting settings for location-based sponsored search: (1) 

advertisers declare only bids (Section 4), (2) advertisers declare only budgets (Section 

5), and (3) advertisers declare both bids and budgets (Section 6). Using tools from 

game theory, we analyze the three different cases and provide the Nash equilibrium 

strategies when possible. Finally, Section 7 concludes the paper providing interesting 

directions for future research. 
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2   Related Work 

2.1   Location-based Advertising  

Location-based advertising (LBA) involves delivering advertising material to users 

based on their location. It follows two different modes of operation [3]: pull-based 

(also termed query-based) and push-based. The former provides advertising 

information only upon specific request by the user, e.g., when a car driver asks for the 

nearest gas stations. The latter delivers marketing material to users within a specified 

geographical area, without their explicit request; for instance, shops in a mall seeking 

to promote their new product may target all shoppers by delivering the corresponding 

advertising information. Moreover, push-based advertising is further divided into two 

types: opt-in, where users receive relevant advertising material by determining in 

advance the kind of ads they are interested in, and opt-out, where users receive 

marketing messages until they explicitly declare they do not wish to receive any 

further material.  

LBA presents immense opportunities for higher return on investment compared to 

other traditional advertising avenues because it enables contextually relevant 

advertising [5]. Moreover, the ability to instantaneously connect users to places or 

resources of interest in their immediate vicinity can offer an unrivaled user experience 

and satisfaction. Interestingly, LBA can also serve as a subtle tool for market 

research: consumers constantly provide information about their behavior through their 

mobile activity, which can be subsequently used to increase the effectiveness of a 

marketing campaign. Despite its obvious benefits, consumer’s privacy is still a major 

cause of concern for LBA. Advertisers need to be very clear about how they utilize, 

process, and store user information; data breaches, for instance, can be especially 

detrimental to the advertiser’s reputation and long-term success, since they can reveal 

personal information. A second major concern stems from the intrusive nature of 

some forms of LBA, in particular push-based that occurs without the user’s explicit 

request. Among the two modes, opt-out is associated with a higher intrusion risk and 

is thus used more rarely; opt-in, in contrast, is permission-based advertising and may 

be used to effectively rule out unsolicited marketing messages (i.e., spamming) [18]. 

2.2   Sponsored Search Advertising 

Sponsored search advertising is the most profitable form of online advertising. It 

constitutes a large and rapidly growing source of revenue for search engines. 

Currently, the most prominent players in the sponsored search market are Google’s 

AdWords [22], and Bing Ads [21].  In sponsored search advertising, advertisers place 

properly designed ads to promote their product or service. They target interesting 

users by declaring to the search engine a list of keywords that a relevant user may 

search for. For each keyword, they additionally specify their maximum cost per click 

(maximum CPC), also known as maximum bid, which corresponds to the maximum 

amount of money they are willing to spend to appear on the results page for a given 

keyword. Note that bidding takes place continuously. Moreover, advertisers may be 



limited by budget constraints, so they may declare a maximum daily budget as well. 

Every time a user enters a query, a limited number of paid (sponsored) links (slots) 

appears on top or to the right side of the unpaid (organic or algorithmic) search 

results. In order to determine the winning advertisers as well as the price they need to 

pay, an auction occurs in an automated fashion. In practice, large search engines also 

compute a quality score (QS) for every advertiser which measures how relevant the 

keyword, ad text and landing page are to a user. 

Concretely, sponsored search advertising consists of three stages. (i) Ad retrieval 

returns all ads that are relevant to the user’s query, and is usually performed by 

sophisticated machine learning algorithms. An ad’s relevance is measured by several 

metrics, such as ad-query lexical and semantic similarity. To match an ad against a 

query, the search engine needs to take into account all ad information, including the 

bid phrase it is associated with, its title and description, the landing page it leads to, its 

URL, etc. Moreover, query substitution and query rewriting are frequently used to 

find relevant ads. As the ad pool may consist of millions of ads, efficient indexing 

techniques have been proposed to improve the performance of the first stage. (ii) 

After retrieving relevant ads, the search engine performs ad ranking. Ads are sorted in 

decreasing order of their rank, where the ad rank is determined by both the bid placed 

by the advertiser on the keyword, and the quality of the ad. The ad with the highest 

rank appears in the first position, and so on down the page, until all slots have been 

filled. Google AdWords
3
, for instance, defines the ad rank as the product CPC·QS. 

(iii) The last stage is ad pricing through properly designed auctions to determine the 

cost per click that the advertiser will be charged whenever the user clicks on their ad 

(pay per click model). The natural method would be to make bidders pay what they 

bid (i.e., generalized first-price auction), but that leads to several instabilities and 

inefficiencies. Instead, all large search engines currently employ a generalized 

second-price auction (GSP) [7][19]. A GSP auction charges an advertiser the 

minimum amount required to maintain their ad’s position in search results, plus a tiny 

increment. For instance, suppose that ranking is based on Google’s AdRank and that 

K slots are available, and are numbered 1, …, K, starting from the top and going 

down. Moreover, let the advertiser i at position i have a maximum bid bi and a quality 

score QSi. In GSP, the price for a click for advertiser i is determined by the advertiser 

i+1, and given by bi+1·QSi+1/QSi, which is the minimum that i would have to bid to 

attain its position. Note that in this pricing scheme, a bidder’s payment does not take 

into consideration its own bid. Also, prices per click can be computed in linear time in 

the number of advertisers O(N) for a fixed number of slots K. 

Despite its prevalence as the standard auction format, GSP is not truthful (also 

known as incentive-compatible): advertisers have no incentive to declare their true 

valuations to the search engine. Stated equivalently, reporting the true bids may not 

constitute a Nash equilibrium [7]. As a result, advertisers may devote considerable 

resources to manipulate their bids, potentially paying less attention to ad quality and 

other campaign goals. Interestingly, we can alleviate this shortcoming by altering the 

payment scheme: instead of paying the minimum amount of money required to win its 

position, an advertiser is requested to pay an amount of money equal to the 

externalities that it imposes on the others, i.e., the decreases in the valuations of other 
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bidders because of its presence. This payment scheme yields the Vickrey-Clarke-

Groves (VCG) auction, named after William Vickrey [20], Edward H. Clarke [4], and 

Theodore Groves [11]. Contrary to GSP, VCG gives bidders an incentive to bid their 

true value, and is socially optimal, i.e., the bidder with the highest valuation acquires 

the slot at the highest position, the bidder with the second-highest valuation receives 

the slot at the second-highest position, etc. Note that GSP rather than VCG is used in 

practice, even though the latter would (at least theoretically) diminish incentives for 

strategizing and facilitate the advertisers’ task. We believe that the introduction of the 

ad quality score QS has also played a role in the wide adoption of GSP. Indeed, ad 

quality scores are now an integral part of both the ranking and pricing protocols; even 

if advertisers manipulate their bids, it is very difficult to game the system as they have 

no control over the ad quality scores. 

3   Models for Location-Based Sponsored Search 

Assume N advertisers and K slots 1, …, K, where 1 is the top slot, 2 the second, and 

so on. There is ample evidence in the literature that higher slots are associated with 

higher revenues. There are numerous ways to model this; perhaps the easiest way is to 

characterize each slot with the clickthrough rate, which denotes the probability that a 

user will actually click on an ad that is placed in that slot. In this work, we follow the 

same approach by assuming that whenever an ad is displayed in slot l, 1≤l≤K, it has a 

probability cl, 0≤cl≤1, of being clicked. To incorporate the fact that higher slots are 

more valuable, we further assume that cl>cl´ whenever l<l´. Whether a user clicks on 

an ad or not depends on numerous factors including the other ads (ad externalities), 

but for the sake of simplicity we do not consider them here; i.e., an ad located at slot l 

is clicked with probability cl independent of the rest of the slots [15]. To keep the 

model simple, we also do not consider quality scores for advertisers. 

A salient feature of our work is that advertisers value users according to their 

location. To model this, we assume that the space is partitioned with a grid of L cells. 

There are (in expectation) Mj queries per day in cell j, which can be estimated based 

on historical data. Advertisers have different valuations for the different grid cells. 

For instance, a typical advertiser would have high valuations for cells nearby and 

lower valuations for more distant cells. We denote with wi,j the valuation of advertiser 

i per click inside cell j. Calculating the valuation is a difficult marketing/operational 

research problem, beyond the scope of our work. Finally, advertiser i may be bounded 

by a maximum daily budget Bi. We can assume that the advertisers are only aware of 

their own budget and valuations, which they declare to the search engine. Besides the 

budgets and valuations per click, the search engine has knowledge of relevant 

statistical information such as number of queries per cell, or percentage of total clicks 

that a slot receives, etc. We consider that advertisers are interested in exactly the same 

(unique) keyword; how keyword interactions affect our market is an interesting 

research topic in its own right, and can be explored in future work.  

Finally, note that the valuation of an advertiser for a given cell is fixed for all 

points inside the cell. The grid granularity involves an inherent trade-off between 

valuation expressivity and search engine revenue. On the one hand, small cells allow 



advertisers to better capture their cells of interest, as opposed to coarse grid 

granularities that would force an advertiser to declare interest for the entire cell even 

if they were interested in just a small part. On the other hand, small cells may take a 

serious toll on the search engine’s revenue because the expected number of 

advertisers expressing interest in a given cell decreases as the grid granularity 

becomes finer. In the worst case scenario, a cell could attract interest from just a 

single advertiser and would yield poor income for the search engine. For instance, 

assume a cell that attracts only one advertiser. The commonly used GSP protocol 

when advertisers only declare bids will then assign any query inside the cell to that 

advertiser for a price equal to 0, compromising the search engine’s revenue goals. 

Determining the proper grid granularity is thus a critical factor of success for location-

based sponsored search. 

In the following sections, we discuss location-based sponsored search advertising 

focusing on three cases [8], depending on the advertiser input and constraints. In the 

first bids-only case, each advertiser i is not bounded by a daily budget, i.e., Bi=∞, and 

is willing to pay up to its valuation per click wi,j in cell j, i.e., its maximum bid per 

click for cell j is equal to wi,j. In the second budgets-only case, each advertiser i is 

bounded by a finite daily budget Bi, but is indifferent to the price per click that it is 

asked to pay, i.e., its maximum bid per click for any cell is unbounded. Finally, in the 

third bids-and-budgets case, each advertiser i is bounded by a finite daily budget Bi, 

and is willing to pay up to its valuation per click wi,j in cell j. We first cast all three 

cases as game theoretical problems, and we subsequently attempt to identify the 

equilibrium strategies for the corresponding games. Table 1 illustrates common 

symbols used in the rest of the paper. 

Table 1. Frequent symbols. 

Symbol Meaning 

N, L, K Number of advertisers, grid cells, and ad slots 

Bi Total daily budget of advertiser i 

Bi,j Part of total budget Bi that advertiser i allocates into cell j 

wi,j Valuation per click of advertiser i for cell j 

Mj Expected number of queries per day for cell j 

cl Probability that an ad located at slot l will get clicked 

Ui,j / Ui Total daily utility of advertiser i from cell j / from all cells 

Ci Set of cells where advertiser i has the highest valuation per click 

 ̃ Upper concave envelope of U  

Yj Sum of budgets that have been allocated to cell j by all advertisers 

pj Price per click in cell j (for case 3) 

sj Permutation of advertisers such that    ( )   is decreasing in i 

  
( )

 Second-highest valuation per click in cell j (for case 3) 



4   Bids-Only Case 

Bids-only is the simplest case, as it constitutes a straightforward generalization of the 

conventional sponsored search framework. Whenever the search engine receives a 

query from a cell, it runs an auction where each advertiser is assumed to bid an 

amount of money equal to its valuation per click for that particular cell. We can 

utilize any auction format, such as the GSP or the VCG (see Section 2.2), to 

determine the K winners that will fill the slots, as well as the prices per click that they 

have to pay. These two auctions have been extensively studied in the literature, and as 

mentioned earlier truthfully reporting the bids constitutes a Nash equilibrium for the 

VCG auction, but is in general not an equilibrium for the GSP procedure. Note that 

the actual number of queries per cell does not matter: every single time a user issues a 

query, a new auction will play out in an automated way; cells with high workload will 

simply involve more auctions compared to cells with lower traffic. 

Next, we discuss some useful metrics focusing on the GSP framework. A very 

interesting notion in auction theory concerns an advertiser’s payoff, which refers to 

the net utility the advertiser receives from being advertised. In sponsored search 

auctions, an advertiser’s payoff is defined in terms of a quasi-linear model: the payoff 

per click is equal to the valuation/utility vi per click the advertiser i gets minus the 

price per click pi that it must pay, i.e., vi – pi = vi – bi+1, where the bids bi are in 

descending order. We can also define the expected payoff per second if we know the 

average number of queries per day M. Since slot l receives a cl percentage of the total 

clicks, the expected payoff per day for slot l is M·cl·(vi – bi+1). Non-winning 

advertisers get a payoff equal to 0. Finally, we define the search engine’s (cumulative) 

profit per click simply as p1 + … + pK = b2 + … + bK+1 (similarly for the cumulative 

profit per second). It is now straightforward to generalize the above metrics in the 

location-based framework. For instance, the expected payoff per day that advertiser i 

gets in cell j if it gets assigned to slot l is Mj·cl·(wi,j – wi+1,j) (where wi,j are in 

decreasing order for cell j). 

5   Budgets-Only Case 

In case 2, advertiser i declares a maximum daily budget Bi, as well as its valuations 

per click wi,j for each cell j. As opposed to case 1, where wi,j is the maximum amount 

that i is willing to pay per click, for case 2 the payments per click are bounded only by 

Bi, and the cell valuations are used just to determine the relative importance of cells. 

For simplicity, we initially consider a single slot (K=1) with probability of being 

clicked c1=1, and deal with more slots later. Since case 2 only involves budget 

constraints, it is convenient to assume a Fisher market model [2]: under this model, 

money does not bear any intrinsic value and every advertiser is willing to burn their 

entire budget; note that this is different from the quasilinear model that we assumed in 

Section 4. Our goal is to assign to every advertiser a probability that their ad will be 

displayed in any given cell, whenever a user in that cell issues a relevant query. 

Therefore, no auction takes place and we do not have a winner selection and price 

determination phase.  



Based on the declared budgets and cell valuations, the system computes for each 

cell the probability that any advertiser will be chosen as a response to user query. In 

conventional sponsored search with only one slot, the optimal solution to this problem 

displays an advertiser with a probability that is proportional to its budget [8][14][13]. 

So, the advertiser with the highest budget has the highest probability of being 

displayed, which is equal to its budget divided over the sum of all budgets; and so on 

for the rest of the advertisers. This rule is called proportional sharing, and, intuitively, 

it guarantees fairness. 

In location-based sponsored search, on the other hand, advertisers declare a total 

daily budget for all cells, but do not specify how this budget should be allocated 

among the various cells. Now, assume that the advertiser (somehow) decides how to 

allocate its budget into the cells, so that each cell has a non-negative budget and the 

sum of budgets over all cells does not exceed the advertiser’s total budget. If such an 

allocation were known for every advertiser, then we could simply apply the 

proportional sharing rule: in a given cell, an advertiser is advertised with a probability 

proportional to its budget for this specific cell. But then a natural question arises: how 

should every advertiser allocate its budget? 

To answer this question, we will resort to the proportional-share allocation market 

by Feldman et al. [10]. Concretely, assume a budget allocation for advertiser i such 

that it assigns Bi,j≥0 to cell j and the sum of its allocations over all cells does not 

exceed Bi. The probability that i will be displayed in cell j is Bi,j/Yj, where Yj is the 

sum of budgets that have been allocated to cell j by all advertisers. The utility for 

advertiser i in cell j is then Ui,j= wi,j·Mj·Bi,j/Yj, since it gets a value wi,j for every query 

in j when displayed with a probability Bi,j/Yj, and there are Mj queries in total in cell j. 

We assume additive utilities, so i’s total utility Ui is the sum of its utilities Ui,j over all 

cells:    ∑       
    

∑      
 . Note that the payoff of advertiser i is equal to its utility, 

because of the Fisher market model assumption (money bears no intrinsic value to the 

advertiser). 

A given set of budget allocations will give rise to different corresponding utilities 

for the advertisers. So, how should advertisers allocate their budget? Ideally, we 

would like to allocate every individual budget in a way that maximizes the 

advertiser’s utility. Unfortunately, since the advertisers compete against each other, 

one’s gain may translate into another’s loss. To come up with proper budget 

allocations, we thus utilize the notion of Nash equilibrium. The set of agents consists 

of the advertisers, while the strategy space for advertiser i is the convex, bounded and 

closed set {(Bi,1, …, Bi,L) | Bi,j ≥ 0 and ∑1≤j≤LBi,j = Bi}, i.e., the set of all valid budget 

allocations. From advertiser’s i perspective, a best response strategy is simply a 

strategy Bi = (Bi,1, …, Bi,L) that maximizes its utility given the other advertisers’ 

budget allocations, i.e., the solution to the following optimization problem: 

maximize Ui(B1,1, …, B1,L, …, BN,1, …, BN,L) 

subject to ∑1≤j≤LBi,j = Bi and Bi,j ≥ 0. 

A Nash equilibrium then corresponds to the stable state where no advertiser has an 

incentive to deviate from their strategy given that the other advertisers stick to their 

strategy as well. Stated equivalently, every advertiser plays a best response strategy to 

the rest of the advertisers. Formally, a set of valid strategies   
 , …,   

  form a Nash 

equilibrium if for any other valid strategy Bi, 1≤i≤N, we have: 

Ui(  
 , …,   

 , …,   
 )≥ Ui(  

 , …, Bi, …,   
 ). 



It turns out that the above game does not always accept a Nash equilibrium. To 

demonstrate this, consider two advertisers 1 and 2 with budgets B1, B2 > 0 

respectively, and two cells 1 and 2 with expected number of queries per day M1 and 

M2 > 0. Advertiser 1 is interested in both cells, whereas 2 is interested only in cell 1. 

For player 2, the best strategy would obviously be to allocate its entire budget B2 to 

cell 1 to gain the maximum possible proportion of ads. For advertiser 1, on the other 

hand, the best strategy would be to allocate a tiny amount  > 0 to cell 2 (and win all 

advertising opportunities in 2) and spend the rest B1 –  on cell 1 (and maximize its 

share in cell 1 as well). Unfortunately, there is no optimal value of , since (1) it must 

be positive to ensure 1 gets all ads in cell 2, and (2) as small as possible so that 1 wins 

the largest possible share in cell 1. Alternatively, consider the simpler case with a 

single player 1 with B1 > 0, interested in a single cell 1 with M1 > 0. As before, player 

1 should allocate the smallest possible positive  > 0 on cell 1, but such an  does not 

exist. 

The root of the non-existence of a Nash Equilibrium in the examples above is due 

to the discontinuity of the utility functions at point 0. This problem can be 

circumvented in two different ways. First, we can enforce a reserve price, which is 

defined as the minimum possible price that an advertiser must pay per click. Indeed, a 

reserve price means that the advertiser cannot buy any click with an arbitrarily small 

budget, and the discontinuity at 0 ceases to exist. Second, we can restrict our attention 

to so called strongly competitive games [10], i.e., games where for a given cell there 

are at least two advertisers with positive valuations. Indeed, strong competition 

implies that if only one advertiser would allocate a tiny budget on a given cell, then 

any other advertiser who has non-zero valuation for that cell will have an incentive to 

also allocate (a tiny) budget in that cell to guarantee a percentage of ads [10].  

Computing the Nash equilibrium is the next source of concern. There are 2 classes 

of algorithms for this purpose. The best response algorithm iteratively updates the 

budget allocations of every player to reflect the other players’ current strategies. This 

algorithm simulates the best response dynamics of the game and thus has a very 

natural interpretation. We describe it in Figure 1; the interested reader is referred to 

[10] for further details. Note that its time complexity is dominated by the sorting 

procedure, so it is O(NlogN). Theoretically, the best-response dynamics does not 

necessarily converge to a Nash equilibrium of the game; nevertheless, in practice the 

algorithm performs very well. 

Repeat for each advertiser i, 1iN 

1. Sort the cells according to 
    

∑          
 in decreasing order, where 1jL 

2. Compute the largest k such that 

                          
√      ∑          

∑       ∑          
 
   

(   ∑ ∑          
 
   )  ∑             

3. Set Bi,j=0 for j>k, and for 1jk set  

     
√      ∑          

∑       ∑          
 
   

(   ∑ ∑      
    

 

   
)  ∑      

    
 

until convergence. 

Fig. 1. Best-response dynamics for K=1 and strong competition. 



The alternative to best response dynamics is the local greedy adjustment method 

[10]. Under this algorithm, we first identify for every advertiser the two cells that 

provide the highest and lowest marginal utilities. We then move a fixed small amount 

of money from the cell with the lowest marginal utility to the cell with the highest 

one. This strategy aims to adjust the budget allocations so that the marginal values in 

each cell are the same. For concave utility functions (as ours), this is a sufficient 

condition for an optimal allocation. However, the method suffers from lower 

convergence rates. 

As a last remark, note that contrary to case 1, the actual query distribution is now 

important. To understand why, assume the advertiser has a high valuation for cell 1 

and a low valuation for cell 2. However, a small number of queries are issued in cell 

1, whereas several queries are issued in cell 2. In bids-only sponsored search, a 

separate auction occurs every time a query is issued, so the advertiser can bid high for 

cell 1 and low for cell 2; since there are far more queries in cell 2 the advertiser will 

obviously participate in the auction for cell 2 far more times, but has no reason not to 

bid high for cell 1 and low for cell 2. In the budgets-only setting, however, query 

distribution has a profound effect on the budget allocation. In the above example, the 

advertiser may have to allocate a large part of its budget to cell 2 just because there 

are far too many queries in that cell. 

Multiple slots: We can generalize the above discussion in the case of several slots, by 

assuming for simplicity that a given advertiser may appear with non-zero probability 

in more than one slots (as opposed to the bids-only case). This assumption is 

necessary for a straightforward and simple generalization. Indeed, the idea is that 

every advertiser allocates part of its budget into all slots in every cell. The utility that 

advertiser i extracts from being advertised at slot l in cell j is         

      

∑        

, where Bi,j,l 

the amount of money that i allocates in slot l of cell j. Similar to before, we can 

assume additive utilities, so that the total utility of advertiser i the sum of its utilities 

over all slots and over all cells. Using the above techniques, we can then find budget 

allocations that constitute a Nash equilibrium. 

6   Bids-and-Budgets Case 

In this setting, advertiser i declares a maximum daily budget Bi as before, but contrary 

to case 2, i is now not willing to spend more than wi,j per click in cell j. Stated 

equivalently, the price that advertiser i pays per click in a given cell j cannot exceed 

its declared valuation wi,j for that cell. The valuations thus act as maximum bids per 

click, and we also refer to case 3 as bids-and-budgets case. We only deal with the case 

of a single slot, i.e., K=1 with c1=1, and we assume again that money bears no 

intrinsic value to the advertisers (Fisher market model). The case of several slots is 

more complex, and can be investigated in future work. 

Before dealing with the location-based setting, we first explore how conventional 

sponsored search addresses the case where both budgets and maximum bids per click 

are declared. In particular, we will attempt to highlight how this setting is inherently 

more complex than the budgets-only case. We focus on cell j with Mj queries per day 



and budget allocations in it B1,j, …, BN,j. First, assume that every advertiser receives a 

share of the total ads proportional to its budget. Then, the price per click would be 

equal to pj = (B1,j + … + BN,j)/Mj. As long as this quantity is not greater than all 

valuations per click w1,j, …, wN,j, no problem occurs. But if an advertiser i exists with 

wi,j < pj, this advertiser would not be willing to pay as much as pj per click, so the 

proportional allocation framework of Section 5 cannot be directly applied. To 

alleviate this problem, we need to come up with a price   
  such that all advertisers 

who can afford that price have enough budget to purchase all the advertising 

opportunities. Figure 2 presents the price-setting mechanism by Feldman et al. [9][8] 

that determines that price   
 . It is essentially a price-descending mechanism: the price 

keeps falling until   
  is reached. Moreover, it has the desired property of being 

truthful.  

1. Assume w.l.o.g. that w1,j > w2,j > … > wN,j ≥ 0. 

2. Let k* be the first bidder such that         
∑     

  

   

  
. Set price   

      {
∑     

  

   

  
      }  

3. Allocate Bi,j/  
  ads to each advertiser i ≤ k* − 1. Allocate Mj − ∑     

  

   /  
  ads to advertiser 

k*. Allocate 0 ads to the rest of the bidders. 

Fig. 2. The price-setting mechanism in cell j for K=1 slot in the bids-and-budgets case. 

Now, recall that in the case where only budgets are available, the price per query in 

cell j would be equal to    
∑     

 
   

  
. Obviously, pj is linear in its arguments Bi,j 

(1≤i≤N) and continuous. On the other hand, the price-setting mechanism in Figure 2 

yields prices that are clearly more complex. First, we notice the price pj for a given 

cell j will again be an argument of only the budget allocations for that cell B1,j, …, 

BN,j. However, it does not have the simple linear form as in the case of only budgets. 

To get a flavor of the price function, consider a setting with only 2 advertisers 1 and 2 

with maximum bids w1,j and w2,j (with w1,j > w2,j) for cell j that has Mj queries per day. 

Figure 3 depicts how the price varies according to the budgets B1,j and B2,j that the 

advertisers allocate in cell j. In particular, if B1,j≥Mj·w2,j, then k
*
=1 and the price is 

determined as the minimum of B1,j/Mj and w1,j. When B1,j≥Mj·w1,j then the price is 

equal to w1,j (region I), while when B1,j<Mj·w1,j, the price is equal to B1,j/Mj (region II). 

On the other hand, when B1,j<Mj·w2,j, then k
*
=2 and the price is the minimum of w2,j 

and (B1,j+B2,j)/Mj; for B1,j+B2,j≥Mj·w2,j the price is w2,j (region III), while for 

B1,j+B2,j<Mj·w2,j, the price is (B1,j+B2,j)/Mj (region IV). Inside a region, the price can 

be either constant or linear. We first observe that the price function is everywhere 

continuous; the boundaries of the regions are carefully chosen so that the price is 

continuous as we move from one region to the other. Note also that the price function 

for the price-setting mechanism is bounded: it achieves a minimum value of 0 at the 

origin (0,0), and it can never get larger than w1,j. On the contrary, the price per click in 

the budgets-only case is unbounded: it can get arbitrarily large as the budgets that the 

advertisers allocate grow larger. 
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Fig. 3. Price pj and utilities U1,j and U2,j in cell j when the number of advertisers is N=2. 

The above example captures some important properties of the price function in the 

case of both maximum bids and budgets. The price setting mechanism decomposes 

the budget space into N regions (one for each of the N possible k
*
), and then further 

divides that region into two subregions: the price is constant inside one of them and 

linear in the other. In the following, we state several results. The proofs of all results 

are available in our technical report [17]. For every cell j, we consider the permutation 

sj that reorders the bids in decreasing order, i.e.,    ( )      ( )        ( )     

for every cell j. Moreover, all budget allocations Bi,j are non-negative: Bi,j≥0. 

Lemma 1: The price function pj(B1,j, …, BN,j) is continuous in (B1,j, …, BN,j). 

Let’s now try to formalize the location-based setting where advertisers have 

valuations over the various cells. Similar to the previous case, we will be looking for a 

budget allocation Bi = (Bi,1, …, Bi,L) for every advertiser i, 1≤i≤N. For a given 

allocation, denote zi,j the share of ads that advertiser i gets in cell j. Then, its utility 

from cell j is wi,j·zi,j; its total utility from all cells simply is    ∑          . In order to 

compute the share zi,j, we will exploit the price-setting mechanism, assuming that 

   ( )      ( )        ( )    . If    ( )      ( )     , then   
 =1 and the price   

  

is min{   ( )     ,    ( )  }. On the other hand, if    ( )      ( )     , we continue by 

checking whether    ( )  
 (   ( )      ( )  )   . If the latter is true, then   

 =2 and 

the price   
  = min{(   ( )  

    ( )  
)   ,    ( )   }. If it is false, we proceed in exactly 

the same way, until we come up with the proper   
 , and subsequently compute the 

price   
 . Figure 3 depicts the utility functions in cell j in the case of N=2 advertisers. 

Next, we compare the above utility function with the simpler utility function in the 

case where only budgets are declared:            
    

∑      
. Clearly, the latter function is 

concave in Bi,j, gets a minimum value of 0 for Bi,j=0, and asymptotically converges to 

wi,j·Mj as Bi,j tends to infinity. In other words, the advertiser will get allocated all ads 

in cell j as its budget gets infinitely large, given that the other advertisers’ budgets for 



this cell are fixed. But can we say something similar for the utility function in the 

more complex setting when both budgets and maximum bids per click are declared? It 

turns out that the answer to that question is negative: the utility function Ui,j for the 

price-setting mechanism is not concave in Bi,j anymore, as we later show (e.g., see 

Figure 4). However, Ui,j is monotonically increasing in Bi,j: 

Lemma 2: Ui,j(Bi,j) is monotonically increasing in Bi,j. 

Since Ui,j is monotonically increasing in Bi,j, it will also be quasi-concave in Bi,j. 

On the other hand,    ∑     
 
   . It turns out that when Ui,j are quasi-concave, but not 

concave in Bi,j, then their sum is not quasi-concave in (Bi,1, …, Bi,L) [6]. This is a 

worrisome result, in the sense that existence theorems for Nash equilibria usually 

assume concave or, at least, quasi-concave utility functions. 

There are, however, two special cases where we can easily show that a Nash 

equilibrium exists. First, assume that the sum of the advertisers’ budgets is 

sufficiently small, i.e., ∑   
 
          , for every cell j. In this case, independent of 

the budget allocation, we have in any cell j that ∑     
 
          , so the price setting 

mechanism will allocate to every advertiser a percentage of advertising opportunities 

proportional to the budget that they allocate in every cell. But this is identical to case 

2, and it thus always admits a Nash equilibrium if 1) there is a reserve price, or 2) 

there is strong competition. Second, assume that every advertiser has sufficiently 

large budget, and that there is strong competition in every cell. For any advertiser i, 

consider the set of cells Ci where i has the highest valuation per click among all 

advertisers, i.e., Ci={j|wi,j=max1≤i´≤N{wi´,j}} (for some advertisers this set may be 

empty). For advertiser i, we then define the following budget allocation strategy: 

allocate 0 to cell j if j∈Ci, else allocate an amount of money equal to or greater than 

Mj  
( )

, where   
( )

   the second highest valuation per click in cell j (it is positive 

because of the strong competition assumption). This is always possible if    

∑     
( )

 ∈  
, for every advertiser i. It is easy to verify that the above sets of budget 

allocations correspond to Nash equilibria, since any advertiser cannot increase its 

utility by deviating to a different budget allocation. Indeed, with the previous budget 

allocation every advertiser i wins all ads for the cells that belong to Ci. Obviously, i 

cannot gain a higher utility by changing its budget allocation for cells j∈Ci. On the 

other hand, even if i allocates a positive budget in cells j∉Ci, it will still gain 0 

advertising opportunities, since the first advertiser has adequate budget and valuation 

to buy all ads in that cell. In fact, a Nash equilbrium for the case of sufficiently large 

budgets can be given by the following rule: in every cell the advertiser with the 

highest valuation per click pays a price per click equal to the valuation per click of the 

second highest advertiser, and wins all ads for that cell. But what we have just 

described is the GSP procedure. Stated equivalently, the GSP auction for sufficiently 

large budgets results in a Nash equilibrium. 

We have thus observed how the bids-and-budgets case encompasses the simpler 

bids-only and budgets-only cases for sufficiently small or large budgets, respectively. 

On the other hand, when only one advertiser has a positive valuation for a cell j, then 

using the same line of arguments as in Section 5 we can see that its utility function is 

discontinuous at 0, and the game accepts no Nash equilibrium. It is however possible 

to slightly modify the game in a way that makes the discontinuity at 0 disappear, 

similar to [10][13]. In this direction, we will introduce a fictitious advertiser N + 1 



who allocates a tiny budget Bε>0 in every cell, but has an arbitrarily large valuation 

per click for every cell. We call the perturbed game with the additional player G. So, 

what is the impact of the additional player N + 1 on the game structure? Essentially, 

the arbitrarily large valuation per click for every cell implies that advertiser N + 1 will 

have the highest valuation per click in every cell and will thus be able to pay any price 

that the price mechanism sets. On the other hand, we set Bε to be very small so that 

player N + 1 has a negligible impact. Note that the introduction of the fictitious player 

serves the same purpose as the reserve price of the budgets-only case, namely to 

smooth out the utility function and tackle the discontinuity at 0. 

In the general case, we are currently not aware whether game G always accepts a 

Nash equilibrium since each advertiser’s utility function is not quasi-concave. 

Although we cannot answer whether a Nash equilibrium exists, we can nevertheless 

find a budget allocation such that the maximum utility that an advertiser can gain by 

deviating is known. 

In this direction, we will consider the upper concave envelope  ̃    of the utility Ui,j, 

for any advertiser i and any cell j. Formally, we will be looking for the infimum of all 

functions that are concave and are greater than or equal to Ui,j for any Bi,j. This is, in 

general, not an easy task, but as we shall see the upper concave envelope for the 

utility functions that arise in the bids-and-budgets setting has a relatively simple form. 

We focus on advertiser i and cell j, 1≤i≤N and 1≤j≤L. Assume the rest of the 

advertisers’ budgets for cell j are fixed and equal to B1,j, ..., Bi−1,j, Bi+1,j, …, BN,j. Also, 

w.l.o.g. assume that w1,j>…>wN,j. We are interested in the first advertiser k
*
 such 

that         
∑     

  

   

  
 as Bi,j varies. Let k

*
=k

0
 when Bi,j = 0. If k

0
<i, then no matter how 

much budget i allocates, the price setting mechanism allocates no advertising 

opportunities to them, because advertisers 1, …, k
0
 have sufficient budget to buy all 

ads at a price that is higher than what i can afford; thus Ui,j =0 and, subsequently, 

 ̃          . If, on the other hand, k
0
≥i, then the utility function Ui,j will have the 

form that we depict in Figure 4. In particular, we can form the i−k
0
+1 regions Rk, 

i≤k≤k
0
, such that that the first advertiser in region Rk with the property that        

∑     
 
   

  
 is k. In particular, when Bi,j=0 then k

*
=k

0
 and we get the leftmost region    ; as 

Bi,j grows larger k
*
 eventually becomes i and remains so thereafter. Points P, P1, P2, 

and P3 in Figure 4 correspond to budget allocations Bi,j equal to B, B1= 

wk+1,j·Mj−Sk,j−Bk,j, B2= wk,j·Mj−Sk,j−Bk,j, and B3= wk,j·Mj−Sk,j, respectively. 

We will now determine the upper concave envelope of Ui,j by focusing on regions 

Rk, with i≤k≤k
0
. Define Sk,j = ∑     

   
     ∑     

   
       (for k=i this expression gives Si,j = 

∑     
   
    ). Region Ri (rightmost region in Figure 4) consists of a concave part which 

corresponds to the utility function     (    )        
    

∑      
 
    

 for Bi,j∈[wi+1,j·Mj−Si,j−Bi, 

wi,j·Mj−Si,j], followed by a constant part for Bi,j≥wi,j·Mj−Si,j (the constant part 

corresponds to the maximum possible advertising opportunities that advertiser i may 

get); the utility function in region Ri is thus already concave so we do not need to 

focus more on it. Every other region Rk, i<k≤k
0
, will consist of the concave part 

      
    

∑      
 
    

 for Bi,j∈[wk+1,j·Mj−Sk,j−Bk,j, wk,j·Mj−Sk,j−Bk,j], followed by the linear part 

    
    

    
 for Bi,j∈[wk,j·Mj−Sk,j−Bk,j,, wk,j·Mj−Sk,j]. Of course Bi,j≥0, so if any of the 



endpoints of the aforementioned intervals is negative we simply replace it with 0. 

From Lemma 1, we can easily derive that Ui,j(Bi,j) is continuous in the domain Bi,j≥0. 

It is also differentiable everywhere except for the points where the utility function 

transitions from the concave part to the linear part, and vice versa. 

Bi,j

Ui,j(Bi,j)

...

wk+1,j·Mj− 
Sk,j− Bk,j

wk,j·Mj−
Sk,j

wk,j·Mj−
Sk,j−Bk,j

P1

P2

P3

P

B

Region Ri

Region Rk

Region Rk0

(ε1)

(ε2)

wi+1,j·Mj−Si,j wi,j·Mj−Si,j

Fig. 4. Utility function Ui,j when k0≥i and its upper concave envelope. 

We now examine the derivatives in regions Rk, i≤k≤k
0
. For region Ri, i.e., when 

k=i, the derivative in (wi+1,j·Mj−Si,j−Bi,j, wi,j·Mj−Si,j) is       
    

(         )
 , while it is 0 for 

Bi,j>wi,j·Mj−Si,j. For region Rk, with i≤k≤k
0
, the derivative in (wk+1,j·Mj−Sk,j−Bk,j, 

wk,j·Mj−Sk,j−Bk,j) is       
         

(              )
 , while the derivative in (wk,j·Mj−Sk,j−Bk,j,, 

wk,j·Mj−Sk,j) is wi,j/wk,j. Although Ui,j is not differentiable at the transition points, the 

left        and right        derivatives obviously exist. We now state the following two 

results. 

Lemma 3:       (                  )        (                  ), for i≤k<k
0
. 

Lemma 4:       (                )        (                ), for i<k≤k
0
. 

Lemma 3 implies that whenever we make a transition from the linear to the 

concave part (e.g., point P1 in Figure 4) the first derivative gets lower, and concavity 

is maintained. In contrast, Lemma 4 suggests that when we move from the concave to 

the linear part (e.g., point P2), the first derivative gets higher; this in turn violates 

concavity. We will show how to tackle this by considering region Rk, i≤k≤k
0
, in 

Figure 4. The idea is to draw a line ε1 from P3 to the point P in the concave part of 

region Rk so that the line ε1 is tangent to the curve. Based on our previous discussion, 

the derivative at P is       
         

(           ) 
. On the other hand, the slope of ε1 is 

    (  )     ( )

    
     

  
    

   
 

           

    
. Thus, we are looking for a B such that 



      
         

(           ) 
     

  
    

   
 

           

    
. But B3=wk,j·Mj−Sk,j, so the previous equation 

becomes after some algebraic manipulations: 

     
   (           )(         )  (           )(         )(                )    (1) 

Equation (1) is a quadratic equation, which accepts the solutions 

(           )(         ) √(           )(         )          

    
. First, note that Mj·wk,j>Sk,j (since 

B4>0), so the solutions are real numbers. Second, we keep the solutions with the 

minus because it is lower than B3=Mj·wk,j−Sk,j and even B2=Mj·wk,j−Sk,j−Bk,j. Indeed, 

after performing some algebraic manipulations we get 

(           )(         ) √(           )(         )          

    
                         

         , which is true. Now, there are 2 cases. If the solution is greater than 

                   (see point P1 in Figure 4), then we draw the line ε1 from P to P3 

as we show in Figure 4. Else, we draw the line from P1 to P3 (we illustrate such a 

scenario with line ε2 in region     in Figure 4). We summarize the two cases by 

writing      {
(           )(         ) √(           )(         )          

    

                   }.  

We will now prove that the slope of ε1 is greater than the right derivative at P3. 

Indeed, the slope of ε1 is       
         

(           )
 . The right derivative at P3, on the other 

hand, is       
    

(      )
 . But then       

         

(           )
        

    

(           )
   

      
    

(          (                ))
        

    

(      )
 , which proves our claim. Moreover, it 

is easy to see that the slope of ε1 is lower than the left derivative at P1, since the 

opposite would imply that the line segment P2-P3 has a slope wi,j/wk,j that is greater 

than the left derivative at P1 wi,j/wk+1,j,  which is untrue given that wk,j>wk+1,j. 

We repeat the process described above in all regions. At the end of this process, we 

derive a utility function  ̃    that is continuous everywhere, differentiable everywhere 

except for the points where it changes slope, and the left and right derivatives (which 

exist for all Bi,j≥0) are monotonically non-increasing in the allocated budget Bi,j. But 

then  ̃    will be concave in terms of Bi,j. Now, recall that    ∑     
 
   . If we repeat 

the above process for every Ui,j, 1≤j≤L, we can eventually form the function 

 ̃ (      )  ∑  ̃   (          )
 
    (where     denotes the vector of budget allocations 

of all advertisers but i). The function  ̃ (      ) is the sum of concave functions, so it 

is also concave in i’s strategy Bi. In the end, the new utility functions  ̃ (      ), 

1≤i≤N, possess two important properties: (1) each  ̃ (      ) is continuous in 

(      ), and (2) each  ̃ (      ) is concave in Bi for any fixed value of    . 

Moreover, the strategy space of every advertiser is convex, closed and bounded. 

Consequently, based on Rosen’s theorem [16] we can immediately derive that a Nash 

equilibrium exists. We denote that equilibrium by  ̃  ( ̃     ̃ ). Moreover, we call 

 ̃ the new game when the utility functions are replaced by their upper-concave 

envelopes. 



Note that  ̃ may not be an equilibrium of game G. This means that there may be 

players in game G who have an incentive to deviate if the strategy vector  ̃ is chosen. 

However, the following lemma shows that we can bound the maximum utility that a 

player can gain by deviating. 

Lemma 5: Let the strategy vector  ̃ be a Nash equilibrium of game  ̃. Then the 

maximum utility that player i can gain by deviating from  ̃ in game G is  ̃ ( ̃   ̃  )  

  ( ̃   ̃  ). 
Essentially, the above result says that we can find a set of budget allocations such 

that we can know exactly the maximum utility that an advertiser may gain by 

deviating. Note that in the special case where the Nash equilibrium of game  ̃ falls 

into the parts of   ̃  that are equal to   , then the Nash equilibria of game  ̃ are also 

Nash equilibria of game G. 

7   Conclusion 

The market for location-based advertising is set to witness an unprecedented growth 

over the next years. The massive proliferation of modern mobile phones with 

embedded geo-positioning functionality and the development of fast wireless 

communication protocols have created exciting opportunities for advertisers to reach 

the user base that is most relevant to them. On the other hand, sponsored search 

advertising has been a thriving market in the last decade for advertisers who want to 

advertise their product or service to online users posing relevant queries. Inspired by 

the enormous success of sponsored search and the immense potential for LBA, we 

address the market for location-based sponsored search advertising. We provide 

models that build on prior work in sponsored search advertising, but we additionally 

consider that advertisers are characterized by location-dependent valuations. We 

distinguish between three cases: (1) bids-only case, (2) budgets-only case, and (3) 

bids-and-budgets case, and analyzed the equilibrium strategies in the corresponding 

markets using game theoretical tools. 

There are several research directions that we would like to pursue with regard to 

the market for location-based sponsored search advertising. First, we would like to 

extend our model so that it takes into account the more subtle issues that are involved 

in the sponsored search market such as the externalities between the displayed ads, or 

the more realistic scenario of advertisers who are interested in several keywords. 

Second, our model assumed offline ad slot scheduling [9], where we estimate the 

number of queries in every cell, and then allocate to every advertiser a percentage of 

the ads in every cell. It would be interesting to deal with the more challenging 

problem of online ad slot scheduling, where the number of expected queries per cell is 

not available in advance. Finally, we would like to fully explore the equilibrium 

strategies in the bids-and-budgets case, as our current work provides equilibrium 

strategies only for the case where advertisers have sufficiently small or large budgets. 
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