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Abstract—The skyline of a multidimensional data set contains the “best” tuples according to any preference function that is monotonic

on each dimension. Although skyline computation has received considerable attention in conventional databases, the existing

algorithms are inapplicable to stream applications because 1) they assume static data that are stored in the disk (rather than

continuously arriving/expiring), 2) they focus on “one-time” execution that returns a single skyline (in contrast to constantly tracking

skyline changes), and 3) they aim at reducing the I/O overhead (as opposed to minimizing the CPU-cost and main-memory

consumption). This paper studies skyline computation in stream environments, where query processing takes into account only a

“sliding window” covering the most recent tuples. We propose algorithms that continuously monitor the incoming data and maintain the

skyline incrementally. Our techniques utilize several interesting properties of stream skylines to improve space/time efficiency by

expunging data from the system as early as possible (i.e., before their expiration). Furthermore, we analyze the asymptotical

performance of the proposed solutions, and evaluate their efficiency with extensive experiments.

Index Terms—Skyline, stream, database, algorithm.
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1 INTRODUCTION

SKYLINE queries are important to applications that
require retrieval with respect to user preferences.

Fig. 1a shows an example where each 2D point represents
a stock record with two attributes: risk (x axis) and
commission cost (y axis). A stock r dominates another r0 if
and only if the coordinates of r on all axes are smaller
than or equal to those of r0. The skyline consists of all
stocks that are not dominated by others, i.e., fb; e; fg in
Fig. 1a. These are the best stocks since if a tuple r
dominates another r0, then r is preferable to r0 by any
“preference function” that is monotonic on all attributes.
For instance, stock e has lower risk and cost than a, c,
and d, meaning that e is better independently of the
relative importance of the two attributes. On the other
hand, e and f are incomparable since a long-term
investor may be willing to pay higher commission to
ensure lower risk.

Skyline computation has received considerable atten-

tion in relational databases [6], [26], [21], [9], [23] and

Web information systems [3]. However, recently, the

database community witnessed a paradigm shift to query

processing over continuous streams (rather than static

data sets stored in disks). The goal is to continuously

report the qualifying records for long-standing queries in

a real-time manner. Techniques developed in traditional

databases are inefficient or simply useless in this scenario

because they typically do not consider the special

characteristics of streams, such as fast data arrivals, strict

limits for response time, etc. Stream-oriented algorithms

usually maintain all the data in memory to avoid the

expensive overhead of disk I/Os.
This paper studies skyline computation in stream

systems that consider only the tuples that arrived in a

sliding window covering the W most recent timestamps,

where W is a system parameter called the window length.

Specifically, a tuple r is alive during its lifespan ½r:tarr; r:texpÞ,
where r:tarr is its arrival time, and r:texp is the expiry time

equal to r:tarr þW . Furthermore, the stream is “append-

only” [10], [15], meaning that a tuple is not replaced before

its expiry. Streams satisfying the above requirements are

abundant in sensor-networks where the readings of a

sensor are transmitted to a central server periodically, e.g.,

every W ¼ 5 minutes. Records that arrived 5 minutes ago

are discarded from the server because they most likely do

not reflect the current sensor readings.
Our objective is to maintain the skyline over the live

data, and continuously output the skyline changes. Fig. 1b

shows an example, where the number beside each point r

denotes the arrival time r:tarr of a stock record, assuming

that these records are processed in a FIFO (first in, first out)

manner, and their lifespan lengths are W ¼ 5. The output of

the skyline operator is itself a stream; in this example, the

stream contains pairs (þa, 1), (þb, 3), (�a, 6), (þc, 6), (þd, 7),

(�b, 8), (þe, 9), (�c, 9), (�d, 9), (þf , 11), etc. A pair (þr, t)
implies that point r starts belonging to the skyline at time t,

while (�r, t) indicates the removal of r from the skyline at

time t. All pairs are produced in chronological order, and

no skyline modifications occur between two consecutive

pairs, i.e., the system captures all the skyline changes.
We propose algorithms that utilize the special properties

of “stream skylines” to improve space and time efficiency
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by expunging tuples from the system as early as possible
(before their expiration). Some of these properties are:

. All points dominated by an incoming tuple r can be
safely discarded since they are guaranteed not to
appear in the skyline in the future. For instance, the
arrival of e at time 9 immediately expunges the
current skyline points c and d although they have
not expired yet.

. An arriving tuple r cannot be directly discarded
even if it is dominated by some existing tuple r0 in
the database—r will expire after r0 and, therefore,
may become part of the skyline later. For instance,
although c, at the time (=5) of its arrival, is
dominated by a, c appears in the skyline after the
expiration of a at time 6.

. In fact, a tuple r can appear in the skyline for at most
a single continuous time interval, which can be
computed upon the arrival of r. For example, at
time 5, we can say that c will be a skyline point
during the future time interval [6, 10) (the value 10 is
the expiry time of c), provided that it will not be
dominated by a subsequent arrival.

The above windows are time-based. In count-based sliding
windows [13], [2], [15], a tuple expires after W subsequent
tuples have been received, regardless of their arrival times.
Although our discussion focuses on time-based windows,
the proposed solutions are directly applicable to count-
based streams using a simple transformation. Specifically,
we manually associate each tuple r with an “artificial arrival
time” r:tarr, which equals its sequence-id in the stream (i.e.,
the first tuple has arrival time 1, the second 2, etc.). Its
expiry time equals r:tarr þW , i.e., the count-based window
can be regarded as a time-based one (with length W )
defined on the artificial time.

The rest of the paper is organized as follows: Section 2
reviews the related work on stream processing and skyline
computation. Section 3 describes two general frameworks
for maintaining stream skylines. Section 4 analyzes and
compares the performance of alternative frameworks, while
Section 5 discusses their practical implementations. Section 6
experimentally evaluates the efficiency of the proposed
techniques. Section 7 concludes the paper with directions
for future work.

2 RELATED WORK

A fundamental issue in the stream literature is to explore
alternative algorithms for traditional database operators.
Existing work focuses mostly on aggregate queries and
joins. Aggregate methods usually maintain various data
summaries (e.g., histograms, sample sets, sketches, etc.) to
provide fast approximate results, often with accuracy
guarantees [12]. For joins, the common approach is to adapt
conventional methods (e.g., block nested loop, hash-join) to
their “unblocking” counterparts [24]. In a system that
involves a large number of operators (e.g., for supporting
multiple concurrent queries), the performance depends on
effective “scheduling” [7], i.e., deciding the “best” operator
that should be executed next in order to minimize factors
such as memory consumption, output rate, etc. Query
optimization in such systems [28] must take into account
the tuple arrival rates since, intuitively, a faster stream
should receive more computing resources to avoid jamming
the incoming traffic. It is possible that an excessively large
volume of data may arrive at the system within a short
period of time (i.e., “bursty” traffic) such that the system
(due to its limited capacity) cannot process all incoming
records. In this case, some tuples must be “shed,” i.e.,
discarded from the system without passing through any
query operator. Evidently, shedding degrades the quality of
query results, but the amount of degradation may be
reduced through “semantic shedding” [10], which aims at
expunging only the least useful data—those expected to
have insignificant influence on the result.

None of the above methods consider skyline mainte-
nance on streams. On the other hand, skyline computation
on static data (and other related problems such as multi-
objective optimization [25] and maximum vectors [22]) has
been extensively studied in conventional processing frame-
works. In the database context, Borzsonyi et al. [6] develop
two solutions based on divide-and-conquer (DC) and block-
nested-loop (BNL), respectively. Specifically, DC divides
the data set into several partitions that can fit in memory.
The skylines in all partitions are computed separately using
a main-memory algorithm and then merged to produce the
final skyline. BNL essentially compares each tuple in the
database with all the other data and outputs the tuple only
if it is not dominated. The sort-first-skyline (SFS) [9] sorts
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Fig. 1. Skyline examples. (a) Conventional skyline. (b) Stream skyline (W ¼ 5).



the database according to a (monotone) preference function,

after which the skyline can be found in another pass over

the sorted list. Tan et al. [26] propose an algorithm that

obtains the skyline from bitmaps (derived from the original

data set) using bitwise operations, i.e., calculating the

AND/OR of two binary vectors. The authors also provide

another method based on relationships between the skyline

and the minimum coordinates of individual points. Koss-

mann et al. [21] and Papadias et al. [23] discover the skyline

with nearest-neighbor search on spatial access methods.

Balke et al. [3] study skylines in Web information systems

applying the “threshold” algorithm of [11].
The above methods assume that all the relevant data are

available (in main memory, disk, or distributed servers)

before processing. Furthermore, they report a single skyline

and terminate. On the other hand, in stream environments,

data are not known in advance, but they keep changing as

new tuples arrive and old ones expire. The objective is to

continuously monitor the skyline changes according to the

record arrivals and expirations. Therefore, our problem is

more related to incremental maintenance rather than one-

time skyline computation, rendering all the existing

techniques inapplicable.

3 FRAMEWORKS FOR TRACKING SKYLINES ON

STREAMS

Fig. 2 demonstrates the architecture of our system. Arriving

tuples are placed in an input buffer (BF ), processed by the

preprocessing module (PM) in ascending order of their

arrival times, and then included into the database (DB). Both

BF and DB are memory resident. DB is further divided

into DBsky and DBrest storing points that are and are not in

the current skyline, respectively. Whenever a skyline point

expires, some points in DBrest may appear in the new

skyline. They are identified by the maintenance module

(MM), which is also responsible for expunging the obsolete

(i.e., dead) data from DB, and outputting the skyline

stream.

Lemma 1. Let r be a tuple in DB. If r is dominated by an

incoming record r0, then r can be safely discarded, i.e., it will

not be part of the skyline in the future.

Proof. Trivial because r0 will expire after r and, thus, will
dominate r in its remaining lifespan. tu

Based on the above lemma, we develop two general
frameworks for online monitoring of stream skylines.
Section 3.1 first describes a “lazy” strategy that delays most
computational work until the expiration of a skyline point.
Then, Section 3.2 presents an “eager” approach that takes
advantage of precomputation to minimize memory con-
sumption. The following discussion uses two-dimensional
data, but the proposed methods generalize to arbitrary
dimensionality in a straightforward manner. Table 1
summarizes some symbols that will be used frequently
throughout the paper.

3.1 The Lazy Method

Skyline changes can occur only when 1) a new tuple arrives
or 2) some skyline point expires. Lazy handles these two
situations in its preprocessing module (L-PM) and main-
tenance module (L-MM), respectively.

Given an arriving tuple r, L-PM checks if it is dominated
by any point in DBsky. For example, in Fig. 1b, the arrival of
c at time 5 does not affect the skyline (since c is dominated
by a); thus, c is placed in DBrest (recall that c cannot be
discarded as it will appear in the skyline after a expires). On
the other hand, if the new tuple r is not dominated by any
skyline point, it is added to DBsky. Furthermore, in this case,
r may dominate some skyline points, which are expunged
from the system (they cannot reappear in the skyline later,
as shown in Lemma 1). For instance, in Fig. 1b, when e

arrives at time 9, it immediately belongs to the skyline,
while skyline tuples c and d are expunged (even though
they have not expired yet).

We define the dominance region r:DR of a tuple r to be the
area of the data space dominated by r. Specifically, r:DR is
an axis-parallel rectangle whose major diagonal is decided
by r and the “max corner” of the data space (having the
maximum coordinates on all dimensions). Similarly, the
antidominance region r:ADR of r refers to the area where a
point dominating r could fall; r:ADR is a rectangle whose
major diagonal is determined by r and the origin of the data
space. The gray regions in Fig. 3 illustrate r:DR and r:ADR.

Deciding whether r is dominated by any skyline point
essentially corresponds to a d-sided emptiness test (d is the
dimensionality of the data space), which returns a Boolean
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value indicating whether any tuple of DBsky falls in r:ADR

(a “true” result means that r:ADR is empty). On the other
hand, finding the existing skyline points dominated by r
can be achieved by a d-sided range search, which reports all
the tuples of DBsky lying in r:DR. These two query types are
“d-sided” because d (out of 2d) boundaries of r:ADR and
r:DR coincide with the borders of the data space.

Fig. 4 illustrates the pseudocode of L-PM which, in
addition to carrying out the above operations, also main-
tains the earliest expiry time Tskyexp of the current skyline
points (i.e., Tskyexp ¼ minfr:texpjr 2 DBskyg), as well as a
pointer to the oldest skyline tuple rold that decides Tskyexp .
An incoming tuple r changes Tskyexp if and only if r dominates
(and, hence, evicts) rold. For instance, at timestamp 8 in
Fig. 1b, the skyline contains c, d, and Tskyexp equals 10 (the
expiry time of c). At the next timestamp, the arriving tuple e
expunges c and d, and, accordingly, Tskyexp is modified to the
expiry time 14 of e (the new skyline contains only e).

L-MM is invoked at time Tskyexp , and it first eliminates
the data from DBrest that already expired at some time

before Tskyexp (such data remain in the system after
expiration, and are discarded together in one execution
of L-MM). Since the tuples of DBrest are sorted in
ascending order of their arrival times, L-MM scans the
sorted list from the beginning, and eliminates the tuples
encountered until a live tuple is found.

As a second step, L-MM evicts the expiring skyline point
r and updates the skyline based on two observations: 1) the
remaining data in DBsky still belong to the skyline and 2) the
set S of “candidate” tuples in DBrest that may appear in the
skyline must be dominated exclusively by r (i.e., not by any
other data in DBsky). Hence, L-MM computes the skyline for
the data of S using an existing algorithm [22], [9], [23], and
inserts the points of this skyline in DBsky. Fig. 5 formally
describes the execution of L-MM.

The above discussion presents the general idea of Lazy,
leaving out several implementation issues including, for
example, the structures organizing the data in DBsky and
DBrest, the algorithms for performing d-sided emptiness
tests and range search. In fact, as discussed in Section 4.1,
the above framework can lead to various implementations
with different characteristics, depending on the choices of
structures and algorithms. A disadvantage of Lazy, how-
ever, is that DBrest needs to store obsolete data and tuples
that will never appear in the skyline. This problem
motivates our next methodology.

3.2 The Eager Method

Eager aims at 1) minimizing the memory consumption by
keeping only those tuples that are or may become part of
the skyline in the future and 2) reducing the cost of the
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Fig. 3. The dominance and antidominance regions of h.

Fig. 4. Preprocessing module of Lazy.

Fig. 5. Maintenance module of Lazy.



maintenance module (E-MM). It achieves these goals by
performing additional work (compared to Lazy) in the
preprocessing module (E-PM). In the sequel, we first use a
concrete example to illustrate the functionality of Eager, and
then clarify the details of E-PM and E-MM.

In Fig. 6a, points a; b; . . . ; g constitute the content of DB at
time 13 (all of them belong to the skyline). The arrival
timestamps of individual points are indicated in parenth-
eses, assuming that the length W of the sliding window
equals 15. Consider the point h arriving at time 15, which is
dominated by a set S of tuples fa; c; d; e; fg. Notice that h
can appear in the skyline only after timestamp 26 when all
the tuples in S have expired. We say that 26 is the skyline
influence time of h, and denote it as h:tsky.

Since h is currently not a skyline point, Eager places it
in DBrest. At the next timestamp 16, a expires, and Eager
asserts that no point in DBrest can become part of the
skyline, without examining DBrest at all. Indeed, the
skyline influence time of the only tuple h in DBrest equals
26 and, hence, h does not “influence” the skyline at the
current time 16.

Fig. 6b continues the example with an incoming tuple i at
time 17. The only point among those in DBsky and DBrest

dominating i is c. Following the same reasoning for h, Eager
sets the skyline influence time i:tsky of i to the expiry time 20
of c, and adds i to DBrest. Furthermore, h can be expunged
from the system because it is dominated by i, and (by
Lemma 1) is guaranteed not to appear in the skyline later
(DBrest contains a single tuple i now). Recall that Lazy
would not compare i and h (since h is not in DBsky) and,
therefore, would not evict h.

The next “event” corresponds to the expiry of b at time 18.
Similar to processing the expiration of a, Eager simply

removes b without any further actions. When j arrives at
time 19, it is dominated by fc; d; e; f; ig, and is included in
DBrest with j:tsky ¼ 32, which is the expiry time of point i in
DBrest. At timestamp 20, c expires; since 20 is also the
skyline influence time of i, Eager includes i into DBsky

(without inspecting other tuples), as shown in Fig. 6c. The
last incoming tuple k at time 21 is not dominated by any
existing skyline point and, therefore, becomes part of the
skyline immediately. Furthermore, it dominates g and j

(stored in DBsky and DBrest, respectively), which are evicted
from the system. Fig. 6d illustrates the final skyline.

Eager maintains an event list EL that contains entries of
the form e ¼< e:ptr; e:t; e:tag > . Field e:ptr is a pointer to
the tuple involved in the event, e:t specifies the event time
(i.e., when the event will happen), and e:tag indicates the
event type. Specifically, if the tuple r referenced by e:ptr

belongs to the skyline currently, then e:tag ¼ 0EX0 (i.e., a
keyword indicating the expiry of a point) and e:t ¼ r:texp.
Otherwise, e:tag ¼ 0SK0 (i.e., indicating the future inclusion
of r in the skyline) and e:t ¼ r:tsky.

We are now ready to clarify the procedures carried out
by the preprocessing and maintenance modules of Eager.
After receiving a tuple r, E-PM discards the data in DB

(including DBsky and DBrest) dominated by r. Such data can
be retrieved using a d-sided range query (as discussed in
Section 3.1), whose search region is r:DR. Then, E-PM
computes the skyline influence time r:tsky of r, which is
equivalent to finding the maximum expiry time of the
points in r:ADR, i.e., a d-sided max search. If r appears in the
skyline immediately, E-PM inserts an event < (a pointer to)
r; r:texp;EX > into EL. Otherwise, the event inserted is
< r; r:tsky; SK > .

E-MM, on the other hand, simply outputs events chron-
ologically: An EX event causes the removal of a (just-expired)
skyline tuple, while an SK event adds a point r to the skyline,
together with a new EX event < r; r:texp;EX > in EL. Note
that, at any time, each live tuple corresponds to exactly one
entry in EL: Skyline tuples are associated with EX events,
while the rest with SK events. Figs. 7 and 8 show the
pseudocodes of these two modules.

To facilitate updating EL and identifying the next event
(which has the smallest event time), we index the events in
EL with a main-memory B-tree [16] on their event times.
Each tuple r in DB is associated with a pointer to its event
in this B-tree, so that when r is expunged from the system,
its associated event can be efficiently found for removal.
From the implementation perspective, Eager can manage
the data in DBsky and DBrest using the same structure, as
explained in detail later. We close this section by proving
the correctness of Eager (a similar proof was omitted for
Lazy since it is straightforward).

Lemma 2. Eager correctly produces the skyline output stream.

Proof. We aim at establishing two facts: 1) all skyline
changes are captured by Eager, and 2) every skyline
change produced by Eager is correct. To prove the first
direction, let r be any tuple that ever belongs to the
skyline, and t1 (t2) be the actual timestamps when r starts
(stops) appearing in the skyline. We will show that Eager
indeed outputs two pairs (þr, t1) and (�r, t2).
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Fig. 6. Execution example of Eager (W ¼ 15). (a) Skyline from time 13 to

15. (b) Skyline at time 18. (c) Skyline at time 20. (d) Skyline at time 21.



For the case of (þr, t1), we distinguish two possibi-
lities about the relationship between t1 and the arrival
time r:tarr of r. If t1 ¼ r:tarr, r belongs to the skyline as
soon as it arrives, and (þr, t1) is produced by E-PM
(executed to handle the arrival of r). The other possibility
t1 > r:tarr means that, when r arrives, it is dominated by
a set S of points in DB; nevertheless, until time t1, r is not
dominated by any incoming data (otherwise, by
Lemma 1, r cannot appear in the skyline). Hence, t1
equals exactly its skyline influence time computed by
E-PM, which inserts into EL an SK-event of r with t1 as
the event time. This event is not eliminated before time
t1—such elimination requires an arriving tuple dominat-
ing r, which cannot happen as mentioned earlier. Hence,
the event will be handled by E-MM at time t1, which
outputs (þr, t1).

After r becomes a skyline tuple, an EX event is
created in EL. Based on this, we proceed to prove that
(�r, t2) is also generated by Eager, starting with the case
where t2 is identical to the expiry time r:texp of r. This
indicates that r is not dominated by any subsequent
tuple. As a result, its EX-event will be handled by E-MM
at time r:texp, which produces (�r, t2). If, on the other
hand, t2 is smaller than r:texp, r is dominated and
expunged by a tuple r0 arriving at t2, in which case E-PM,
executed to handle the arrival of t2, outputs (�r, t2).

It remains to prove the second direction: If Eager
outputs a pair (þr, t) or (�r, t), then tuple r indeed starts
or stops belonging to the skyline at time t. Recall that
Eager generates (þr, t) only at the arrival time of r (i.e.,
t ¼ r:tarr) or its skyline influence time (t ¼ r:tsky). The
former case happens if and only if r becomes part of the
skyline as soon as it arrives. The second case means that,

at time t, all the points dominating r have already
expired, and r is not dominated by any tuple arriving
after it; therefore, r appears in the skyline at time t. On
the other hand, Eager produces (�r, t) only when it
expires or is dominated by an incoming tuple. In both
cases, r is no longer part of the skyline. tu

4 ANALYTICAL STUDY

This section analyzes the proposed Lazy and Eager frame-

works. We aim at identifying 1) the best framework (in

terms of the amortized cost for processing a tuple) depending

on the problem characteristics, and 2) efficient theoretical

implementations.
The subsequent discussion considers that N tuples have

been received in the stream. Assume that the skyline size

at a single timestamp varies with time, and let ssky be the

maximum size, i.e., ssky is the largest number of points in

DBsky at any timestamp. If a is the highest tuple arrival

rate per timestamp, then the number of simultaneously

live tuples is at most W � a, where W is the number of

timestamps in a sliding window. The value of ssky,

therefore, has an upper bound W � a in the worst case,

but, as proved in [14], it is much smaller for practical data

distributions. We first consider Lazy in the next section,

and then study Eager in Section 4.2.

4.1 Analysis of Lazy

We first show a basic lemma.

Lemma 3. For Lazy, every tuple r is inserted into (removed from)

each of DBsky and DBrest at most once.
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Fig. 7. Preprocessing module of Eager.

Fig. 8. Maintenance module of Eager.



Proof. The part of the lemma about DBsky is equivalent to
saying that no tuple can “become” a skyline point more
than once. In fact, a tuple r ceases to be a skyline point if
it expires or is dominated by an incoming tuple r0. In
neither case can r reappear in the skyline (the latter case
is not possible due to Lemma 1). On the other hand, Lazy
may add a tuple to DBrest only when the tuple arrives
(using the L-PM module). This excludes the possibility of
adding r to DBrest twice. tu

Given an incoming tuple r, L-PM performs a d-sided
emptiness test to determine whether it is dominated by a
skyline point; therefore, a total of N tests are performed
in history. We use cempty to represent the cost of the most
expensive test. If r belongs to the skyline immediately, a
d-sided range search is issued (to find the skyline tuples
dominated by r). Let us denote the number of range
queries as narrsky (the subscript implies “arriving skyline”
points), and the execution time of the ith (1 � i � narrsky)
query as clazyrange½i�.

The performance of Lazy is also affected by the number
nskyexp of skyline tuples that expired. For each expiration,
L-MM obtains the skyline for the subset of the tuples (i.e., a
“subskyline”) in DBrest dominated exclusively by the
expiring skyline point. Therefore, totally nskyexp subskylines
are computed. Assume the cost of the ith (1 � i � nskyexp)
computation to be csubsky½i�. Given the amortized time cupdsky
and cupdrest of an update (insertion/deletion) on DBsky and
DBrest, respectively, we prove:

Theorem 1. For Lazy, the amortized time of processing a tuple is

O

 
cempty þ

1

N

Xnarrsky
i¼1

clazyrange½i� þ
1

N

Xnskyexp
i¼1

csubsky½i�

þ cupdsky þ cupdrest

!
:

ð1Þ

Proof. Each term in the complexity bounds one “type” of
cost incurred by Lazy, namely, the overhead of

1. an empty test,
2. a range search,
3. computing the subskyline after a skyline tuple

expires, and
4. updatingDBsky andDBrest (according to Lemma 3,

every tuple is added/removed into/from DBsky

and DBrest Oð1Þ times). tu
The above result allows us to discuss the effectiveness of

concrete implementations of Lazy. A simple approach,
referred to as LL-Lazy, is to organize the data of DBsky

and DBrest using linked lists. Let srest be the maximum
number of live tuples in DBrest at timestamps when a
skyline point expires. We have:

Corollary 1. For LL-Lazy, the amortized time of processing a
tuple is Oðssky þ nskyexp

N � srest � ðssky þ log�ðsrestÞÞ, where � ¼
1 for dimensionalities d ¼ 2 or 3, and � ¼ d� 2 for d > 4.

Proof. Both an emptiness test and a range search can be
performed in time OðsskyÞ by simply examining all the
tuples in DBsky. The set S at Line 6 of Fig. 5 can be

computed in Oðssky � srestÞ time by examining each point

in DBrest against every current skyline point. Then, using

the algorithm by Kung et al. [22], we can compute a

subskyline in OðjSj � log� jSjÞ time, where jSj (the size of

S) is at most srest, and � as defined in the corollary. The

update cost cupdsky and cupdrest equal Oð1Þ. Therefore, the

complexity in the corollary follows (1) by replacing

1) cempty and each clazyrange½i� (1 � i � narrsky) with ssky, 2) each

csubsky½i� (1 � i � nskyexp) with ssky � srest þ srest � log�ðsrestÞ,
and 3) cupdsky and cupdsky with Oð1Þ. tu

Note that srest is no more thanW � a (the largest number of

live tuples at a timestamp). Hence, the above complexity can

be written as Oðssky þ nskyexp
N � ðW � aÞ � ðssky þ log�ðW � aÞÞÞ.

W � a is a constant independent of N ; thus, if the history is

long enough, N will become arbitrarily larger than

ðW � aÞ � log�ðW � aÞ. Therefore, LL-Lazy is efficient when

nskyexp is significantly lower than N , or equivalently, only a

small number of skyline points stay in the system until their

expiration. For example, assume that initially all the live

tuples lie near the max corner (as in Fig. 3) of the data space.

As time progresses, the data distribution moves slowly

toward the origin of the data space, i.e., the coordinates of

new tuples tend to be smaller than those of the old ones.

Consequently, an existing skyline point has a high chance of

being dominated by an incoming tuple, in which case

the point is discarded before its expiration. Therefore,

the resulting nskyexp is expected to be small. When

nskyexp � ðW � aÞ � log�ðW � aÞ < N , the amortized processing

time of LL-Lazy is essentially OðsskyÞ.
If ssky is large (i.e., a skyline includes many tuples), Lazy

can be improved by creating appropriate indexes on DBsky,

resulting in a different technique I-Lazy. Specifically, two

dynamic indexes (supporting insertions and deletions in any

order) are required for emptiness tests and range queries,

respectively, both of which have been very well studied (see

[1] for a good survey). In particular, a range search solution

typically answers a query in time QrangeðnÞ þ k, where n is

the cardinality of the input data set, QrangeðnÞ some function

of n, and k the number of retrieved objects. The correspond-

ing cost of an emptiness-test method is QemptyðnÞ (i.e., no

output overhead “þk” since the result is merely a Boolean

value). Let UrangeðnÞ and UemptyðnÞ be the worst-case update

complexities of the two structures.
We also need another structure on DBsky to facilitate the

retrieval of S before the subskyline computation (Line 6 of

Fig. 5). To compute S, for each point r0 in DBrest, we check if

it is dominated by r (the expiring skyline point). If yes, we

execute a d-sided count query that returns the number of

points in DBsky falling in r0:ADR (the antidominant region

of r0); r0 is added to S if and only if the query returns 1.

Assuming that the structure answers such a count query in

QcountðnÞ (n is the number of points indexed), and can be

updated in UcountðnÞ time, we have:

Corollary 2. For I-Lazy, the amortized time of processing a

tuple is

TAO AND PAPADIAS: MAINTAINING SLIDING WINDOW SKYLINES ON DATA STREAMS 383



O

 
QðsskyÞ þ UðsskyÞ þ

nskyexp
N

ðsrest �QcountðsskyÞ þ �srest � log�ðsrestÞ
!
;

where QðsskyÞ ¼ maxfQemptyðsskyÞ; QrangeðsskyÞg, UðsskyÞ=
maxfUemptyðsskyÞ; UrangeðsskyÞ; UcountðsskyÞg, and � is the
same as in Corollary 1.

Proof. This corollary follows (1) in a way similar to
Corollary 1. The first notable difference is that S can
now be computed in Oðsrest �QcountðsskyÞÞ time. The
second difference is that clazyrange½i� (1 � i � narrsky) should
be bounded by QrangeðsskyÞ þ ki, where ki is the number
of skyline points extracted by the ith range query. Since
such points are then expunged from the system, they will
not be retrieved by another range query, leading toPnarrsky

i¼1 ki � N . Therefore, the second term (in (1)) can be
replaced by 1

N ðnarrsky �QrangeðsskyÞ þNÞ which, in turn,
can be simplified to QrangeðsskyÞ. tu

I-Lazy has numerous instances with distinct tradeoffs

among space, query, and update performance by selecting

different structures for d-sided emptiness tests, range search,

and count queries. In 2D space, for example, all operations

can be solved with a priority search tree [5] inOðlogðsskyÞÞ time.

The tree occupies OðsskyÞ space and can be updated in

OðlogðsskyÞÞ time. The performance of the resulting I-Lazy

improves the first term OðsskyÞ in Corollary 1 to OðlogðsskyÞÞ.
As another example, in general, d-dimensional space, this

term becomes OððsskyÞ
d�1
d Þ by utilizing the O-tree [19] to

support the three operations. The space/update complexity

an O-tree is identical to that of a priority search tree.
It is worth mentioning that the term

nskyexp
N � srest �

log�ðsrestÞ in Corollary 1 (for subskyline computation) is
actually a rather pessimistic upper bound in practice. By
maintaining an R-tree on DBrest, it is possible to obtain the
subskyline much faster in most cases using a set of heuristics
[23] (as will be evaluated in our experiments). However, the
worst-case cost of this heuristic approach is quadratic to
srest, in which case the above term becomes

nskyexp
N � s2

rest (i.e.,
worse than its form in Corollary 1).

4.2 Analysis of Eager

A result similar to Lemma 3 also holds for Eager:

Lemma 4. Eager inserts every tuple r into (deletes it from) DB
once. Furthermore, Eager adds to (removes from) the event list
EL at most one SK and one EX event of r.

Proof. The part about DB is trivial since only E-PM can
insert r into DB, and this module is executed exactly
once for r (when it arrives). Similarly, an SK event can
only be produced by E-PM and, hence, it can be
created only once. On the other hand, an EX event is
generated when r becomes a skyline point. As in
Lemma 3, no tuple can appear in the skyline twice;
thus, at most one EX event exists for r. tu

It is easy to see that Eager stores at most OðW � aÞ
tuples because expired tuples are always removed. In

fact, we can prove a much tighter bound, by defining a
ðdþ 1Þ-dimensional extended space that shares d axes with
the original data space, and has an additional “inverse-
time” dimension. Specifically, each tuple r in DB
corresponds to a point (r½1�; r½2�; . . . ; r½d�; 1=r:tarr) in the
extended space, where the first d components are the
coordinates of r in the original space, and the last
component is the inverse of the arrival time of r.

Theorem 2. At any timestamp, Eager retains exactly the live
skyline points in the extended space.

Proof. We refer to the skyline in the extended space as “ext-
skyline” (to distinguish it from the skyline in the original
space). We first prove that Eager does not store any tuple
r that is not part of the ext-skyline. In fact, since there
exists an ext-skyline tuple r0 that dominates r, we have
1) r0 dominates r also in the original space, and 2) r:tarr <
r0:tarr (i.e., r0 arrived after r). Therefore, r must have been
expunged by E-PM at the arrival time of r0.

It remains to establish that each tuple r in the ext-skyline
is indeed retained by Eager. This is true because a live r is
expunged if and only if it is dominated (in the original
space) by another tuple r0 arriving after it. This requires
that r0 should dominate r in the extended space, which
contradicts the fact that r belongs to the ext-skyline. tu

Given an arriving tuple r, E-PM issues a d-sided max
query to compute its skyline influence time, and a d-sided
range query to retrieve the existing database tuples
dominated by r (for elimination). Therefore, a total of N
max and range searches are performed, and their cost is
assumed to be bounded by cmax and ceagerrange, respectively.
Given the worst-case time cupddb of updating DB, we have:

Theorem 3. For Eager, the amortized time of processing a tuple is
Oðcmax þ ceagerrange þ cupddb þ logðW � aÞÞ.

Proof. The cost of one execution of E-PM is bounded by
Oðcmax þ ceagerrangeÞ. According to Lemma 4, during the
lifespan of r, E-MM is invoked for it at most twice
(handling its EX and SK events, respectively). Each
application of E-MM expunges (at most) one tuple in
time cupddb, and performs Oð1Þ updates to EL. Since EL is
managed with a main-memory B-tree (see Section 3.1),
updating EL requires OðlogðW � aÞÞ cost, noting the fact
that the size of EL is no more than W � a. The complexity
in the theorem results from the above analysis. tu
We proceed to consider the concrete implementations of

Eager, starting with LL-Eager that manages DB with a linked

list. Since both d-sided max and range queries can be

answered by scanning the entire DB once, the amortized

per-tuple cost of LL-Eager equals OðW � aÞ (setting cmax,

ceagerrange, and cupddb in Theorem 3 to OðW � aÞ, OðW � aÞ, and

Oð1Þ, respectively). Similar to I-Lazy, we can design I-Eager

which enhances the performance of LL-Eager with auxiliary

structures on DB that facilitate d-sided max and range

retrievals. We do not discuss the detailed derivation1 since

it is similar to that of Corollary 2.

384 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

1. It suffices to mention that the best-known method for d-sided max
queries is due to Chazelles [8], who proposed a structure that consumes (in
our context) linear OðW � aÞ space, answers a query in Oðlog1þ"ðW � aÞÞ time
(" is an arbitrarily small constant), and can be updated in Oðlog3ðW �
aÞ log logðW � aÞÞ cost.



Comparing the performance of Lazy and Eager, it is clear
that Lazy is expected to incur less processing overhead
when the skyline size at a timestamp is small, or the number
(nskyarr) of “skyline expirations” is low. In these cases, its
per-tuple processing time is decided by the preprocessing
module, which is highly efficient. On the other hand, Eager
upper bounds the processing time within OðW � aÞ in all
cases (the time is even shorter if indexes are adopted). In the
next section, we explore an alternative implementation of
these two frameworks using R-trees.

5 PRACTICAL IMPLEMENTATIONS WITH R-TREES

The I-Lazy and I-Eager in the previous section are based
on “theoretical structures” that have attractive asympto-
tical performance in the worst case. Unfortunately, these
methods may incur expensive actual (space, query, and/
or update) overhead, due to the “hidden constants” in
their complexities. Furthermore, they are complex and
demand considerable development effort. In the sequel,
we discuss the implementations of both frameworks
using (main-memory) R-trees [4], [20]. It is well known
[27], [1] that although the R-tree does not have provable
performance guarantees, it performs reasonably well for
real-world data.2

I-Lazy maintains two R-trees on DBsky and DBrest,
respectively. The first tree is used to perform emptiness
tests and range queries in L-PM, while the second one is for
efficiently finding a subskyline (Line 6 of Fig. 5). Since the
algorithms for range search and obtaining a subskyline can
be found in [17] and [23], respectively, we discuss only the
emptiness test.

Fig. 9 illustrates the pseudocode emptiness-test, which is
analogous to range search, except that the search terminates
as soon as a point (in DBsky) is found in r:ADR (r is the
newly arrived tuple). At each intermediate node N ,
emptiness-test checks whether r:ADR completely covers an
edge (or a (d� 1)-dimensional rectangle in general
d-dimensional space) of any minimum bounding rectangle
(MBR) E in N . In this case, at least one point in the subtree

of E must appear in r:ADR and, hence, the algorithm
finishes immediately (returning “false”). Otherwise (no
edge of any MBR in N is contained in r:ADR), emptiness-test
accesses (the child nodes of) the entries of N in descending
order of the “overlapping percentages” between their MBRs
and the query region. Specifically, if � is the area of a MBR,
and � the overlapping area between the MBR and r:ADR,
the overlapping percentage equals �=�. The rationale is that
a MBR with a high overlapping percentage is expected to
have a high chance of enclosing a point in r:ADR (which
will lead to an early termination).

Eager, on the other hand, maintains a single R-tree on all
the data of DB. Fig. 10 demonstrates an R-tree on the
database instance of Fig. 6a (W ¼ 15) at timestamp 13 (the
numbers in the brackets indicate the arriving times of
individual tuples), assuming a node capacity of 3. In
addition to an MBR, an intermediate entry E also stores a
number E:tmaxexp (in the parentheses) equal to the maximum
expiry time of the points in its subtree. For instance, E1:t

max
exp

equals 22, the expiry time of d. Also, notice that each leaf
entry of the R-tree is linked (with bidirectional pointers) to
its event in EL (indexed by a B-tree). The R-tree can be used
to accelerate (d-sided) max queries (for finding the skyline
influence time r:tsky), and range search (for retrieving the
objects dominated by an incoming tuple r). In the sequel,
we focus on the computation of skyline influence time.3

Fig. 11 presents the algorithm skyline-time based on the
“best-first” framework [18]. We illustrate its functionality
using point h received by the system at time 15 as an
example (see Fig. 10). At the beginning, the algorithm sets
h:tsky to the current time 15 (which is the smallest
possible value for h:tsky), and visits the root of the R-tree.
Since the MBR of E1 is totally contained in the
antidominance region h:ADR of h (implying that all
records under E1 dominate h), the child node of E1 is not
accessed, but h:tsky is set to E1:t

max
sky ¼ 22. The MBRs of the

other root entries E2, E3 partially intersect h:ADR, and
are inserted in a heap H, sorted in descending order of
their tmaxsky : H ¼ f< E3; 28 >;< E2; 24 >g. Skyline-time then
deheaps the first entry E3, and accesses its child node N3,
where a tuple f dominating h is found. Since the expiry
time 26 of f is larger than the current value 22 of h:tsky,
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2. Since our goal is simply to demonstrate the speedup achieved by
indexing, we use a straightforward adaptation of R*-trees to main memory.
Specialized main-memory implementations of R-trees (e.g., cache-con-
scious) or other multidimensional access methods (especially for high-
dimensional spaces, where the performance of the R-tree deteriorates) may
yield better results.

3. Zhang and Tsotras [29] develop an algorithm that uses R-trees to
perform “max-range” search. This algorithm is of limited use in our case
because it targets rectangle objects.

Fig. 9. Using an R-tree to answer a d-sided emptiness query.



h:tsky is updated to 26. Then, the processing terminates
(without retrieving the child of E2) because E2:t

max
sky ¼ 24

is smaller than the current h:tsky, namely, even if a point
in the subtree of E2 dominates h, it cannot affect h:tsky.

6 EXPERIMENTS

This section experimentally evaluates the efficiency of the
proposed techniques, using a Pentium IV 2.5GhZ CPU. For
Lazy, we consider two implementations LL-Lazy and I-Lazy,
which manage the data in DBsky=DBrest with a linked list
and an R*-tree, respectively. LL-Lazy computes a subskyline
using an adapted version of the SFS method [9] (that
presorts only the points exclusively dominated by the
expiring skyline tuple), while I-Lazy adopts the “con-
strained-skyline” algorithm of [23]. Similarly, for Eager,
we examine LL-Eager and I-Eager. In all cases, each node of
an R-tree and a B-tree (for indexing the event list of Eager)
occupies 512 bytes.

The data space consists of d dimensions whose domains
have range [0, 1]. The distribution of the live data does not
change with time. We consider two types of distributions
popular in the skyline literature: independent and antic-
orrelated [21], [23]. Each tuple in an independent stream is a
point whose d coordinates are obtained uniformly in their
respective domains. An anticorrelated tuple, on the other
hand, has the property that if its coordinate on one
dimension is large, then with a high probability its

coordinate on another axis is small (we refer the interested

readers to [6] about the details of creating anticorrelated data).

6.1 Amortized Performance

We first evaluate the amortized cost (processing time, space

consumption) of each method. Since the result is indepen-

dent of the network speed, we assume a low arrival rate of

10 tuples/second, and generate streams with various

distributions (independent and anticorrelated), dimensional-

ities d (between 2 and 4) and sliding window lengths W

(from 200 to 3.2k seconds). Each stream contains 500 win-

dows so that the total number of tuples ranges from 1 to

16 million. Table 2 shows the average skyline size (in terms

of the numbers of points) per timestamp as a function of W

(for d ¼ 3), while Table 3 demonstrates the size as a function

of d (W ¼ 800 ). Note that independent data sets have much

smaller skylines than anticorrelated ones. Furthermore, the

dimensionality has a stronger impact on skyline sizes than

the number of the live tuples.

6.1.1 Processing Time

In the first set of experiments, we fix d to 3, and compare the

per-tuple processing time of LL-Lazy, I-Lazy, LL-Eager, and

I-Eager for different values of W . Figs. 12a and 12b illustrate

the results for independent and anticorrelated data sets,

respectively. In all cases, the indexed versions incur lower

386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

Fig. 10. A main-memory R-tree on DB.

Fig. 11. Using an R-tree to compute the skyline influence time.

TABLE 2
Average Skyline Size per Timestamp versus W (d ¼ 3)

TABLE 3
Average Skyline Size per Timestamp versus d (W ¼ 800)



cost than their counterparts based on linked lists, confirm-

ing the importance of indexes in stream skyline monitoring.

In general, Lazy outperforms Eager in both linked list and

indexed implementations.

In order to explain the above phenomena, we select the

streams with W ¼ 800 (i.e., the median value in Fig. 12) as

the representatives. Figs. 13a and 13b plot the cost of all the

PM and MM execution for LL-Lazy and I-Lazy from the

800th to the 850th seconds (i.e., after the system has

“warmed up”). The overhead of both methods at some

timestamps (i.e., the “spikes”) is considerably higher than

their amortized cost. These are the timestamps when a

skyline point expires, and Lazy invokes the expensive

maintenance module (L-MM) to eliminate obsolete data

and compute a subskyline. The spikes of I-Lazy are shorter

because it calculates a subskyline using an R-tree [23],

which is faster than the algorithm of [9] adopted by LL-Lazy.
Figs. 13c and 13d demonstrate the corresponding results

for the two versions of Eager. The cost incurs less
fluctuation, indicating that this framework handles every

tuple with similar overhead. Notice that the overhead of

LL-Eager (I-Eager) is significantly higher than that of LL-Lazy

(I-Lazy) for most of the time, which explains their relative

superiority in Fig. 12a. Fig. 14 presents the results of the

same experiments for anticorrelated. The phenomena are

analogous to those in Fig. 13, except that the spikes of Lazy

disappear since it needs to scan a large number of tuples in

DBsky for every arrival (due to the frequent skyline

changes).
In order to study the effects of dimensionality, in Fig. 15,

we set W to 800 and measure the amortized cost as a

function of d. The relative order of the four methods (in

terms of efficiency) remains the same as in the previous

experiments, but their performance deteriorates as the

dimensionality increases. The deterioration of the linked-

list implementations is due to the increase of skyline sizes

(see Tables 2 and 3). For I-Lazy and I-Eager, an additional

factor is that the effectiveness of R-trees drops with the

dimensionality [27].
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Fig. 12. Amortized cost versus W (d = 3). (a) Independent. (b) Anticorrelated.

Fig. 13. Processing cost at individual operations (independent, W ¼ 800, d ¼ 3). (a) LL-Lazy. (b) I-Lazy. (c) LL-Eager. (d) I-Eager.



6.1.2 Space Consumption

Fig. 16a demonstrates the average amount of memory (per
timestamp) consumed by each method in the experiments
of Fig. 12a (for independent data). It also shows the average
number of tuples retained by Lazy and Eager for each value
of W . Observe that Lazy stores a larger number of tuples
than the window length W . This happens because a live
tuple r is evicted by Lazy if and only if r is dominated (by a
subsequent arrival) when it is in the skyline. This situation
seldom happens because an independent skyline has a very
small size and skyline changes are infrequent. Eager, on the
other hand, maintains a fraction of the live data because it
keeps only the tuples that participate in the skyline. Notice
that the indexed implementations are only slightly larger
than the corresponding nonindexed versions.

Fig. 16b plots the space overhead for the settings in
Fig. 12b. Interestingly, although Lazy still retains more
tuples (than Eager), it actually consumes less space. For
anticorrelated data sets, both frameworks store a similar
number of tuples, because most data will appear in the
skyline and, therefore, must be retained. In addition, Eager

needs to maintain an event list, whose size is comparable to
that of the data tuples;4 hence, it requires more memory
than Lazy. Fig. 17 evaluates the space efficiency as a
function of dimensionality, confirming our earlier findings.

6.2 Performance under Variable Arrival Rate

Having evaluated the amortized behavior of the proposed
techniques, we proceed to examine their performance for
realistic streams where the arrival rate varies with time,
and a large amount of data may be received in a very
short time interval. For this purpose, we fix the dimen-
sionality d to 3, and create streams where tuples arrive in a
“spiky” manner every 30 seconds. Specifically, from the
first to the 29th seconds of each period, the time difference
between two consecutive arrivals follows a Gaussian
distribution with mean 0.1 (i.e., on average, 10 tuples per
second) and variance 0.1. During the 30th second, the
difference is obtained with another Gaussian distribution
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Fig. 14. Processing cost at individual operations (anticorrelated, W ¼ 800, d ¼ 3). (a) LL-Lazy. (b) I-Lazy. (c) LL-Eager. (d) I-Eager.

Fig. 15. Amortized cost versus d (W ¼ 800). (a) Independent. (b) Anticorrelated.

4. Recall that, to maintain the event list, each tuple needs to keep a
pointer to its event, which carries a timestamp and a pointer referencing the
tuple. Hence, in d-dimensional space Eager needs at least dþ 3 values to
manage a point, as opposed to d of Lazy (i.e., just storing its coordinates).



with mean 5� 10�5 (i.e., half a million tuples per second)
and variance 10�3. As with the experiments of the
previous section, the data distribution can be either
independent or anticorrelated. In all cases, a stream lasts
for 300 minutes, and a sliding window contains W ¼ 15
seconds.5

Data must be buffered when they arrive faster than they
can be processed. Fig. 18a shows the number of buffered
tuples at the end of every second when LL-Lazy is used to
process an independent stream. As illustrated on top of the
diagram, the amortized cost (for the entire history) equals
1:4� 10�5 seconds per tuple. Fig. 18b demonstrates the
same results for LL-Eager. The buffer size of LL-Lazy is small
(at most 6) at all times since it can usually finish handling
the previous tuple before the next one arrives. On the other
hand, the buffer size of LL-Eager surges to a large value
every 30 seconds because its amortized cost 8:5� 10�5 is
higher than the expected interval (5� 10�5) between two
arrivals in the spiky traffic.

In Figs. 18c and 18d, we present the memory consump-
tion (including both the buffered and processed tuples) at
various timestamps. The space overhead of LL-Lazy remains
high (around 225k bytes) during the first 15 seconds of each
period because, as shown Fig. 16, it needs to retain almost
all the live tuples (W ¼ 15). The memory consumption
decreases after the 15th second because at this time the
tuples received during the previous spiky traffic have
expired and are eliminated from the system (i.e., only those
data that arrived in the current period remain in the
memory). The space cost of LL-Eager peaks at around 50k at
the end of a period (when many data are buffered), and

then quickly drops to below 10k after the buffer is cleared
(recall that LL-Eager keeps only the tuples that may become
part of the skyline).

Fig. 19 demonstrates similar results for anticorrelated
data, confirming the above observations. Unlike Fig. 18,
however, LL-Lazy also needs to buffer a large number of
tuples at the end of each period since its PM becomes more
expensive due to the increased skyline size. Furthermore,
LL-Eager requires a larger amount of memory, which is
consistent with the findings in Fig. 16b.
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Fig. 16. Per-timestamp space overhead versus W (d ¼ 3). (a) Independent. (b) Anticorrelated.

Fig. 17. Per-timestamp space overhead versus d (W ¼ 800). (a) Independent. (b) Anticorrelated.

5. We set W to half of the time difference between two consecutive spiky
arrivals so that the number of simultaneously live tuples varies significantly
in the same period. Specifically, during the first 15 seconds of a period,
there are more than 500k live points, while the number drops to around 150
after the 15th second.

Fig. 18. Space overhead with time (independent, LL-implementations).

(a) Buffer size (LL-Lazy). (b) Buffer size (LL-Eager). (c) Memory

consumption (LL-Lazy). (d) Memory consumption (LL-Eager).



Next, we repeat the same experiments using the indexed
versions of the two frameworks. Figs. 20 and 21 demon-
strate the results for independent and anticorrelated distribu-
tions, respectively. The phenomena are almost identical to
those in Figs. 18 and 19, except that the buffer sizes of both
algorithms are smaller. For independent, the space overhead
of I-Eager does not “surge” at the end of each period as in
Fig. 18b because here the buffer consumes a negligible
amount of memory.

In summary, Lazy requires less CPU computation than
Eager (in terms of both indexed and nonindexed
implementations). Eager, however, achieves balanced
performance in the sense that it incurs small processing
cost for every tuple (as opposed to the spikes of Lazy in

Fig. 13). Furthermore, this framework requires much
smaller space for independent data, and 2D streams of
both distributions. The indexed versions of both frame-
works have extremely low amortized overhead (below
5� 10�4 seconds/tuple) and, hence, they can support
very fast streams. We show that with around 250k bytes
memory, all solutions are able to handle highly spiky
traffic where 105 tuples are received in one second.

7 CONCLUSIONS

In this paper, we proposed two algorithmic frameworks for
continuously monitoring skyline changes over stream data,

390 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

Fig. 19. Space overhead with time (anticorrelated, LL-implementations).

(a) Buffer size (LL-Lazy). (b) Buffer size (LL-Eager). (c) Memory

consumption (LL-Lazy). (d) Memory consumption (LL-Eager).

Fig. 20. Space overhead with time (independent, I-implementations).

(a) Buffer size (I-Lazy). (b) Buffer size (I-Eager). (c) Memory consump-

tion (I-Lazy). (d) Memory consumption (I-Eager).

Fig. 21. Space overhead with time (anticorrelated, I-implementations). (a) Buffer size (I-Lazy). (b) Buffer size (I-Eager). (c) Memory consumption (I-

Lazy). (d) Memory consumption (I-Eager).



based on several interesting characteristics of the problem.
We accompanied our algorithms with in-depth perfor-
mance analysis that reveals valuable insight into their
respective behavior. A possible direction for future work
concerns extending our methods to other forms of skyline
retrieval as discussed in [23]. For example, a “top-k skyline”
extracts only the k skyline tuples maximizing a user’s
preference function and, therefore, its computation (on
streams) would require even less data in memory than our
current solutions (for conventional skylines).

It would be interesting to incorporate the skyline
operator into an integrated system, which involves operator
scheduling, resource allocation, and load shedding. In this
work, we focused on append-only “sliding-window”
streams, while skyline maintenance on other types of
streams constitutes an interesting open problem. Finally,
we plan to investigate load shedding techniques for
extremely fast streams. This is a particularly demanding
problem because, as the proposed algorithms can handle
very spiky traffic (up to 105 tuples per second as shown in
the experiments), the shedding method must be very fast in
order to be meaningful in practice (thus, excluding
techniques based on complex distance computations,
sorting, etc).
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