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ABSTRACT
We propose a density-based model to detect communities of users

in geo-social networks that are both socially and spatially cohesive.

After formally defining the model and the geo-social distance mea-

sure it relies on, we present an algorithm that correctly identifies

the underlying communities. We assess the effectiveness of our

method using novel quantitative measures on the quality of the

discovered communities. We also perform a visual evaluation of

the discovered communities, using both real and synthetic datasets.

Our results show that the proposed model produces geo-social com-

munities with strong social and spatial cohesiveness, which can

not be captured by existing graph or spatial clustering methods.

CCS CONCEPTS
• Information systems→ Location based services; •Human-
centered computing → Social networks; Social network analy-
sis.
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1 INTRODUCTION
Community detection in networks aims at identifying groups of

nodes which are inter-connected with edges of high density, com-

pared to connections among nodes in different groups [8], [15].

Assume for instance the social graph of Figure 1. Two natural

communities are C1 = {v1,v3,v4,v5} and C2 = {v7,v8,v9,v10}.
Recently, community detection has received considerable attention

in social networks for advertising and marketing purposes. The

dense connections among users in the same community could mag-

nify “word of mouth” effects and facilitate the spread of promotions,

news, etc.
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Most of the existing work focuses exclusively on the social con-

nections. However, the emergence of geo-social networks (GeoSNs)

motivates the integration of location information in community

detection. In this context, a community contains a group of users

that are tightly connected socially and are situated in the same

geographic area. Continuing the example of Figure 1, v5 is far

from the other users in C1. Accordingly, an alternative commu-

nity C1 = {v1,v3,v4} may be more suitable for location-based

services. Specifically, Density-based Geo-Community Detection

(DGCD) aims at identifying groups of users that have high social

and spatial density. DGCD has several interesting applications.
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Figure 1: Example of geo-social network

• Event recommendation.Online platforms, such asMeetup
1
,

Eventbrite
2
and Plancast

3
, allow social network users to

meet physically for various purposes (e.g., events, activities).

DGCD could detect potential groups of users that are spa-

tially and socially close, and then recommend events in their

vicinity. Intuitively, people who have relatively tight social

relations are more likely to participate in a nearby event as

a group.

• Spatial outsourcing. Given a set of spatial tasks, one needs

to distribute them to a set of workers. In order to minimize

the coordination cost, the workers should be well-connected

according to the underlying social network. Furthermore, all

workers should be located near the spatial task. Intuitively,

each task could be assigned to the closest community of

users that contains enough members to complete the task.

1
https://www.meetup.com/

2
https://www.eventbrite.hk/

3
http://www.plancast.co.uk/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.meetup.com/
https://www.eventbrite.hk/
http://www.plancast.co.uk/
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• Geo-social data analysis.With the popularity of geo-social

networks, such as Facebook and Twitter, it is important to

classify users based on their social connections, tags, geo-

graphic locations and time stamps. DGCD can be employed

to provide concrete geo-social context, e.g., by detecting

socially dense communities in a geographic area. Another

common data analysis task is to study features about geo-

graphic regions. As discussed in [5], these features are often

related to the people located there and their interactions.

Previous work on DGCD includes [3], which proposes a geo-

distance-based method to discover communities that are densely

connected and spatially clustered. However, as shown in Section

5, the communities detected by their approach usually span large

geographic areas. In a different study, Fang et al. [7] perform com-
munity search on geo-social networks. Given a geo-social graph G
and a vertex q ∈ G, their goal is to find a subgraph of G, called a

spatial-aware community (SAC). However, the spatial-aware com-

munity must contain the pre-defined query point, which inevitably

limits the exploration of geo-social networks.

In this paper, we address the limitations of previous work, and

introduce a novel DGCD model that considers the users’ social con-

nections and Euclidean distance. Our model detects all communities

in a geo-social network that are socially and spatially cohesive, and

outperforms existing approaches in terms of solution quality. Our

contributions are summarized as follows:

• We formulate the problem of density-based geo-community

detection in geo-social networks.

• We define an effective geo-social distance measure between

users in geo-social networks.

• We design an efficient algorithm for DGCD, and analyze its

computational complexity.

• We demonstrate the effectiveness of DGCD by case studies

and quantitative evaluation.

The remainder of the paper is organized as follows. Section 2

provides a comprehensive survey of existing work that is rele-

vant to our work. Section 3 formally defines the Density-based

Geo-Community Detection problem, and Section 4 presents the cor-

responding DGCD algorithm. Section 5 describes our experimental

results, and Section 6 concludes our work.

2 RELATEDWORK
Graph Clustering. Community detection in networks and, more

generally, graph clustering, is a widely studied problem. Numerous

approaches [8, 15, 16, 20, 24, 25] employ global or local clustering
methods, generating groups that are either flat or hierarchical. The
underlying algorithmic solutions are very diverse, including mini-

mum cuts, maximum flows, spectral methods, Markov chains, and

random walks. In this work, we focus on global clustering that

outputs flat groups of users, such that the density of edges among

users in the same group is much higher than the density of edges

connecting users in different groups.

Most relevant to our work is the SCAN algorithm [24], whose

premise is that densely connected adjacent nodes should be placed

in the same cluster. Specifically, SCAN uses the neighborhoods

of the vertices as clustering criteria, and defines the structural

similarity σ (u,v) between vertices u and v as the number of com-

mon neighbors normalized by the geometric mean of their degrees.

Given parameters ϵ and µ, vertices u and v are structurally similar

to each other, if σ (u,v) ≥ ϵ . Furthermore, u is considered a core

vertex if it has at least µ neighbors that are structurally similar to it.

Clusters form around core vertices by merging all vertices that are

structurally similar to any core vertex in the cluster. SCAN++[19]

and pSCAN[2] are variants that increase the efficiency of the basic

SCAN algorithm. Themain idea behind SCAN++ is that a vertex and

its two-hop-away vertices have very similar neighborhoods, due

to the high clustering coefficients observed in real-world graphs.

Therefore, SCAN++ avoids the computation of the structural simi-

larity between vertices that are shared between the neighbors of a

vertex and its two-hop-away vertices. On the other hand, to reduce

the number of similarity computations, pSCAN maintains upper

and lower bounds for the number neighbors that are similar to each

vertex. As such, pSCAN is significantly faster than previous meth-

ods. Nevertheless, none of the above algorithms take into account

the spatial features of the vertices.

Density-based Spatial Clustering. There is also considerable

work on density-based clustering of objects in space [1, 6, 10, 12].

DBSCAN [6] discovers clusters of arbitrary shapes and sizes, where

objects in dense regions are grouped into clusters and objects in

sparse regions are labeled as outliers. The DBSCAN model finds

the spatial ϵ-neighborhood of each point p in the dataset, which is

a circular region centered at p with radius ϵ . If the ϵ-neighborhood
of p contains at least MinPts points, p is considered a core point.

Dense ϵ-neighborhoods are merged into one cluster, if they share at

least one core point. This cluster is then expanded, until it retrieves

all points that are density-reachable from p. Points that are not

reachable by any other point in a cluster are marked as outliers.

OPTICS [1] is an extension of DBSCAN, which generates an aug-

mented ordering of the dataset that captures its density-based clus-

tering structure at different granularities. Furthermore, Jahirabad-

kar and Kulkarni [11] propose an adaptive algorithm that automat-

ically determines the parameter ϵ of DBSCAN. GDBSCAN [17] is

a generalization of DBSCAN that clusters point objects as well as

spatially extended objects according to both spatial and non-spatial

attributes. A-DBSCAN [14] is an anytime density-based clustering

algorithm which is applicable to various data types, such as trajec-

tory and medical data. Finally, DENCLUE [10] clusters based on

analytical models of the overall point density, which is computed

as the sum of influence functions of the data points.

Other Related Work. Chen et al. [3] study the community de-

tection problem in geo-social networks, and propose a geo-distance-

based method for detecting communities in spatially constrained

networks. Their goal is to identify communities that are both highly

topologically connected and spatially clustered. Gennip et al. [21]

use spectral clustering to identify clusters in the graph, correspond-

ing to communities in Hollenbeck. Fang et al. [7] perform com-

munity search on geo-social networks. Given a spatial graph G
and a vertex q ∈ G, their method returns a subgraph of G, called a

spatial-aware community (SAC). Nevertheless, the spatial-aware

community must contain the pre-defined query point, which limits

the exploration of geo-social networks, and could potentially miss

some interesting communities hidden in the GeoSN. Recently, Shi

et al. [18, 22] study the problem of Density-based Clustering Places
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in Geo-Social Networks (DCPGS) that detects geo-social clusters

in GeoSNs. DCPGS extends DBSCAN by replacing the Euclidean

distance threshold ϵ with a measure that considers both the spatial

and the social distances between places. Different from DCPGS, our

model detects clusters of users instead of places.

3 MODEL AND DEFINITIONS
In this section, we propose the density-based geo-community de-

tection model and formally define the DGCD problem.

3.1 DGCD model
A geo-social network graph G(V ,E) is an undirected graph with

vertex setV and edge set E, where vertices represent users and edges
denote their relationships. Furthermore, each vertex v ∈ V has a

spatial location (v .x ,v .y) in the two-dimensional space. Table 1

summarizes the notations used in this paper.

Table 1: Basic notations

Notation Definition
G(V ,E) a graph with vertex set V and edge set E

N (v) the neighbor set of vertex v in G

Ns (v) the social neighborhood of vertex v in G

Nдs (v) the geo-social neighborhood of vertex v in G

σ (u,v) the geo-social similarity of vertex u and v

Nϵ (v) the ϵ-geo-social neighborhood of v

Our Density-based Geo-Community Detection (DGCD) model is

motivated by the notions of density [6] and structural graph cluster-
ing [23]. The DBSCAN model [6] finds the spatial ϵ-neighborhood
of each point p in the dataset, which is a circular region centered

at p with radius ϵ . If the ϵ-neighborhood of p is dense, i.e., it con-

tains at least MinPts points, p is labeled a core point. Dense ϵ-
neighborhoods are merged into one community, if they contain the

cores points of each other. Structural graph clustering [23] uses

the neighborhoods of the vertices as clustering criteria, and defines

the structural similarity σ (u,v) between vertices u and v as the

number of common neighbors normalized by the geometric mean

of their degrees. Given parameters ϵ and µ, vertices u and v are

structurally similar to each other if σ (u,v) ≥ ϵ . In addition, if u
has at least µ structurally similar neighbors, it is marked as a core

vertex. Then, clusters grow from core vertices by adding all vertices

that are structurally similar to any core vertex in the cluster. Finally,

a vertex that does not belong to any cluster is considered a hub, if its
neighbors belong to two or more clusters, or an outlier, otherwise.

A straightforward approach to detect geo-communities, is to

devise a similarity metric that combines the Euclidean distance

and social relationship between two users. Let dE (u,v) be the Eu-
clidean distance and dS (u,v) be the social distance between users

u and v . Then, their geo-social distance is defined as dдs (u,v) =
ω ·dE (u,v)+ (1−ω) ·dS (u,v), i.e., the weighted average of the two
metrics. If we replace the Euclidean distance in the DBSCAN algo-

rithm with dдs (u,v), the geo-social ϵ-neighborhood Nϵ (u) of user
u includes all users v such that dдs (u,v) ≤ ϵ . If the geo-social ϵ-
neighborhood ofu contains at leastMinPts users, thenu is regarded

as a core user. In this case, u and all other users in its geo-social
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Figure 2: Example of geo-social network

ϵ-neighborhood, form a community C(u). Furthermore, if another

core user v belongs to community C(u), then the communities

defined by u and v are merged. After identifying all core users

and merging the corresponding communities, the algorithm ends

up with a set of communities and a set of outliers (i.e., users that

do not belong to the geo-social ϵ-neighborhood of any core user).

Nevertheless, one drawback of this approach is that the parameter

ω is hard to determine. In addition, it has a high computational

cost, because it must compute the Euclidean distance and social

relationship strength between all pairs of users. To address these

shortcomings, we propose the DGCD model that is based on struc-
tural graph clustering [23]. DGCD is the product of the following

observations.

Observation 1. Given a geo-social network, user pairs with high
social strength are more likely to be spatially close to each other.

Observation 2. Inside a community, two members normally have
many common friends, i.e., common neighbors. Therefore, the neigh-
borhood around two friends is an important factor, which can reflect
the stability and cohesiveness of their friendship.

Observation 3. A community normally consists of several high-
profile, as well as marginal users. High-profile users play an important
role in connecting members to form a community, and they are core
users. Marginal users typically have few friends, and they are involved
in some communities due to their high-profile friends.

For each user u in the GeoSN, DGCD finds the geo-social ϵ-
neighborhood Nϵ (u) of u, which includes all neighbors that are

(i) spatially close to u, i.e., their Euclidean distance is less than γ ,
and (ii) socially close to u, i.e., their structural similarity is larger

than ϵ . Note that Constraint (i) is based on Observation 1, while

Constraint (ii) is based on Observation 2. In the following, for ease

of presentation, we use the terms vertex and user interchangeably.

Definition 3.1. (Social Neighborhood). The social neighborhood
of a useru, denoted by Ns (u), is defined as the closed neighborhood
[9] of u; that is Ns (u) = {v ∈ V |(u,v) ∈ E} ∪ {u}.

In this work, we focus on the social (i.e., closed) neighborhood of

a vertex; note that the open neighborhood [9] of u is N (u) = {v ∈
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Figure 3: Example of geo-social neighborhood

V |(u,v) ∈ E}\{u}. The degree of u, denoted by d(u), is the cardi-
nality of Ns (u) (i.e., d(u) = |Ns (u)|). For example, the social neigh-

borhood of vertex v4 in Figure 2 is Ns (v4) = {v1,v2,v3,v4,v5},
its degree is d(v4) = |Ns (v4)| = 5, and its open neighborhood is

N (v4) = {v1,v2,v3,v5}.

Definition 3.2. (Geo-Social Neighborhood). The geo-social neigh-
borhood of a vertex u, denoted by Nдs (u), is defined as the set of

neighbors of u that are within radius γ from u, including user u;
that is, Nдs (u) = {v ∈ V |(u,v) ∈ E ∧ dE (u,v) ≤ γ } ∪ {u}, where
dE (u,v) is the Euclidean distance between u and v .

Intuitively, u’s geo-social neighborhood includes his nearby

friends. In practice, γ is an input parameter and can be varied

accordingly. As an example, in Figure 3, suppose γ =
√
5. Then, the

geo-social neighborhood ofv4 is {v1,v2,v3,v4}. Note thatv5 is not
in Nдs (v4), since their distance is larger than γ .

Definition 3.3. (Geo-Social Similarity). The geo-social similarity

between two users u and v , denoted by σ (u,v), is defined as the

number of common vertices in Nдs (u) and Nдs (v), normalized

by the geometric mean of their cardinalities; that is, σ (u,v) =
|Nдs (u)∩Nдs (v) |√
|Nдs (u) | · |Nдs (v) |

.

Intuitively, the geo-social similarity between two vertices in-

creases with the number of common vertices in their geo-social

neighborhoods. Note that, the geo-social similarity value ranges

between 0 and 1; that is, 0 ≤ σ (u,v) ≤ 1,∀u,v ∈ V . As shown in

Figure 3, when γ =
√
5, Nдs (v2) = {v1,v2,v3,v4} and Nдs (v4) =

{v1,v2,v3,v4}. Thus, σ (v2,v4) =
| {v1,v2,v3,v4 } |√

4·4
= 1.

Definition 3.4. (ϵ-Neighborhood). The ϵ-neighborhood of a user

u, Nϵ (u), includes the set of users in the geo-social neighborhood of

u that have geo-social similarity larger than or equal to ϵ : Nϵ (u) =
{v ∈ Nдs (u)|σ (u,v) ≥ ϵ}.

Definition 3.5. (Core User). A user u ∈ V , is called a core user

w.r.t. γ and ϵ , if his ϵ-neighborhood contains at least µ users.

In Figure 3, assume γ =
√
5, ϵ = 0.7 and µ = 4. Recall that

σ (v2,v4) = 1 and , thus,v2 is in the ϵ-neighborhood ofv4. Similarly,

we can compute σ (v1,v4) = 0.86 and σ (v3,v4) = 0.7. It is easy to

see that the ϵ-neighborhood of v4 is {v1,v2,v3,v4}. Therefore, v4
is a core user, since |Nϵ (v4)| = 4. Note that v5 is not in the ϵ-
neighborhood of v4, because they are far away from each other.

Definition 3.6. (Direct Geo-Social Reachability). A user v ∈ V is

directly geo-socially reachable from a user u ∈ V if (i) v belongs to

the ϵ-neighborhood of u and (ii) u is a core user.

Direct geo-social reachability is symmetric for pairs of core users,

but it is asymmetric if either user is not core.

Definition 3.7. (Geo-Social Reachability). A user u ∈ V is geo-

socially reachable from a user v ∈ V if there is a chain of users,

V ′ = {v1, . . . ,vn } ⊆ V , where v1 = v and vn = u, s.t. vi is directly
geo-socially reachable from vi−1,∀vi ∈ V ′

.

Geo-social reachability is transitive but asymmetric. It is only

symmetric for a pair of core users.

Definition 3.8. (Geo-Social Connectivity). A user v ∈ V is geo-

socially connected to a user u ∈ V , if there is a userw ∈ V , s.t. both

v and u are geo-socially reachable fromw .

Definition 3.9. (Geo-Socially Connected Cluster). A non-empty

subset Ci ⊆ V , i ∈ N is a geo-socially connected cluster w.r.t. γ , ε
and µ, if all users inCi are geo-socially connected andCi is maximal

w.r.t. the geo-social reachability.

Definition 3.10. (Geo-Social Clustering). A clustering C, of a
geo-social network G, w.r.t. γ , ϵ and µ, includes every geo-socially

connected cluster in G, w.r.t. γ , ϵ and µ.

In Figure 3, assume γ =
√
5, ϵ = 0.7 and µ = 4. As shown

previously, the ϵ-neighborhood of v4 is {v1,v2,v3,v4} and v4 is a
core user. Thus,v1,v2 andv3 are direct geo-socially reachable from
v4, and v1 is geo-socially reachable from v2, since v1 can reach v2
via v4. According to Definition 3.10, the set {v1,v2,v3,v4} forms a

new community.

Definition 3.11. (Borderline-User). A user v ∈ V is a borderline

user, if (i) he belongs to at least one cluster and (ii) he is not a core

user of any cluster.

Note that a borderline user can belong to more than one clusters

at the same time. In fact, if a user appears in more than one clusters,

he is regarded as a borderline user.

Definition 3.12. (Outlier). A userv ∈ V is an outlier, ifv does not

belong to any cluster.

Given the above definitions, any geo-social graph can yield geo-

socially connected clusters by executing the steps below. The cor-

rectness of this algorithm is implied by the following two lemmas.

(1) Choose a random core user v .
(2) Find all the geo-socially reachable users starting from v and

create a cluster.

Lemma 3.13. If v is a core user, then the set of users that are geo-
socially reachable from v constitute a geo-socially connected cluster
C ⊆ V .

Proof. First, we prove thatC is a non-empty cluster:v , as a core
user, is geo-socially reachable from himself; therefore, he belongs
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to cluster C . Next, we show that C is maximal. Let us consider two

users, u ∈ C andw ∈ V , wherew is geo-socially reachable from u.
User u belongs to C , so he is geo-socially reachable from the core

user v . Since geo-social reachability is transitive,w is geo-socially

reachable from the core user v , which implies thatw is also part of

cluster C . Finally, for the connectivity, it holds that, for each pair

of users u ∈ C andw ∈ C , both u andw are geo-socially reachable

from the corev , which in turn suggests thatu andw are geo-socially

connected via v . □

Lemma 3.14. If C ⊆ V is a geo-socially connected cluster w.r.t. γ ,
ϵ and µ, and v ∈ C is a core user, then the users that are geo-socially
reachable from v constitute C .

Proof. Let C ′
be the set of users that are geo-socially reachable

from v . We need to show that C ′ = C . First, it holds that C ′ ⊆

C , since v ∈ C ′
. Consider a user u ∈ C . Given that C is a geo-

socially connected cluster w.r.t. γ , ϵ and µ, there exists a core user
w ∈ C , such that (i)w is geo-socially reachable from v and (ii) u is

geo-socially reachable fromw . This implies that v is geo-socially

reachable fromw , because geo-social reachability is symmetric for

core users. Consequently, u is also geo-socially reachable from v ,
due to the transitive property of geo-social reachability. As a result,

u ∈ C ′
and, therefore, C ′ = C . □

4 THE DGCD ALGORITHM
In this section, we introduce our DGCD algorithm that correctly

identifies all communities in a geo-social network. We also analyze

its computational complexity.

4.1 Algorithm description
The DGCD algorithm is an extension of SCAN [23]. First, for each

user v in the GeoSN, it computes v’s geo-social neighborhood,
Nдs (v), and checks the geo-social similarity with all its geo-social

neighbors. Then, it computes the ϵ-neighborhood ofv ,Nϵ (v), and if
|Nϵ (v)| ≥ µ, v is labeled as a core user and a new community is ini-

tialized; otherwise, DGCD moves to the next unprocessed user, until

all users are processed. For the sake of efficiency, the social network

is stored in a hash table. Specifically, each pair of friends in the

social network is an entry in the hash table, such that relationship

queries incur constant cost.

Algorithm 1 shows the pseudo code of DGCD. Initially, all users

in the GeoSN are marked as unprocessed (line 1). Queue Q is used

to store potential candidates for the current community, while the

identity cid of the current community is initialized to 1 (line 2). Then,

for each unprocessed user vi , function ϵ-NEIGHBOR(G,vi ,γ , ϵ) is
invoked to obtain its ϵ-neighborhood, Nϵ (vi ). If Nϵ (vi ) contains
at least µ users, vi is labeled as core. Next, all users in Nϵ (vi ) are
assigned the same community id as vi (lines 7-8), while all unpro-
cessed users vj in Nϵ (vi ) are inserted into Q for later processing

(lines 9-10). Lines 11-19 expand the current community as much as

possible, by checking the unprocessed users inQ . WhenQ becomes

empty, the current community can not be expanded any further, so

the algorithm increments cid and continues its search for the next

community (line 20). Note that Algorithm 1 only outputs the set of

communities in G . Nevertheless, it can be easily extended to detect

borderline (hub) users and outliers, by traversing the entire graph

G in O(|V | + |E |) time.

Algorithm 1 : DGCD (G, γ , ϵ , µ)

1: label all v ∈ V as unprocessed

2: Q = ∅, H = ∅, cid = 1

3: for all unprocessed users vi do
4: Nϵ (vi ) = ϵ-NEIGHBOR(G,vi ,γ , ϵ,H )

5: if |Nϵ (vi )| ≥ µ then
6: assign cid to vi
7: for all user vj ∈ Nϵ (vi ) do
8: assign cid to vj
9: if vj is unprocessed then
10: Q .insert(vj )
11: while Q , ∅ do
12: vk = Q .pop()
13: if vk is unprocessed then
14: Nϵ (vk ) = ϵ-NEIGHBOR(G,vk ,γ , ϵ,H )

15: if |Nϵ (vk )| ≥ µ then
16: for all user vm ∈ Nϵ (vk ) do
17: assign cid to vm
18: if vm is unprocessed then
19: Q .insert(vm )

20: cid++

The pseudo code of function ϵ-NEIGHBOR(G,vi ,γ , ϵ) is listed in
Algorithm 2. S is an initially empty set that stores the ϵ-neighborhood
of user vi . First, the algorithm computes the geo-social neighbor-

hood of vi , Nдs (vi ), which consists of all vi ’s neighbors within dis-

tance γ . Then, for each user vj in Nдs (vi ), the algorithm computes

its geo-social neighborhood Nдs (vj ). From the two neighborhood

sets, the algorithm evaluates their geo-social similarity, according

to Definition 3.3. Finally, if their similarity is larger than ϵ , vj is
inserted into the result set S .

Algorithm 2 : ϵ-NEIGHBOR(G,vi ,γ , ϵ,H )

1: S = ∅

2: compute Nдs (vi )
3: for all user vj in Nдs (vi ) do
4: if H .exist(vi ,vj ) then
5: if H [(vi ,vj )] is true then
6: S .insert(vj )
7: else
8: compute Nдs (vj )

9: compute σ (vi ,vj ) =
|Nдs (vi )∩Nдs (vj ) |√
|Nдs (vi ) | · |Nдs (vj ) |

10: if σ (vi ,vj ) ≥ ϵ then
11: S .insert(vj )
12: H [(vi ,vj )] = true
13: return S

Recall that, geo-social similarity is symmetric. Hence, for a given

user vi , if user vj is (not) in Nϵ (vi ), then vi is also (not) in Nϵ (vj ),
and vice versa. Therefore, we use a hash table H to store a boolean

value indicating whether a pair of users (vi ,vj ) belong in each

other’s ϵ-neighborhood (once their geo-social similarity has been
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Table 2: Algorithm 1 trace

processing unprocessed Q clusters
v1 {v2,v3, . . . ,v11 } {v2,v4} C1 = {v1,v2,v4}

v2 {v3,v4, . . . ,v11 } {v3,v4} C1 = {v1,v2,v3,v4}

v3 {v4,v5, . . . ,v11 } {v4,v6} C1 = {v1,v2,v3,v4,v6}

v4 {v5,v6, . . . ,v11 } {v6} C1 = {v1,v2,v3,v4,v6}

v5 {v6,v7, . . . ,v11 } {v6} C1 = {v1,v2,v3,v4,v6}

v6 {v7,v8, . . . ,v11 } ∅ C1 = {v1,v2,v3,v4,v6}

v7 {v8,v9, . . . ,v11 } {v8,v9,v10} C1 = {v1,v2,v3,v4,v6} C2 = {v7,v8,v9,v10}

v8 {v9,v10,v11 } {v9,v10} C1 = {v1,v2,v3,v4,v6} C2 = {v7,v8,v9,v10}

v9 {v10,v11 } {v10} C1 = {v1,v2,v3,v4,v6} C2 = {v7,v8,v9,v10}

v10 {v11} ∅ C1 = {v1,v2,v3,v4,v6} C2 = {v7,v8,v9,v10}

v11 ∅ ∅ C1 = {v1,v2,v3,v4,v6} C2 = {v7,v8,v9,v10}

computed). In this way, we avoid computing the similarity between

the same pair of users twice.

To illustrate the operation of Algorithm 1, consider the exam-

ple of Figure 4, where γ =
√
5, ϵ = 0.7 and µ = 3. The labels on

the edges represent the geo-social similarities of the correspond-

ing vertices. Initially, all users are labeled as unprocessed, and as-

sume that the algorithm processes users in the orderv1,v2, . . . ,v11.
The first step is to compute the geo-social neighborhood of v1 as
Nдs (v1) = {v1,v2,v4}. Note that Nдs (v1) does not include v5, be-

cause its Euclidean distance to v1 is larger than
√
5. Then, since v2

andv4 are geo-socially similar tov1, we obtain the ϵ-neighborhood
ofv1 asNϵ (v1) = {v1,v2,v4}. The cardinality ofNϵ (v1) is 3, sov1 is
regarded as a core user and a new communityC1 is generated. Next,

we insertv2 andv4 intoQ for further processing and, suppose,v2 is
popped from the queue first. We compute Nϵ (v2) = {v1,v2,v3,v4},
which makes v2 a core user, thus assigningv3 into the current com-

munity C1, i.e., C1 = {v1,v2,v3,v4}. User v3 is also inserted into

Q , whose current members are {v4,v3}. We continue expanding

community C1 in a similar manner until Q becomes empty, which

indicates that C1 is maximal.

The algorithm then increments cid and initiates a new search for

the next community, by checking the remaining unprocessed users.

Specifically, the algorithm will first process user v7 and compute

Nϵ (v7) = {v7,v8,v9,v10}. The cardinality of Nϵ (v7) is 4, so v7 is
a core user that triggers the formation of a new community C2.

After C2 is expanded, the algorithm terminates and outputs two

communities: C1 = {v1,v2,v3,v4,v6} and C2 = {v7,v8,v9,v10}.
User v5 is an outlier because he is far away from all his social

friends, whilev11 is an outlier because his geo-social similarity with

v10 is only 0.63. Table 2 shows a detailed trace of the algorithm,

highlighting the contents of the various data structures.

4.2 Algorithm analysis
Given a geo-social network G = (V ,E), the time complexity of the

DGCD algorithm is O(α(G) · |E |), where α(G) is the arboricity of

G. For a graph G, its arboricity equals the minimum number of

edge-disjoint forests needed to cover all edges of G, and has an

upper bound of α(G) ≤
√
|E | [4]. Indeed, the basic operation of

Algorithm 1 involves the computation of Nϵ (vi ) for each vi ∈ V .
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Figure 4: Detected communities

Furthermore, as evident in Algorithm 2, the dominant cost in com-

puting Nϵ (vi ) is the evaluation of the geo-social similarity σ (vi ,vj )
and, in particular, the set intersection Nдs (vi ) ∩ Nдs (vj ) between
the geo-social neighborhoods of vi and vj . In the worst case, the

overall cost of Algorithm 1 is equal to enumerating all triangles

in G. The current best time complexity of triangle enumeration is

O(α(G) · |E |) [4], thus bounding the time complexity of our algo-

rithm to O(|E |1.5).

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance of our

DGCD algorithm. First, we visualize and compare the geo-social

communities identified by DGCD and other competitors, using

real and synthetic datasets. Then, we introduce several metrics for

measuring the social and spatial cohesiveness between users in

the discovered geo-social communities, and use them to assess the

quality of the solutions produced by the different approaches.

5.1 Setup
We conducted extensive empirical studies to evaluate the effective-

ness of our algorithm for density-based geo-community detection.

Specifically, we evaluated DGCD against the following methods:
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• DBSCAN: This is the state-of-the-art algorithm for cluster-

ing spatial data [6]. DBSCAN is a density-based clustering

algorithm and can discover clusters of arbitrary shapes.

• SCAN: This is a structural clustering algorithm for networks

[23]. The goal of SCAN is to find clusters, hubs, and outliers

in large networks.

• CNGM: This approach is based on the fast modularity max-

imization (CNGM) algorithm [3]. CNGM can identify com-

munities in geo-social networks that are both highly topo-

logically connected and spatially clustered.

We utilized two real datasets in our experiments, namely Dallas

and Gowalla
4
. Each vertex in the dataset represents a unique user,

and each link represents a social relationship (friendship) between

two users. Gowalla is a location-based social networking website,

where users share their locations via check-ins. The social network

is undirected and was collected using their public API. It consists

of 12,748 nodes and 96,838 edges. We collected a total of 6,442,890

check-ins from these users over the period of Feb. 2009 to Oct.

2010, but we only used the first check-in as the user’s geographic

location. The Dallas dataset is a partial geo-social network in the

region (32.63,-97.02) to (32.90,-96.64), extracted from the Gowalla

dataset. There are 818 users and 920 relationships, and the degree

ranges from 1 to 97.

We also performed experiments with synthetic datasets. We are

not aware of any existing spatial graph data generators, so we

created our synthetic data as follows. First, we used GTGraph
5
,

a well-known graph generator, to generate a non-spatial graph

(using the default parameter values of GTGraph). The degrees of the

vertices follow a power-law distribution, which is often exhibited

in social networks. To generate the location of each graph vertex,

we first select a random vertex v and assign it to a random position

in the [0, 3000] × [0, 3000] space. Then, we place v’s neighbors at
random positions, whose distances follow a normal distribution

with mean 300 and standard deviation 600. We repeat this step

for other vertices, starting from v’s neighbors, until every vertex

in the graph is associated with a location. We created two spatial

graphs of different sizes, namely Syn1 and Syn2. The statistics of

all our datasets are summarized in Table 3, where
ˆd represents the

average degree. All algorithms were implemented in Java and the

experiments were performed on a 2.2 GHz Intel Core i7 machine

with 16GBytes memory, running macOS.

Table 3: Datasets used in our experiments

Type Name Vertices Edges d̂

Real

Dallas 818 920 2.25

Gowalla 12,748 96,838 15.19

Synthetic

Syn1 200 2,639 26.39

Syn2 2,000,000 23,398,532 23.39

5.2 Visualization-based analysis
We first visualize and compare the communities discovered by our

DGCD algorithm and the three competitors (SCAN, DBSCAN and

4
http://snap.stanford.edu/data/index.html

5
http://www.cse.psu.edu/madduri/software/GTgraph/

CNGM) on the Dallas dataset. The visualization of the Dallas geo-

social network is shown in Figure 5. Note that Dallas corresponds to

a small portion of the Gowalla dataset, in order to facilitate the visu-

alization of the detected communities by the different approaches.

In this region, the maximum distance between two users is 11, 000

meters. For the first experiment, we set the distance threshold to

γ = 1000, the geo-social similarity threshold to ϵ = 0.5 and the

ϵ-neighborhood cardinality threshold to µ = 3.

Figure 5: The geo-social network in Dallas

Figure 6 illustrates the communities discovered by DGCD (our

model), CNGM (which clusters users according to maximum modu-

larity), DBSCAN (which disregards the social network) and SCAN

(which disregards the spatial information). As shown in Figure 6(a),

DGCD detected 12 geo-communities, and all of them are both spa-

tially and socially close. These communities are consistent with our

density-based model and provide meaningful context to emerging

geo-social applications. Consider, for example, the top right corner

community, marked with a blue color. It consists of only four users,

where each user has strong social connections with the others, and

they are all located in close proximity. Identifying such groups

is beneficial to targeted advertisements, e.g., a “20% discount on

a table for four” offer running at a nearby restaurant. Note that

DGCD discovers very few communities compared to the dataset

size. This is because the geo-social network of Dallas is sparse and

many users turn out to be outliers.

Figure 6(b) shows the clustering output of CNGM. This algorithm

begins by labeling every user as a community and thenmerges them

in a bottom-up manner. When a pair of communities is merged, it

results in an increase in modularity ∆Q . At every step, the algorithm

merges the pair of communities that generates the maximum ∆Q .
When the maximum ∆Q becomes negative, the process stops and

the community structure of the network is revealed. However, as

Figure 6(b) shows, this algorithm produces communities whose

members are far away from each other, because the terminating

condition is hard to decide. Another drawback of CNGM is the

expensive computational cost, since, at each iteration, it computes

∆Q for all pairs of users.

The detected communities of SCAN, depicted in Figure 6(c),

are spatially sparse. As mentioned previously, this is because the

SCAN framework does not take into account the users’ geographic

locations. Instead, users with more social connections are more

likely to be clustered into the same community, even if they are

far away from each other. Finally, Figure 6(d) shows the clustering

http://snap.stanford.edu/data/index.html
http://www.cse.psu.edu/madduri/software/GTgraph/
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(a) DGCD (b) CNGM

(c) SCAN (d) DBSCAN

Figure 6: Visualization on Dallas: γ = 1000, ϵ = 0.5, µ = 3

output of DBSCAN, which is also not interesting. In particular,

DBSCAN produces a very large cluster that dominates all others.

This type of clustering is meaningless in geo-social applications, as

it lacks social context.

For the next experiment, we strengthen the spatial and social

constraints (we set γ = 700 and ϵ = 0.6) of the community search,

which leads to some more interesting observations. As shown in

Figure 7(a), the communities detected by the DGCD framework

become more compact. That is, for each community, its members

are spatially closer to each other and their social relationships

are stronger. This has some very practical applications in real life.

Consider the context of spatial crowdsourcing, where there are

several tasks waiting to be assigned. The DGCD model can be

employed to identify uniquely qualified groups willing to undertake

these tasks. Intuitively, group members should be spatially close

in order to reduce the traveling cost, but at the same time, group

members should be familiar with other, which could potentially

increase their working efficiency.

The CNGM algorithm is not sensitive to the γ , ϵ and µ param-

eters, because its objective function is to maximize modularity.

Therefore, the output of CNGM remains unchanged. SCAN detects

fewer communities than before, as shown in Figure 7(c), since we

tightened the social constraint of the query. As for DBSCAN, Figure

7(d) illustrates that the large dominating community has split into

two smaller ones, because of the tighter spatial constraint that we

imposed. As a result, DBSCAN outputs more communities than be-

fore but, unfortunately, they are still not interesting in the context

of geo-social networks.

(a) DGCD (b) CNGM

(c) SCAN (d) DBSCAN

Figure 7: Visualization on Dallas: γ = 700, ϵ = 0.6, µ = 3

Note that, the Dallas dataset is very sparse in terms of social

connections, having an average degree of 2.25. As such, in the next

set of experiments we utilize our synthetic dataset (Syn1) that is

considerably more active in terms of social relationships (average

degree of 26.39). Figure 8 plots the discovered communities for the

four algorithms, using parameters γ = 200, ϵ = 0.7 and µ = 4.

DGCD outputs 9 clusters that are both spatially close and socially

cohesive. CNGM’s clusters, on the other hand, are spatially sparse,

as in the case of the Dallas dataset. This is because the CNGM

algorithm tries to assign all users to a community.

Similarly, as shown in Figure 8(c), SCAN’s results are spatially

sparse. However, they are significantly improved compared to the

Dallas dataset, due to the stringent social similarity constraint (ϵ =
0.7). Finally, DBSCAN exhibits very similar behavior as in the Dallas

dataset, i.e., it outputs a couple of large clusters that dominate all

others, but do not provide any valuable insight to the end-user.

Clearly, being a purely spatial-based clustering algorithm, DBSCAN

can not identify interesting communities in geo-social networks.

In our final visualization experiment, we weaken the social con-

straint to ϵ = 0.6, while keeping the other two parameters constant

(γ = 200 and µ = 4). Figure 9 illustrates the discovered communities

for the four approaches. DGCD outperforms again all the other

algorithms, and identifies 7 communities that are spatially close

and socially cohesive. On the other hand, CNGM and DBSCAN are

not affected, because they are insensitive to the social parameter ϵ .
Figure 9(c) shows the most interesting result in this experiment,

as the slight weakening of the social constraint in the SCAN algo-

rithm produces a very large community (marked in blue color) that
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(a) DGCD (b) CNGM

(c) SCAN (d) DBSCAN

Figure 8: Visualization on Syn1: γ = 200, ϵ = 0.7, µ = 4

dominates all others. This indicates that SCAN is extremely sensi-

tive to the social constraint ϵ . Furthermore, since SCAN disregards

spatial information, an improperly set social constraint can easily

produce meaningless results in the context of geo-social networks.

5.3 Social and spatial quality evaluation
In this section, we introduce several metrics for assessing the social

and spatial cohesiveness of the discovered geo-social communities.

Based on these metrics, we assess the quality of DGCD and its

competitors on the two larger datasets, namely Gowalla and Syn2.

We also test the quality of the solutions for our DGCD model, using

different social similarity metrics to replace σ (u,v). In particular,

we consider the following two metrics for measuring the similarity

of u,v ∈ G, based on their geo-social neighborhoods Nдs (u) and
Nдs (v), respectively:

• Jaccard similarity: J (u,v) = |Nдs (u)∩Nдs (v) |
|Nдs (u)∪Nдs (v) |

• Dice similarity: D(u,v) = 2 |Nдs (u)∩Nдs (v) |
|Nдs (u)+Nдs (v) |

To quantify the social cohesiveness of a community, we adopt

two of the eight network community multi-criterion scores listed

in [13]: internal density and conductance. The other six criteria yield
similar results, so we omit them in our study. Given a geo-social

network, let C be the set of detected communities. For a given

cluster ci ∈ C , its internal density fd (ci ) is defined as

fd (ci ) = 1 −
mci

|ci |( |ci |−1)
2

(a) DGCD (b) CNGM

(c) SCAN (d) DBSCAN

Figure 9: Visualization on Syn1: γ = 200, ϵ = 0.6, µ = 4

where mci is the number of edges in ci , i.e., mci = |{(u,v)|u ∈

ci ,v ∈ ci }|. On the other hand, its conductance fc (ci ) is the fraction
of edges from ci ’s vertices that point outside ci , that is,

fc (ci ) =
oci

2mci + oci

where oci = |{(u,v)|u ∈ ci ,v < ci }|. For both metrics, a lower score

indicates better social quality.

Figure 10 illustrates the community scores for the different ap-

proaches. They are computed by averaging the individual scores

(either density or conductance) for each discovered community ci .
The query parameters were set as γ = 1000, ϵ = 0.5 and µ = 3 for

the Gowalla dataset, and γ = 200, ϵ = 0.7 and µ = 4 for the Syn2

dataset. In terms of conductance, SCAN is marginally better than

DGCD for both datasets. On the other hand, the internal density of

DGCD is slightly better than SCAN for the Syn2 dataset. SCAN’s

lower community scores are expected, since it clusters users based

solely on their social relationships. Nevertheless, DGCD performs

almost as well, thus generating communities with high social co-

hesiveness. Furthermore, DGCD outperforms CNGM under all set-

tings. Naturally, all approaches are superior to DBSCAN, because

DBSCAN does not utilize the social graph in its clustering function.

Finally, it is worth pointing out that the Jaccard and Dice metrics

produced worse results than our default social similarity metric.

To measure the spatial cohesiveness of the detected communities,

we introduce two additional metrics: (i) radius, which is the average

radius of all communities in the final result, and (ii) aveDist, which
represents the average pair-wise distance among all users inside a

community. Figure 11 presents the (normalized) results for the two
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Figure 11: Spatial cohesiveness

metrics. DGCD clearly outperforms the other clustering methods

by a wide margin. Furthermore, the Jaccard and Dice variants of

DGCD produce almost identical results, since they use the same

radius constraint γ . DBSCAN is superior to SCAN, but it still results

in high values for the radius and aveDist metrics. This is due to

the large communities it produces, as evident in our visualization

experiments. SCAN has the worst spatial cohesiveness in its com-

munities, because it is based purely on social relationships. CNGM

is the closest competitor to DGCD, but its spatial cohesiveness

scores are at least 3 times worse than DGCD for both datasets.

6 CONCLUSIONS
In this paper, we investigate Density-based Geo-Community De-

tection (DGCD) in geo-social networks. Our model extends the

density-based clustering paradigm to consider both the spatial and

social relationships between users. We define a newmeasure for the

geo-social distance between a pair of users that captures well their

social strength and also their spatial proximity. Then, we introduce

the DGCD algorithm that correctly identifies all communities in

a GeoSN, according to a set of spatial and social constraints. We

perform an extensive experimental evaluation to assess the effec-

tiveness of the DGCD model, using both real and synthetic datasets.

The DGCD model produces high-quality communities that can not

be captured by existing graph or spatial clustering methods. In

our future work, we plan to extend the DGCD model to temporal

networks.
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