
A Threshold-Based Algorithm for Continuous
Monitoring of k Nearest Neighbors

Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras, Member, IEEE, and Yufei Tao

Abstract—Assume a set of moving objects and a central server that monitors their positions over time, while processing continuous

nearest neighbor queries from geographically distributed clients. In order to always report up-to-date results, the server could

constantly obtain the most recent position of all objects. However, this naı̈ve solution requires the transmission of a large number of

rapid data streams corresponding to location updates. Intuitively, current information is necessary only for objects that may influence

some query result (i.e., they may be included in the nearest neighbor set of some client). Motivated by this observation, we present a

threshold-based algorithm for the continuous monitoring of nearest neighbors that minimizes the communication overhead between

the server and the data objects. The proposed method can be used with multiple, static, or moving queries, for any distance definition,

and does not require additional knowledge (e.g., velocity vectors) besides object locations.

Index Terms—Spatial databases, location-dependent and sensitive, query processing.

�

1 INTRODUCTION

THE problem of monitoring changes in the results of
continuous queries has been extensively studied in the

context of computer network [6] and data stream [13]
applications. Babcock and Olston [4] deal with an interest-
ing case, where a central server continuously reports the
largest k values obtained from distributed data streams. The
main idea behind their methodology is to maintain
arithmetic constraints at the stream sources to ensure that
the most recently reported answers remain valid. Up-to-
date information is obtained only when some constraint is
violated, thus reducing the communication overhead. In
this paper, we study an alternative to this problem suitable
for spatio-temporal and mobile-computing applications.
Assume a set of clients (e.g., hotels, taxi piazzas), each
requiring continuous monitoring of its k nearest neighbors
(NNs) among a large set of moving objects (e.g., taxis).
Clients and objects may appear or disappear (e.g., a new
taxi enters service and reports its position, another one goes
off-duty). The clients and the objects do not communicate
directly, but through a central server that collects the
queries and the object locations. The server can broadcast
messages to all objects, which can respond individually
(e.g., similar to a taxi call-service). The server must be able
to report at any time the k closest objects to every client (the
value of k may be different for each client). Fig. 1 illustrates
the general architecture of the system.

Each object is aware of its position (through a GPS
device) and has some limited memory and processing
capabilities so that it can store the current queries (broad-
cast by the server) and compute its distance from every
query. For simplicity, we use examples in the Euclidean

space, but the proposed solutions are independent of the
distance definition (i.e., the network distance can be applied
if the object can compute it based on a shortest path
algorithm and a stored map of the area [16]). Although
movement is continuous, we assume that updates are
discrete; for example, there is a minimum time between two
subsequent message transmissions from the same object.
Concerning the server, it can either broadcast messages to
all objects, or send unicast messages to objects individually.
As in most real-life applications, we consider that the cost of
broadcasting is much lower than that of sending a large
number of individual messages.

Our goal is to minimize the communication cost, i.e., the

number of messages exchanged between the server and the

moving objects. Intuitively, although in practical applica-

tions there exist numerous objects that move with arbitrary

velocities toward arbitrary directions, we only care about

the ones that may influence some query (i.e., they may be

included in the nearest neighbor set of some client). For the

rest of the objects, we do not need up-to-date information;

in accordance with the methodology of [4], we can avoid the

continual transmission of a large number of rapid data

streams corresponding to location updates.
Starting with a single static query q in Fig. 2, assume that

we want to continuously monitor the 3-NNs (the initial

NNs are p1, p2, p3). We call the objects that belong to the

result inner, as opposed to outer, for objects (p4, p5, p6) that

do not qualify the query at the current time. In addition,

Fig. 2 contains three thresholds t1, t2, t3 which define a

range for each object, such that if its distance from q lies

within the range, the result of the query is guaranteed to

remain unchanged. Each threshold is set in the middle of

the distances of two consecutive points from the query (the

computation of the thresholds will be discussed in

Section 3). The distance range for p1 is ½0; t1Þ, for p2 is

½t1; t2Þ, for p3 is ½t2; t3Þ, and for p4, p5, p6 is ½t3;1Þ. Every

object is aware of its distance range, and when there is a

boundary violation, it informs the server about the event.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005 1451

. K. Mouratidis, D. Papadias, and S. Bakiras are with the Department of
Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong.
E-mail: {kyriakos, dimitris, sbakiras}@cs.ust.hk.

. Y. Tao is with the Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong. E-mail: taoyf@cs.cityu.edu.hk.

Manuscript received 16 Sept. 2004; revised 1 Apr. 2005; accepted 28 Apr.
2005; published online 19 Sept. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0326-0904.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

For instance, if the first threshold violation occurs when
the distance distðp1; qÞ becomes larger than t1 (p1 moves to a
new position p01), then the order between the first two NNs
may change (i.e., p2 may become the first NN). In order to
verify this, the server must acquire the current location of
p2. If p2 has moved toward the query, it may become the
first NN; otherwise (e.g., p2 is static or has moved away
from the query), the result remains the same. In any case,
the value of t1 is updated to reflect the new locations of p1
and p2. The positions of the other objects are not relevant, as
they cannot influence the result before they trigger a
threshold violation. Continuing the example, consider that
the second event is triggered when p3 moves further away
from q than t3, in which case any of the outer objects may
become the third NN (e.g., since the last update, object p6
has moved closer to the query). In order to restrict the set of
potential candidates (that must send their new locations),
the server broadcasts a request asking for the positions of all
outer objects within distance distðp03; qÞ from the query
point. A new value of t3 is calculated based on the position
of the new third ðp6Þ and fourth ðp3Þ NN and broadcast to
all objects.

We propose a threshold-based algorithm for minimizing
the network overhead, which can be employed with any
distance definition, multiple (possibly moving) queries, and
takes into account several real-life constraints (inaccuracy
due to discrete updates, concurrent violations, appearance/
disappearance of objects and queries). The rest of the paper
is organized as follows: Section 2 surveys related work on
snapshot and continuous NN queries. Section 3 presents
our solutions for the single, static query case, while Section 4
extends our methodology to multiple moving queries.
Section 5 experimentally evaluates the proposed techniques
in terms of the communication cost and Section 6 concludes
with directions for future work.

2 RELATED WORK

Section 2.1 gives an overview of snapshot NN queries in
client-server architectures and Section 2.2 presents methods
for continuous monitoring of nearest neighbors.

2.1 Snapshot NN Queries

The first query processing techniques (e.g., [17], [8]) for NN
retrieval considered static queries and data. Later, the focus
shifted toward moving NN queries and/or objects in client-
server architectures, where the goal is to provide, in
addition to the current results, information about their
validity. Zheng and Lee [22] propose a technique that

reduces the network overhead for moving queries on static
objects. When the server receives a query, it returns to the
client the NN and a validity period T such that the NN is
guaranteed to remain the same (even if the client moves
before T expires, it does not need to issue another query in
order to obtain up-to-date results). Zhang et al. [24] propose
the concept of location-based queries that return the validity

region around the query point where the result remains the
same. The validity region is the Voronoi cell1 of the NN,
which is computed on-the-fly using an R-tree on the data
points. As long as the client remains in the Voronoi cell, it
can reuse the result without having to issue another query.
The technique can also be applied for k NNs by computing
order-k Voronoi cells.

For the same settings (moving query—static data objects),
Song and Roussopoulos [18] attempt to reduce the number
of future queries by introducing some redundancy in the
results of current ones. In particular, when a k-NN query
arrives, the server computes and returns to the client a
number m > k of neighbors. Let distðkÞ and distðmÞ be the
distances of the kth and mth nearest neighbor from the query
point q. If the client reissues the query at a new location q0, it
can be easily proven that the new k nearest neighbors will be
among the m objects of the first query, provided that
2 � distðq0; qÞ � distðmÞ � distðkÞ. Tao and Papadias [19]
study time-parameterized (TP) queries, assuming that the
clients and the data objects move with linear and known
velocities. In addition to the current result R, the output of a
TP query contains its validity period T and the next changeC of
the result (that will occur at the end of the validity period).
Given the additional information (C and T), the client only
needs to issue another TP query after the expiry of the
current result. Assuming a linearly moving client, a linear

query [3], [19] returns all query results up to a future
timestamp. In particular, the output is a set of tuples
< Ri; Ti > , where Ri is the k NN set during interval Ti.

All the above techniques take as input a single query,
and report its nearest neighbor set at the current time,
possibly with some validity information (e.g., expiration
time, Voronoi cell), or generate future results based on
predictive features (e.g., velocity vectors of queries or data
objects). On the other hand, continuous monitoring:

1452 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 1. Architecture of the system.

Fig. 2. Example of 3-NN monitoring.

1. A data point is the NN for every (query) point that falls in its Voronoi
cell.

1. involves multiple long-running queries (from geo-
graphically distributed clients),

2. is concerned with both computing and keeping the
results up to date,

3. usually assumes main-memory processing to pro-
vide fast answers in an online fashion, and

4. attempts to minimize factors such as the CPU or
communication cost (as opposed to I/O overhead).

2.2 Continuous NN Queries

Continuous monitoring of spatial queries is becoming
increasingly important due to the wide availability of
inexpensive and compact positioning devices, the evolution
of mobile communications, and the need for improved
location-based services. Consequently, several techniques
have been developed during the last few years. Assuming
static range queries, Q-index [15] indexes them using an
R-tree. The moving objects probe the index to find the
queries that they influence. Q-index utilizes the concept of
safe regions to reduce the number of updates. In particular,
each object p is assigned a circular or rectangular region,
such that p needs to issue an update only if it exits this area.
Kalashnikov et al. [11] show that a grid implementation of
Q-index is more efficient (than R-trees) for main memory
evaluation. MQM [5] and Mobieyes [7] exploit the object
computational capabilities in order to reduce the processing
load of the central server. SINA [14] performs a spatial join
in three steps between moving objects and queries to
continuously update the current results.

The aforementioned methods focus on range query
monitoring, and their extension to NN queries is either
impossible or nontrivial. Koudas et al. [10] describe a
technique for approximate k-NN retrieval over streams of
multidimensional points. Yu et al. [21] propose a method,
hereafter referred to as YPK-CNN, for the continuous
monitoring of exact k-NN queries. Objects are assumed to fit
in main memory and are indexed with a regular grid of cells
with size � � �. YPK-CNN does not process updates as they
arrive, but directly applies the changes to the grid. Each
NN query installed in the system is re-evaluated every
T time units. When a query q is evaluated for the first time,
a two-step NN search technique retrieves its result. The

initial step visits the cells inside an iteratively enlarged
square R around the cell cq covering q until k objects are
found. Fig. 3a shows an example of a single NN query
where the first candidate NN is p1 with distance d from q; p1
is not necessarily the actual NN since there may be objects
(e.g., p2) in cells outside R with distance smaller than d. To
retrieve such objects, the second step searches in the cells
intersecting the square SR centered at cq with side length
2 � dþ �, and determines the actual k NN set of q therein. In
Fig. 3a, YPK-CNN processes p1 up to p6 and returns p2 as
the actual NN. The accessed cells appear shaded.

SEA-CNN [20] focuses exclusively on monitoring the
NN changes, without including a module for the first-time
evaluation of an arriving query q (i.e., it assumes that the
initial result is available). Objects are stored in secondary
memory, indexed with a regular grid. The answer region of a
query q is defined as the circle with center q and radius
best dist, where best dist is the distance of the current kth
NN. Book-keeping information is stored in the cells that
intersect the answer region of q to indicate this fact. When
updates arrive at the system, depending on which cells they
affect and whether these cells intersect the answer region of
the query, SEA-CNN determines a circular search region
SR around q, and computes the new k NN set of q therein.
To determine the radius r of SR, the algorithm distin-
guishes the following cases: 1) If some of the current NNs
move within the answer region or some outer objects enter
the answer region, SEA-CNN sets r ¼ best dist and pro-
cesses all objects falling in the answer region in order to
retrieve the new NN set. 2) If any of the current NNs moves
out of the answer region, r ¼ dmax (where dmax is the
distance of the previous NN that moved furthest from q),
and the NN set is computed among the objects lying in SR.

CPM [12] assumes the same system architecture and
indexing structures as YPK-CNN and SEA-CNN. When a
query q arrives at the system, CPM computes its initial
result by organizing the cells into conceptual (hyper)
rectangles based on their proximity to q. Each rectangle
rect is defined by a direction and a level number. The direction
is U, D, L, or R (for up, down, left, and right), and the level
number indicates how many rectangles are between rect
and q. Fig. 3b illustrates the conceptual partitioning of the

MOURATIDIS ET AL.: A THRESHOLD-BASED ALGORITHM FOR CONTINUOUS MONITORING OF K NEAREST NEIGHBORS 1453

Fig. 3. YPK-CNN and CPM example. (a) NN search in YPK-CNN and (b) NN search in CPM.

space around the cell c4;4 of q in our running example. If
mindistðc; qÞ is the minimum possible distance between any
point in cell c and q, the NN search considers the cells in
ascending mindistðc; qÞ order. In particular, CPM initializes
an empty heap H and inserts 1) the cell of q with key equal
to 0, and 2) the level zero rectangles for each direction DIR,
with key mindistðDIR0; qÞ. Then, it starts deheaping entries
iteratively. If the deheaped entry is a cell, it examines the
objects inside and updates accordingly the list best NN of
the closest NNs found so far. If the deheaped entry is a
rectangle DIRlvl, it inserts into H 1) each cell c 2 DIRlvl

with key mindistðc; qÞ and 2) the next level rectangle
DIRlvlþ1 with key mindistðDIRlvlþ1; qÞ. The algorithm
terminates when the next entry in H (corresponding either
to a cell or a rectangle) has key greater than the distance
best dist of the kth NN found. It can be easily seen that the
NN search processes only the cells that intersect the circle
with center at q and radius equal to best dist. This is the
minimal set of cells to visit in order to guarantee
correctness. In Fig. 3b, the search processes the shaded
cells, and returns p2 as the result.

Similar to YPK-CNN, SEA-CNN, and CPM, we target
exact processing of continuous NN queries. However, the
above three methods 1) assume that each object issues an
update whenever it moves (independently of whether it
influences a query or not), and 2) focus exclusively on
minimizing the CPU cost at the server side. On the other
hand, we 1) consider that the objects have some computa-
tional capabilities so that they can determine if they need to
issue an update, and 2) aim at minimizing the network cost.
In this sense, the proposed methodology is more related to
previous techniques for the monitoring of range queries
(e.g., [15], [5], [7]) that utilize the concept of safe regions to
reduce the number of messages. However, NN queries are
inherently more complex than ranges; in fact, as discussed
in Section 3.3, the proposed methodology can capture range
(and other) queries with straightforward adaptations.
Furthermore, the threshold-based algorithm could be
integrated with YPK-CNN, SEA-CNN, and CPM in one
system that minimizes both the network overhead and the
processing cost at the server.

3 SINGLE STATIC QUERY

We assume a time-slotted system, where each object notifies
(if necessary) the server about its new location at discrete
timestamps, i.e., there is a minimum interval dt between
two consecutive updates of the same object such that the
round-trip time of a message between the server and any
object is negligible compared to dt. Discrete updates are
necessary for any realistic system as moving objects cannot
report positions continuously. For simplicity, we consider
that the updates are synchronous, although this is not a
prerequisite for the proposed methods (the value of dt may

be different for each object), which can also capture the fact
that messages are sometimes lost due to the error-prone
nature of the wireless medium. The discrete updates and
potential message losses introduce inaccuracy because the
reported result may become invalid at the interval between
two subsequent updates. Here, we define correctness based
on the most recent information received at the server side.
For ease of presentation, we first describe our methodology
for the continuous monitoring of a single static query before
covering multiple moving queries. Section 3.1 describes the
threshold-based algorithm for maintaining the k nearest
neighbors, Section 3.2 presents cost models for measuring
the communication overhead, and Section 3.3 discusses
applications to other query types.

3.1 Threshold-Based Algorithm

At any time, the server maintains the ids of the k last
reported NNs and the k thresholds that define the distance
ranges where objects can move without causing a result
change. Let pi ði ¼ 1; . . . ; kÞ be the ith NN and di be its
distance from the query point q. The permissible range
½ti�1; tiÞ of pi is defined by thresholds ti�1 and ti (see Fig. 4).
Ideally, the threshold ti between pi and piþ1 should be set in
a way that defers as much as possible a potential violation,
e.g., if we expect both objects to move away from the query,
a good value for ti would be close to diþ1. Since we do not
assume any knowledge regarding the motion patterns, we
initially set ti ¼ ðdi þ diþ1Þ=2, i.e., in the middle of the
distances of the two relevant NNs (for the first NN t0 ¼ 0).
Each object locally keeps the position of the query and the
relevant thresholds: Outer objects store tk, while the ith NN
stores ti�1 and ti. When an object violates its threshold(s), it
sends an uplink message to the server with its new location.

Once a query q arrives, the server first needs to retrieve
the initial set of k-NNs. In order to achieve this, it broadcasts
a message asking for the current locations of all objects
within a distance r1 from q. The value of r1 can be tuned
based on the trade-off between the cost of broadcasting and
uplink messages. For instance, a large range is likely to
contain more than necessary objects, but it will cause
numerous uplink messages, several of which are redun-
dant. On the other hand, a small value may return an
insufficient number of objects so that the process has to be
repeated incrementally around the query point. Assuming
that the server only knows the cardinality jN j of the object
data set, but not its distribution (which, anyway, changes
with time), we set:

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
�
� � jNj

q
:

The rationale is that for uniform data distribution in unit
workspace, the circle ðq; r1Þ centered at q with radius r1 is
expected to contain k objects [1]. If the number k1 of
objects that respond is equal to or larger than k, the

1454 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 4. Thresholds for inner and outer objects.

server has enough information to compute the k-NNs and
the thresholds.2 Otherwise, it must broadcast a second
query asking for the locations of objects in the circle
ðq; r2Þ, where r2 is such that, based on the density
information of the first query, the number of objects
within distance r2 from q is expected to be k. The set of
responses to the server includes 1) objects with distance
in the range ðr1; r2� that do not qualify the first query and
2) objects whose location has changed since their last
transmission. The process is repeated until the server
collects responses of at least k objects.3 The radius ri of
the ith range query is computed using the value of ri�1

and the number ki�1 of objects that have responded up to
the i� 1th query:

ri ¼ ri�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
�
ki�1

q
:

After the initial computation, the server has to continuously
monitor the result and report changes. Let I and O be the
sets of incoming (e.g., outer objects that come within
distance tk from q) and outgoing objects (e.g., inner objects
that move out of tk), respectively. Depending on the
cardinalities of I and O at a particular timestamp, we
distinguish two cases. The first one refers to the situation
where jIj � jOj, i.e., the new value t0k of the outer threshold
is equal to or smaller than the previous one tk (since more
objects approach the query point). In this case, the new
thresholds are only transmitted to the affected objects with
unicast messages and broadcasting is avoided. On the other
hand, if jIj < jOj (the second case), then t0k > tk, implying
that 1) some outer objects must send their updated positions
since they may now belong to the query result and 2) the
new value of t0k must be broadcast to all outer objects.

Before illustrating these two cases in detail, we present in
Fig. 5 the basic functionality of the system. Let T be the set
of all objects that incur violations at some timestamp, i.e.,
T ¼ I [O [{inner objects that violate their assigned
thresholds but not tk}. If T 6¼ ;, the interval ½ti�1; tiÞ of each
inner object pi ð2 T � IÞ that violates its threshold (i.e.,
moved to another interval or out of tk) is marked as orphan.
In the first step, the algorithm generates a new threshold for
each nonorphan interval, assigning the initial values t0i0 (i0 is
an index over the new threshold values). Then, the objects
of T �O (the violators whose current location is within tk)
are sorted according to their distance from q in list LT and
processed one-by-one (while-loop in Fig. 5). If an object falls
in an orphan interval ½ti�1; tiÞ, it produces a new threshold
t0i0 ¼ ti. Otherwise, the updated location of the “owner”
object is obtained, and t0i0 is set in the middle of the two
object distances. The process stops when the new result
contains k objects or LT becomes empty. If jIj � jOj,
computing the new NN set and thresholds is completed
at this point.

As an example of this case, consider the 6-NN query of
Fig. 6a where p2, p4, and p8 issue violations at the same
timestamp, i.e., T ¼ fp2; p4; p8g, I ¼ fp8g, and O ¼ ;. Some
objects (e.g., p8) may violate multiple thresholds, if their
ranges are small and they move fast (with respect to dt), or

previous update messages were lost. The algorithm first
scans the original intervals (i.e., before the violations) and
for each nonorphan one 1) it assigns a new threshold and
2) inserts the corresponding object in the current NN list. In
Fig. 6b, there are only four NNs ðp1; p3; p5; p6Þ and new
thresholds t01; . . . ; t

0
4 because ½t1; t2Þ and ½t3; t4Þ are orphan

(they belong to objects p2 and p4 that issue violations). The
first object (in T �O) processed is p2 since it is the closest to
q; p2 falls in the nonorphan interval ½t2; t3Þ (according to the
old thresholds), and in ½t01; t02Þ (according to the new ones).
The current position of the object ðp3Þ assigned to ½t01; t02Þ is
not known. Thus, the server has to obtain it in order to
determine the order of p2 and p3 in the NN result. Then, p2
is inserted in the appropriate order and a new threshold t02
is set between p2 and p3 (Fig. 6c). The processing of p4 (falls
in ½t02; t03Þ) is similar (Fig. 6d), the only difference being that
the current location of p3 does not have to be obtained
again. Object p8 falls in orphan interval ½t3; t4Þ, generating a
new threshold t05 ¼ t4 (Fig. 6e) and the set of NNs is
completed. The new outer threshold t06 equals t5.

If the set of NNs (or their order) changes, the new result
is transmitted to the client. In addition, the new thresholds
are sent (by individual unicast messages) to 1) objects that
triggered a violation (T ¼ fp2; p4; p8g) and 2) objects that
updated their location (although they did not incur
violations) because they were involved in NN conflicts
(U ¼ fp3g). On the other hand, p1 and p5 maintain their old
intervals (½t00; t01Þ ¼ ½t0; t1Þ and ½t05; t06Þ ¼ ½t4; t5Þ, respectively)
since they have not issued a violation and are not involved
in conflicts. The same is true for p6 (previous sixth NN),

MOURATIDIS ET AL.: A THRESHOLD-BASED ALGORITHM FOR CONTINUOUS MONITORING OF K NEAREST NEIGHBORS 1455

2. If ki > k, the outer threshold tk is defined by the distances of the kth
and kþ 1th NN. Otherwise, (i.e., if ki ¼ k), tk is set to ri.

3. Assuming that the message round-trip time is negligible, only objects
with a distance in the range ðri�1; ri� respond to the ith query, i.e., the
positions of all objects in ð0; ri�1�, obtained by previous, are still valid.

Fig. 5. Threshold-based algorithm for single query.

which keeps t5 (¼ t06) and t6. If in the future p6 crosses t5, it
has to be processed as an incoming object anyway; if it
crosses t6, it will issue a (dummy) violation, and the server
will just send t06 to it. A similar lazy approach is followed for
the other outer objects, which receive the new outer
threshold t06 in future timestamps, only if they issue a
violation of the outdated one t6 or there is a broadcast due
to subsequent violations. In Section 4, we explore an
alternative for multiple queries, that piggy-backs threshold
updates to broadcast messages issued due to violations
incurred in other queries.

If jOj > jIj (second case), the above process will not
produce a sufficient number k of neighbors. Consider, for
instance, the 3-NN query of Fig. 7a, where p2 and p3 move
out of t3, and p5 moves in, i.e., T ¼ fp2; p3; p5g, I ¼ fp5g, and
O ¼ fp2; p3g. The while-loop of Fig. 5 will discover p1 and p5
as the two first NNs (Fig. 7b); the third NN can be any
object p with distðp; qÞ between t3 and d02, where d02 is the
updated distance of the closest outgoing object p2. In order
to find such objects, the server could broadcast a query
asking for all outer objects in the circle ðq; d02Þ. Since d02 might
be large (i.e., p2 has moved relatively far away from q), the
qualifying objects may be more than enough, incurring
unnecessary uplink cost. To avoid this, the server deter-
mines a radius r1 that is expected to contain sufficient NNs,
assuming uniform object distribution around q; r1 is
decided in the way discussed in the beginning of the
section for acquiring the initial query result. For our
example,

r1 ¼ t3 �
ffiffiffiffiffiffiffiffi
3
�
2

q
:

Then, r1 is compared with d02, and the smaller one (in this
example, d02) defines the range of the query to broadcast.

Let U1 be the set of outer objects in ðq; d02Þ, which also
contains the outgoing objects falling in the circle (although
they do not respond since they have issued a violation at the
same timestamp). Assume that p6 responds to the range
query and U1 ¼ fp6; p2g. The objects of U1 are sorted on their
distance from the query point and the first one (in the general
case, the first jOj � jIj) will complete the NN set (Fig. 7c).
U2ð¼ fp6gÞ denotes the subset of U1 that contains the new
NNs. The new outer threshold4 t03 is set to ðd06 þ d02Þ=2 and the
objects of ðT �OÞ [U [U2 are informed about their new
thresholds through unicast messages. In Fig. 7d, p5 and p6
receive ðt01; t02Þ and ðt02; t03Þ, respectively. Object p1 keeps its old
thresholds since it did not incur a violation and was not
involved in conflicts. The remaining (outer) objects use t03,
which is transmitted through broadcasting.

Objects that appear/disappear (e.g., taxis that start/
cease service) can be handled as incoming/outgoing
objects, respectively. In particular, initially, a new object p
reports its position to the server. If its distance from q is
equal to or larger than tk, p receives the threshold tk and
does not participate in the NN selection; otherwise, p is
processed as an incoming object. Similarly, the disappear-
ance of outer objects does not affect query processing.
Disappearing inner objects are considered as outgoing ones
that move infinitely far away from q and, thus, handled
trivially by the monitoring algorithm of Fig. 5.

3.2 Cost Models

Independently of the monitoring method, the server has to
receive a query request, compute the initial result, and
report it back to the client together with subsequent
updates. Thus, the difference among individual methods
(and the focus of the subsequent models) is due to the
overhead of messages between the server and the data

1456 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 7. Outgoing objects are more than incoming. (a) Before processing

violations: NN < p1; p2; p3; > . (b) After processing p5: NN < p1; p5; > .

(c) Range query for influencing objects. (d) After processing p6:

NN < p1; p5; p6 > .

4. If no new objects are found in the range (i.e., U1 ¼ fp2g, U2 ¼ fp2g), the
new outer threshold becomes t03 ¼ d02.

Fig. 6. Incoming objects are more than outgoing. (a) Before processing
violations: NN < p1; p2; p3; p4; p5; p6 > . (b) After the first step:
NN < p1; p3; p5; p6 > . (c) After inserting p2: NN < p1; p2; p3; p5; p6 > .
(d) After inserting p4: NN < p1; p2; p3; p4; p5; p6 > . (e) After inserting p8:
NN < p1; p2; p3; p4; p8; p5 > .

objects for tracking result changes. Let Cu be the cost of an
uplink message from an object to the server, Cd the cost of a
downlink message (i.e., from the server to an object), and Cb

the cost of broadcasting (from the server to all objects). We
identify three different location update strategies.

3.2.1 Upper Bound

The upper bound corresponds to the naı̈ve policy, where
each object issues an update at every timestamp. Assuming
that the cardinality jN j of the data objects is constant, the
cost for each timestamp is:

CostUB ¼ jN j � Cu:

3.2.2 Lower Bound

The lower bound for the communication cost may be
computed by only considering the number of NN changes
per timestamp. For instance, in Fig. 6 the (formerly outer)
object p8 overpasses p5 and p6 to become the new fifth NN.
Thus, the positions of p8, p5, and p6 are essential for
determining the change. On the other hand, the updates of
p2, p3, and p4 are not required because their relative order in
the result remains the same despite the violations. Similarly,
in Fig. 7, we only need the current locations of p2, p3, p5, and
p6 to determine the new result. In general, the set S of
objects that need to issue updates contains:

1. inner objects that are involved in a NN order change
(swap),

2. formerly outer objects that become part of the result,
and

3. formerly inner objects that no longer belong to the
result.

Formally,

CostLB ¼ jSj � Cu;

where jSj is the cardinality of S. The maximum value of
CostLB is 2 � k � Cu, and occurs when all k NNs are replaced
by outer objects (in which case, both the old and the new
k-NNs must issue location updates). Clearly, this is a
hypothetical method, not useful in practice, since it requires
prior knowledge of all results.

3.2.3 Threshold-Based

This policy corresponds to our approach and aims at
minimizing the message overhead, without any prior
knowledge of the results. In order to obtain its cost, we
distinguish the two cases of Section 3.1. The first one refers
to the situation where jIj � jOj, and incurs cost:

CostTB1 ¼ ðjT j þ jU jÞ � Cu þ ðjT j þ 2jU jÞ � Cd;

where T is the set of objects that violate their assigned
thresholds and U is the set of objects that must report their
location (although they have not incurred violations). The
rationale of the formula is that the objects in T need to
inform the server about range violations (cost jT j � Cu).
Consequently, the server has to ask and obtain the locations
of the objects in U (cost jU j � ðCu þ CdÞ) in order to resolve
the conflicts. Finally, it needs to update the threshold values
for the objects of T and U (cost ðjT j þ jU jÞ � Cd). In Fig. 6,

T ¼ fp2; p4; p8g, U ¼ fp3g (because p2, p4 fall in the range of
p3), and CostTB1 ¼ 4 � Cu þ 5 � Cd.

In the second case ðjOj > jIjÞ, range queries have to be
performed in order to find the outer influencing objects. For
generality, assume that there also exist object disappear-
ances and that the total number of range queries is n. The
cost of the threshold-based policy now becomes:

CostTB2 ¼ðCostTB1 � jOj � CdÞ þ jU1 �Oj � Cu þ jU2j � Cd

þ ðnþ 1Þ � Cb;

where U1 is the set of objects that satisfy some range query
and U2 � U1 is the subset including objects in the new NN
set. The first term (CostTB1 � jOj � Cd) is because the
second case also involves the computations of the first
one, but we do not need to send individual messages to
outgoing objects (due to subsequent broadcasting). The
cost of the n broadcast queries is n � Cb. Every object in U1

that satisfies some range query, except for the ones in O
(that have incurred violations and informed the server
about their current positions), must send an uplink
message (cost jU1 �Oj � Cu). After the NN set is completed,
the server sends the new thresholds to the inner objects
with unicast messages (jU2j � Cd since the cost of messages
to other objects is included in CostTB1) and broadcasts the
new outer threshold (cost Cb). In the example of Fig. 7,
n ¼ 1, T ¼ fp2; p3; p5g, U ¼ ;, O ¼ fp2; p3g, U1 ¼ fp2; p6g,
U2 ¼ fp6g, and CostTB2 ¼ 4 � Cu þ 2 � Cd þ 2 � Cb.

We expect that for most practical scenarios

CostLB < CostTB � CostUB;

but the exact values depend on the specific problem
parameters (e.g., moving patterns, object speed) and the
underlying network (relative cost of downlink and uplink
messages, cost of broadcasting). For instance, if the moving
objects are power-limited, the value of Cu should be much
larger than Cd since for mobile devices, more power is
consumed in the “transmitting” than in the “receiving”
mode [9]. On the other hand, an application implemented
on top of a GPRS-like service should set these values
according to the expected length (in bytes) of each message
since the pricing policy of GPRS services is based on the
amount of transferred bytes.

3.3 Application to Other Queries

The proposed techniques are not restricted to nearest
neighbor search, but can be easily applied to other query
types with practical relevance, such as range queries. In this
case, the client specifies its location q and a range d, and
asks for all objects within distance d from q. Continuous
monitoring of range queries can be captured by a simplified
version of our algorithm that works as follows:

1. Initially, the server broadcasts ðq; dÞ, acquires all
objects in the range, and reports their ids to the
client.

2. Each object p uses d as a single threshold and when it
violates it (i.e., p moves in or out of the range),
informs the server accordingly.

3. At each timestamp, the server collects the id of every
object p that issues a violation and transmits it to the
client.

MOURATIDIS ET AL.: A THRESHOLD-BASED ALGORITHM FOR CONTINUOUS MONITORING OF K NEAREST NEIGHBORS 1457

If the client has already p (in its result list), p is deleted (it
has moved out of the query); otherwise, it is inserted to the
result.

In addition, we can solve other, nonconventional,
variations of continuous monitoring that involve spatial
conditions. Consider, for instance, an inverse range query,
which specifies a point q, an integer k, and asks for the
minimum range dk around q that contains k objects (but not
the object ids). The monitoring of such a query requires a
combination of the techniques for range and k-NN search.
In particular, the server must first acquire the k-NN set (in
order to compute the initial value of dk), but afterwards it
only processes violations of the outer threshold since the
order of the NNs is not important. Therefore, similar to
range queries, each object keeps a single threshold tk,
which, however, changes with time (unlike range queries
where it is set to a fixed value d).

Finally, it is worth pointing out that the proposed
methods are independent of the distance definition since
we do not make any assumptions that are particular to
Euclidean space. For instance, in the taxi call-service
scenario, the clients are more likely to request the NNs in
terms of the network (as opposed to Euclidean) distance, or
in terms of the expected travel time to the query point. Our
techniques can be used directly, provided that each object
can compute the measure of interest. The thresholds again
define the range where each object can lie without
influencing the result according to the new measure. For
instance, if the network distances (travel time) of the first
two NNs is 1 and 3km (minutes), respectively, the threshold
between them could be set to 2km (minutes). In fact, as we
show in the experimental evaluation, the behavior of the
proposed algorithms is similar to the Euclidean case,
independently of the application domain. Furthermore,
the same concepts apply to spaces of higher dimensionality.

4 MULTIPLE MOVING QUERIES

Having solved the fundamental static-query case, we
extend the threshold-based algorithm to multiple, possibly
moving, queries. Let Q be the set of continuous queries that
are simultaneously monitored by the system. For each
query, the server stores its location, its last reported result,
and the set of thresholds. Similarly, a data object p keeps the
query locations and its threshold (pair of thresholds, if p is
an inner object) with respect to every query. At each
timestamp, the server collects the violations and processes
all queries in parallel, trying to minimize the overhead by
maximizing information sharing. In particular, if the location
of an object is obtained for a query, this information is also
shared by other ones that may use the object’s position. In
order to further reduce the network cost, range queries
(needed to obtain the locations of outer objects that may
influence some result) are broadcast together (i.e., a single
broadcast asks for objects in the vicinity of multiple
queries). Also, if an object satisfies multiple ranges, it
reports its location only once. Transmission of thresholds
occurs after all queries have been processed so that if an
object has to receive an update for the needs of a query, it
also receives the updated thresholds with respect to all
other queries (in a single unicast message).

Furthermore, every time a message is broadcast (because
the outer threshold of a query increases), it is appended

with the outer thresholds of all other queries whose new
thresholds have decreased since the last broadcast. Con-
sider again the example of Fig. 6 where the outer threshold
t06 has decreased, but the outer objects (including former
NN p6) have not been informed. If the server needs to
broadcast the outer threshold of another query, the new
value ðt06Þ and the corresponding query id is also included
in the message. Each object compares t06 with its previous
threshold t6 (for this query) and if t06 < t6, it is kept as the
most updated one. If an object has two thresholds (e.g., the
object was or still is part of the result), t06 is compared with
the smallest one t0. If t06 � t0, the object (e.g., p6) has ceased to
be part of the NN set and stores t06 as the new outer
threshold. Otherwise, if t06 > t0. the object (e.g., p1, p2, p3, p4,
p8, and p5 in Fig. 6) is still one of the k NNs and ignores t06.

Similar to the data objects, new queries may appear in

the system, while existing ones may be terminated. Once a

client requests the termination of a query, the server

broadcasts a message to all objects, which simply remove

the query location and the associated thresholds from their

local memory. The handling of appearing (new) queries is

more complex. Consider Fig. 8 that contains two running

queries q1; q2 (requesting four and three NNs, respectively)

and let pij be the jth neighbor of qi. The fourth NN of q1 is

also the third NN of q2, i.e., p1;4 	 p2;3. The server knows the

exact location of p2;2 (e.g., it issued a violation), while for the

remaining five objects, it only has the corresponding query

thresholds. Assume that at this timestamp, a new 4-NN

query q0 arrives. According to the methodology of

Section 3.1, a range query should be broadcast asking for

all objects within the circle ðq0; r1Þ, where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=� � jNj

p
. If

only one object ðp4Þ replies, a second range query should be

performed, where r2 ¼ 2 � r1. Note that, because the area

around q0 is sparse, r2 is larger than necessary since the

circle already covers the six NNs of q1 and q2 (whereas we

need only three more objects). In order to reduce the extend

of these ranges (and, thus, the number of messages from

qualifying objects), the server performs the following tasks.

For each NN pij of some query, it computes a value dij
which equals 1) the actual distance distðpij; q0Þ, if the current

1458 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 8. Example of query addition.

location of pij is known (e.g., p2;2), or 2) an upper bound

distðqi; q0Þ þ tij, where tij is the right (i.e., largest) threshold

of pij in qi, if the current location of pij is not known. If pij is

a NN of multiple queries, the minimum of the bounds is

chosen, e.g., in Fig. 8

d1;4 ¼ d2;3 ¼ minðdistðq1; q0Þ þ t1;4; distðq2; q0Þ þ t2;3Þ:

Then, the objects are sorted according to their dij.
Intuitively, the first dij (in this case, d2;2) defines a circle

(q0; d2;2) that contains at least one object (p2;2); the second one
(d1;1) defines a circle (q0; d1;1) that contains at least two
objects (p2;2 and p1;1), etc. The number of objects in each
circle is shown on the vertical line of Fig. 8. These numbers
are lower bounds because 1) they only take into account
objects that belong to the results of running queries and 2) if
the actual position of an object is not known, it is assumed
to have the farthest permissible distance from q0. The server
utilizes the additional information by first deciding the
appropriate circle that is guaranteed to contain the number
(4) of objects requested by q0, which in Fig. 8 corresponds to
(q0; d1;2). The value of d1;2 is compared with the range of the
uniform estimation, and the smallest one (in this case, r1) is
used for the first broadcast query. Since the query returns a
single object (p4), the server chooses d2;1 for the second
range (q0; d2;1) because it is smaller than r2 and is guaranteed
to retrieve three more objects (p2;2, p1;1, and p2;1).

Now, we remove the static query assumption and
consider that, as in the case of objects, queries may issue
location updates at discrete timestamps. The difference is
that, for queries, we cannot have a threshold mechanism to
minimize the amount of violation handling; even a small
query movement may cause significant changes in the
result and should be processed accordingly. Fig. 9 shows an
example where at some timestamp that does not involve
any other violations, a 4-NN query moves to a new position
q0, whose distance from the original location q1 is dq. If the
objects are close to (but have not violated) their thresholds
as shown in Fig. 9, the order of p1;1, p1;2, and p1;3; p1;4
changes, while some outer object may replace p1;3 in the
result. Since the actual positions of the previous NNs are
not known, the server should broadcast a query asking for
all objects in the circle (q0, t1;4 þ dq), which is guaranteed to
retrieve at least p1;1, p1;2, p1;3, and p1;4.

In the above example, we intentionally assumed that dq is
small so that the new query location q0 is close to the
previous one q1. In the general case, dq may be arbitrarily
large, so that 1) none of the NNs of q1 belongs necessarily to
the result of q0, and 2) some NNs of other running queries
may become NNs of q0. Such a situation is derived from
Fig. 8, considering that q0 corresponds to a location update
of q1 (instead of a new query). In this case, broadcasting a
range query (q0, t1;4 þ dq) incurs unnecessary overhead since
the server can utilize the available information about q1 and
q2 to restrict the radius. In particular, query movement is
handled as a deletion (of q1) and insertion (of q0) following
the technique discussed in the context of Fig. 8, i.e., the
server first broadcasts a “uniform” range (q0; r1) (retrieving
p4) and then a second one (q0; d2;1) (which contains at least
p2;2, p1;1, and p2;1). This method trivially captures the
example of Fig. 9 and, in general, any query movement.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed

framework and compare it with the lower and upper

bounds as discussed in Section 3.2. We use two data sets: In

the first one, denoted as spatial, we randomly select the

initial position and the destination of each object from a real

dataset (Los Angeles, available at www.rtreeportal.org).

The object follows a linear trajectory (with constant velocity)

between the two points. Upon reaching the endpoint, a new

random destination is selected and the same process is

repeated. Distance is defined according to the Euclidean

metric. The second data set, denoted as road, is created with

the spatio-temporal generator of [2]. The input of the

generator is the road map of Oldenburg (a city in Germany),

consisting of 6,105 nodes and 7,035 edges. The output is a

set of objects (e.g., cars, pedestrians) moving on this

network, where each object is represented by its location

at successive timestamps. An object appears on a network

node, completes a shortest path to a random destination

and then disappears. At each timestamp, we control the

number of appearing objects so that the total number jNj (a

parameter) remains constant. The measure of interest is the

network distance, which is defined as the length of the

shortest path that connects the object to the query.
Table 1 summarizes the parameters under investigation,

along with their ranges. Their default (median) values are

typeset in boldface. In each experiment, we vary a single

parameter, while setting the remaining ones to their default

values. The reported results represent the average value over

20 simulations. For each simulation, the query point is one of

the data points in the Los Angeles data set (for spatial) or a

node in the network (for road), and the NNs are monitored for

1,000 timestamps.5 We assume that the costs of uplink and

downlink messages are equal (i.e., Cd ¼ Cu ¼ 1), whereas the

cost of broadcasting Cb is a function of Cd (with default value

8 � Cd). In accordance with the presentation of the proposed

algorithms, Section 5.1 evaluates the single static query case,

while Section 5.2 deals with multiple, possibly moving

queries.

MOURATIDIS ET AL.: A THRESHOLD-BASED ALGORITHM FOR CONTINUOUS MONITORING OF K NEAREST NEIGHBORS 1459

Fig. 9. Query movement without object violations.

5. Due to the huge space and time requirements of simulations in large
network topologies, we use smaller values for jQj and jNj in the road
experiments.

5.1 Single Static Query

The first experiment evaluates the effect of the object
cardinality jN j. Figs. 10a and 10b show the communication
cost (over all timestamps), as a function of jNj, for the spatial
and road data sets, respectively. Our threshold-based (TB)
policy scales well with the population size since jNj affects
the cost only indirectly. In particular, the cost is determined
entirely by the objects in the vicinity of the query point (as
the distant ones cannot influence the result), whose number
increases with jN j due to the higher density. The results are
similar for both data sets, indicating the generality of our
techniques. The cost of the upper bound (UB) approach is
1; 000 � jNj since each object issues one update per time-
stamp. The lower bound (LB) strategy incurs between 9K
and 15.5K messages in all cases. Recall that its cost
(determined by the number of NN changes) lies in the
range ½0; 2 � k� per timestamp. Under these settings, the
maximum number of messages over all timestamps can be
16K (if all nearest neighbors change at every timestamp),
independently of jN j. As expected, the performance of TB is
close to that of LB (around three times more expensive) and
two to four orders of magnitude better than UB.

In order to provide some intuition about the network
cost breakdown, Table 2 presents the number of uplink,
downlink, and broadcast messages, for monitoring 8-NNs
over a set of jNj objects that move with medium speed
during a period of 1K timestamps. In addition, the table
contains (in parentheses), the percentage of the total cost
incurred by each message category assuming that Cu ¼ Cd

and Cb ¼ 8 � Cd. For both spatial and road data sets, uplink
transmissions constitute the dominant factor in the total
number of messages and, subsequently, in the overall cost
(over 40 percent). This is because uplink messages are
issued by objects that incur violations, and more impor-
tantly by objects that respond to broadcast (range) queries
even though they do not necessarily influence the result. On

the other hand, the number of broadcasts is small (only
3 percent to 4 percent of the total messages) and their
contribution to the cost lies between 23 percent to 25 percent.
The slightly higher relative cost of broadcasting for road is
mainly due to the fact that it includes object deletions.

Nevertheless, despite their very different characteristics
(cardinality, data distribution, type of movement, distance
metric), the two data sets incur analogous overhead and
number of messages per category. This trend is apparent in
all subsequent experiments, where the performance is
practically identical for both data sets, confirming the
robustness of our methods independently of the application
domain.

Figs. 11a and 11b illustrate the effect of k (number of NNs
required by the query). In both cases, the cost of LB increases
almost linearly with k, due to the reasons explained in the
context of Fig. 10. TB behaves in a similar way because the
number of thresholds (and, therefore, their possible viola-
tions) also increases linearly with k. On the other hand, the
cost of UB is constant because it only depends on the object
cardinality, and not on the number of NNs.

Fig. 12 shows the cost as a function of the object speed.
Objects with slow speed cover a distance that equals 1/250
of the axis length per timestamp. Medium and fast speeds
correspond to distances that are 5 and 25 times larger,
respectively. The same concept is applied on both the spatial
and road data sets, the only difference being that in the
second case, objects are restricted to move on the network
edges. The network cost is again constant for UB, and
increases with the speed for TB and LB, because higher
object agility causes a larger number of nearest neighbor
changes.

Finally, in order to evaluate the applicability of our
techniques to different network infrastructures, we vary the
relative cost of Cb with respect to Cd. Fig. 13 measures the
overall cost as a function of Cb in the range ½Cd; 64 � Cd�. UB

1460 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

TABLE 1
System Parameters (Ranges and Default Values)

Fig. 10. Message cost versus object cardinality jNj: (a) Spatial. (b) Road.

and LB do not involve any broadcasting and, therefore, they

are not affected by Cb. On the other hand, the cost of TB

does not grow much with Cb because, as shown in Table 2,

broadcasting contributes a minor percentage in the total

number of messages. Recall that due to the lazy update

policy, broadcast is only required when the value of the

outer threshold increases.

5.2 Multiple Moving Queries

The experiments for multiple moving queries use similar

settings to the previous ones, but involve some additional

parameters, namely, the cardinality jQj of the query set, the

query speed, and the period of movement. First, assuming

static queries, Fig. 14 explores the effect of jQj on the

performance, where the remaining parameters are set to

MOURATIDIS ET AL.: A THRESHOLD-BASED ALGORITHM FOR CONTINUOUS MONITORING OF K NEAREST NEIGHBORS 1461

TABLE 2
Number of Messages per Data Set

Fig. 11. Message cost versus k. (a) Spatial (jNj ¼ 64K). (b) Road (jNj ¼ 8K).

Fig. 12. Message cost versus object speed. (a) Spatial (jNj ¼ 64K). (b) Road (jNj ¼ 8K).

Fig. 13. Message cost versus Cb=Cd. (a) Spatial (jNj ¼ 64K). (b) Road (jNj ¼ 8K).

their default values, as shown in Table 1. Obviously, UB

exhibits constant behavior independent of jQj. The cost of

LB lies in the range ½0; 2 � jQj � k� per timestamp (i.e., in the

worst case, all NNs of all queries may change at each

timestamp). TB performs very well, and approaches the

lower bound because the information at the server and the

communication overhead is shared among the queries.
The concept of information sharing is further explored in

Fig. 15, which shows the cost savings as a function of jQj. In

particular, the cost saving for jQj queries is defined as:

ðjQj � Cost1 � CostjQjÞ=jQj � Cost1, where Cost1 is the over-

head of processing a single query, and CostjQj the overhead

of processing jQj queries simultaneously. As discussed in

Section 4, the savings of simultaneous processing are due to

the sharing of:

1. broadcast ranges,
2. uplink messages from objects that qualify multiple

ranges at some timestamp, and
3. downlink messages to objects that influence various

queries.

As jQj increases, so does the amount of sharing, and when,
for instance, jQj reaches 64, Costj64j is only 39 times higher
than Cost1 (instead of 64 � Cost1) for the road dataset. Fig. 16
shows the cost as a function of k. The diagrams and their
explanation are similar to the single query case (Fig. 11).

As opposed to the previous experiments that assume
static queries, the following ones consider query movement.
We first examine the effect of the query speed which,
similar to the object speed, is classified as slow, medium, and
fast, depending on the distance that the query moves from
its previous location. We assume jQj concurrent queries,

1462 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 14. Message cost versus query cardinality jQj. (a) Spatial (jNj ¼ 64K). (b) Road (jNj ¼ 8K).

Fig. 15. Savings from information sharing. (a) Spatial (jNj ¼ 64K). (b) Road (jNj ¼ 8K).

Fig. 16. Message cost versus k. (a) Spatial (jQj ¼ 64). (b) Road (jQj ¼ 8).

each asking for k ¼ 8 NNs and moving every eight
timestamps. As shown in Fig. 17, the cost of LB is almost
constant and close to its maximum value 2 � jQj � k because
the query movements are likely to invalidate all NNs (in
addition to the invalidations due to object movements). The
performance of TB is again closer to LB than to UB, and it is
not very sensitive to the query speed.

Finally, Fig. 18 shows the communication cost as a
function of the query period, i.e., the number of timestamps
between two subsequent query movements. For instance, if
the period is 1, all queries move at every timestamp,
whereas if the period is 64, each query issues a location
update every 64 timestamps. As expected, the cost of TB is
higher for frequent movements because each movement
requires some broadcast range queries and subsequent
uplink messages to obtain the results. Nevertheless, its
performance is robust (and much better than the naı̈ve
policy) even if all queries issue updates continuously.

6 CONCLUSIONS

This paper introduces and solves the problem of continuous
k-NN monitoring over moving objects. Given a set of
geographically distributed clients, the goal of the server is
to constantly report the NN set of each client with the
minimum communication overhead. Our contribution is a set
of novel techniques, which are based on the intuition that up-
to-date information is necessary only for objects that may
influence some query result. The proposed methods can deal
with multiple, static, or moving queries independently of the

underlying distance definitions. Extensive experimental
evaluation, using Euclidean and road network settings,
confirms that they are robust and efficient, even when
compared with a, practically infeasible, optimal method.

We believe that the continuous monitoring of spatial
queries will play a central role in numerous applications
related to mobile computing and spatio-temporal databases.
At the same time, it poses several interesting research
issues. A direction for further investigation refers to the
extension of the proposed methodology to other query
types. As briefly discussed in Section 3.3, variations of range
search can be processed by a straightforward adaptation of
our techniques. However, other forms of continuous
monitoring are not trivial, as, for instance, spatial aggregate
processing [23]. In the “monitoring” version of this
problem, the client could require continuous reports about
the value of some functions (e.g., number of cars, average
traffic, maximum speed) in its vicinity. Another promising
direction refers to approximate k-NN monitoring for
situations where the exact results are not necessary and
the communication resources are limited. A solution to this
problem may use threshold-based techniques that adapt
based on the trade-off between accuracy and network
overhead. Furthermore, in this case, it would be interesting
to devise probabilistic methods for providing guaranteed
error bounds.

ACKNOWLEDGMENTS

This work was supported by grants HKUST 6184/05E and
CityU 1163/04E from Hong Kong RGC.

MOURATIDIS ET AL.: A THRESHOLD-BASED ALGORITHM FOR CONTINUOUS MONITORING OF K NEAREST NEIGHBORS 1463

Fig. 17. Message cost versus query speed. (a) Spatial (jQj ¼ 64). (b) Road (jQj ¼ 8).

Fig. 18. Message cost versus query period. (a) Spatial (jQj ¼ 64). (b) Road (jQj ¼ 8).

REFERENCES

[1] C. Bohm, “A Cost Model for Query Processing in High
Dimensional Data Spaces,” ACM Trans. Database Systems, vol. 25,
no. 2, pp. 129-178, 2000.

[2] T. Brinkhoff, “A Framework for Generating Network-Based
Moving Objects,” GeoInformatica, vol. 6, no. 2, pp. 153-180, 2002.

[3] R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
Neighbor and Reverse Nearest Neighbor Queries for Moving
Objects,” Proc. 2002 Int’l Symp. Database Eng. & Applications
(IDEAS), 2002.

[4] B. Babcock and C. Olston, “Distributed Top-k Monitoring,” Proc.
ACM SIGMOD Conf., 2003.

[5] Y. Cai, K. Hua, and G. Cao, “Processing Range-Monitoring
Queries on Heterogeneous Mobile Objects,” Proc. 2004 IEEE Int’l
Conf. Mobile Data Management, 2004.

[6] M. Dilman and D. Raz, “Efficient Reactive Monitoring,” Proc.
INFOCOM Conf., 2001.

[7] B. Gedik and L. Liu, “MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a Mobile
System,” Proc. Int’l Conf. Extending Database Technology, 2004.

[8] G. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[9] C. Jones, K. Sivalingam, P. Agrawal, and J. Chen, “A Survey of
Energy Efficient Network Protocols for Wireless Networks,”
Wireless Networks, vol. 7, no. 4, pp. 343-358, 2001.

[10] N. Koudas, B. Ooi, K. Tan, and R. Zhang, “Approximate NN
Queries on Streams with Guaranteed Error/Performance
Bounds,” Proc. Very Large Data Bases Conf., 2004.

[11] D. Kalashnikov, S. Prabhakar, and S. Hambrusch, “Main Memory
Evaluation of Monitoring Queries Over Moving Objects,” Dis-
tributed and Parallel Databases, vol. 15, no. 2, pp. 117-135, 2004.

[12] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
Partitioning: An Efficient Method for Continuous Nearest
Neighbor Monitoring,” Proc. ACM SIGMOD Conf., 2005.

[13] S. Madden, H. Shah, J. Hellerstein, and V. Raman, “Continuously
Adaptive Continuous Queries over Streams,” Proc. ACM SIGMOD
Conf., 2002.

[14] M. Mokbel, X. Xiong, and W. Aref, “SINA: Scalable Incremental
Processing of Continuous Queries in Spatio-Temporal Databases,”
Proc. ACM SIGMOD Conf., 2004.

[15] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch,
“Query Indexing and Velocity Constrained Indexing: Scalable
Techniques for Continuous Queries on Moving Objects,” IEEE
Trans. Computers, vol. 51, no. 10, pp. 1124-1140, 2002.

[16] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query
Processing in Spatial Network Databases,” Proc. Very Large Data
Bases Conf., 2003.

[17] N. Roussopoulos, S. Kelly, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD Conf., 1995.

[18] Z. Song and N. Roussopoulos, “K-Nearest Neighbor Search for
Moving Query Point,” Proc. Int’l Symp. Spatial and Temporal
Databases, 2001.

[19] Y. Tao and D. Papadias, “Spatial Queries in Dynamic Environ-
ments,” ACM Trans. Databsase Systems, vol. 28, no. 2, pp. 101-139,
2003.

[20] X. Xiong, M. Mokbel, and W. Aref, “SEA-CNN: Scalable
Processing of Continuous K-Nearest Neighbor Queries in Spa-
tio-Temporal Databases,” Proc. Int’l Conf. Data Eng., 2005.

[21] X. Yu, K. Pu, and N. Koudas, “Monitoring K-Nearest Neighbor
Queries over Moving Objects,” Proc. Int’l Conf. Data Eng., 2005.

[22] B. Zheng and D. Lee, “Semantic Caching in Location-Dependent
Query Processing,” Proc. Int’l Symp. Spatial and Temporal Databases,
2001.

[23] D. Zhang, V. Tsotras, and D. Gunopulos, “Efficient Aggregation
over Objects with Extent,” Proc. ACM Symp. Principles of Database
Systems, 2002.

[24] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee, “Location-
Based Spatial Queries,” Proc. SIGMOD Conf., 2003.

Kyriakos Mouratidis received the BSc degree
in computer science in 2002 from the Aristotle
University of Thessaloniki, Greece. Currently, he
is a PhD candidate in the Computer Science
Department at the Hong Kong University of
Science and Technology. His research interests
include spatio-temporal databases, data stream
processing, and mobile computing.

Dimitris Papadias is an associate professor at
the Computer Science Department, Hong Kong
University of Science and Technology (HKUST).
Before joining HKUST in 1997, he worked and
studied at the German National Research
Center for Information Technology (GMD), the
National Center for Geographic Information and
Analysis (NCGIA, Maine), the University of
California at San Diego, the Technical University
of Vienna, the National Technical University of

Athens, Queen’s University (Canada), and University of Patras
(Greece). He has published extensively and been involved in the
program committees of all major database conferences, including
SIGMOD, VLDB, and ICDE.

Spiridon Bakiras received the BSc degree in
electrical and computer engineering from the
National Technical University of Athens, the
MSc degree (1994) in telematics from the
University of Surrey, and the PhD degree
(2000) in electrical engineering from the Uni-
versity of Southern California. Currently, he is a
postdoctoral fellow in the Department of Com-
puter Science at the Hong Kong University of
Science and Technology. His research interests

include high-speed networks, peer-to-peer systems, mobile computing,
and spatial databases. He is a member of the ACM and the IEEE.

Yufei Tao received the diploma from the South
China University of Technology in August 1999
and the PhD degree from the Hong Kong
University of Science and Technology in July
2002, both in computer science. After that, he
spent a year as a visiting scientist at the
Carnegie Mellon University. Currently, he is an
assistant professor in the Department of Com-
puter Science, City University of Hong Kong. Dr.
Tao is the winner of the Hong Kong Young

Scientist Award 2002 from the Hong Kong Institution of Science. His
research includes query algorithms and optimization in temporal, spatial,
and spatio-temporal databases.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1464 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

