
Continuous Nearest Neighbor Queries over
Sliding Windows

Kyriakos Mouratidis and Dimitris Papadias

Abstract—This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding window streams. According to this

model, data points continuously stream in the system, and they are considered valid only while they belong to a sliding window that

contains 1) the W most recent arrivals (count-based) or 2) the arrivals within a fixed interval W covering the most recent time stamps

(time-based). The task of the query processor is to constantly maintain the result of long-running NN queries among the valid data. We

present two processing techniques that apply to both count-based and time-based windows. The first one adapts conceptual

partitioning, the best existing method for continuous NN monitoring over update streams, to the sliding window model. The second

technique reduces the problem to skyline maintenance in the distance-time space and precomputes the future changes in the NN set.

We analyze the performance of both algorithms and extend them to variations of NN search. Finally, we compare their efficiency

through a comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU cost, at the expense of slightly

larger space overhead.

Index Terms—Location-dependent and sensitive, spatial databases, query processing, nearest neighbors, data streams, sliding

windows.

Ç

1 INTRODUCTION

GIVEN a set of points P in a multidimensional space, the
nearest neighbor (NN) of a query point q is the point in

P that is closest to q. Similarly, the kNN set of q consists of
the k points in P with the smallest distances from q (usually
according to the euclidean metric). The first techniques for
NN retrieval considered static queries and data ([11], [23],
[12]). Later work focused on moving NN queries in client-
server architectures ([30], [31], [24], [26]). In this setting, the
goal is to provide, in addition to the current result,
information about its validity in order to reduce the number
of future recomputations (when the client/query moves).
Other existing methods return all the query results up to a
future time stamp, assuming that the query and the data
objects move linearly with known velocity [26], [3].

The above techniques deal with the efficient processing

of a single snapshot query, since they report the NN set at

the query time, possibly with some validity information, or

generate future results based on predictive features (for

example, velocity vectors of queries or data objects). On the

other hand, continuous monitoring assumes a central server

that collects the current locations of data objects and

continuously updates the results of multiple long-running

queries. Processing usually takes place in main memory in

order to provide fast answers in an online fashion and

attempts to minimize factors such as the CPU or commu-
nication cost (as opposed to I/O overhead).

Continuous monitoring of spatial queries is becoming
increasingly important due to the wide availability of
inexpensive and compact positioning devices, the evolution
of mobile communications, and the need for improved
location-based services. Consequently, several techniques
(reviewed in Section 2.1) have been recently developed for
continuous NN queries. These methods assume update
streams, where an object issues an update if and only if it
moves to a new location. The server processes the stream of
position updates and incrementally maintains the NNs of
numerous queries. Objects that do not issue updates are
assumed to be at the last reported positions.

This paper, on the other hand, studies kNN monitoring
over sliding windows, assuming the append-only data stream
model [1]. In this context, each data item is valid only while
it belongs to a sliding window. We consider the two most
common versions of windows: a time-based window contains
all data that arrived within a fixed interval W , covering the
most recent time stamps, whereas a count-based window
contains the W most recent data items (independent of
when they arrived). Even though some existing methods for
update streams can be extended to sliding windows (by
treating new points as object insertions and points falling
outside the window as deletions), we show that the first-in,
first-out deletion order, which is particular to this setting,
allows for faster NN monitoring.

In general, sliding windows are used to restrict the
temporal scope of query processing in the absence of
explicit deletions. As an application example, consider a set
of sensors taking measurements of their surrounding
environment and reporting their coordinates to a central
server when they detect some particular event. Imposing a
sliding window on the stream of reports excludes old

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007 1

. K. Mouratidis is with the School of Information Systems, Singapore
Management University, 80 Stanford Road, Singapore 178902.
E-mail: kyriakos@smu.edu.sg.

. D. Papadias is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong. E-mail: dimitris@cs.ust.hk.

Manuscript received 28 Mar. 2006; revised 25 Sept. 2006; accepted 22 Dec.
2006; published online 24 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0142-0306.
Digital Object Identifier no. 10.1109/TKDE.2007.1020.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

events from consideration. Depending on the application

domain, NN monitoring in this setting may be used for wild

animal tracking, intrusion detection, and so forth. As an

instance of kNN monitoring over a time-based sliding

window, assume a set of sensors in a forest, which report

their location whenever they detect an animal passing by

(by using motion, temperature measurements, and so

forth). In this scenario, a user may want to continuously

monitor the k closest animals to his/her location. Old

reports correspond to obsolete animal positions; only the

ones received within the last W time units (for example,

30 seconds) are taken into account.
Continuous kNN processing is not restricted to the

spatial domain but can be utilized in other problems with a

multidimensional aspect. As an example of a count-based

window application, assume a user that subscribes a query

(that is, a set of keywords) to a Web-based news agency

(CNN, Reuters). The agency reports to the user the k closest

matches among the last W news articles. Typically, each

article is represented as a point in some space, where its

euclidean distance from the query defines its similarity; that

is, the problem is essentially a continuous NN search in the

mapped space.1 An article ceases to be among the results 1)

if it is replaced by a better (that is, more similar to the

query) and more recent one or 2) when W news articles

arrive after its publication. A similar problem can be

defined in terms of time-based windows; for example, the

server may continuously report the closest matches among

the articles published within the last 24 hours. In this

setting, each article received at the server corresponds to a

new distinct data item, for which there are no further

updates.
This paper presents and compares two techniques for

NN monitoring over sliding windows, covering both count-

based and time-based windows, arbitrary k, and static or

moving queries. The first one adapts conceptual partitioning

[18], the best existing method for NN monitoring over

update streams, to the sliding window model. The second

technique reduces the problem to skyline maintenance in the

distance-time space and partially precomputes future

changes in the NN sets. The skyline-based algorithm

achieves lower CPU cost, at the expense of slightly larger

space overhead.
The rest of the paper is organized as follows: Section 2

surveys related work. Section 3 presents the index and

bookkeeping structures used in our algorithms. Section 4

extends conceptual partitioning to the sliding window

model, whereas Section 5 describes the skyline-based

method. Section 6 provides an analysis of the proposed

techniques, and Section 7 extends them to other NN query

types. Section 8 experimentally compares our algorithms,

and, finally, Section 9 concludes the paper with directions

for future work.

2 RELATED WORK

Section 2.1 reviews previous work on continuous monitor-
ing of spatial queries, focusing mostly on conceptual
partitioning due to its relevance to our work. Section 2.2
presents existing techniques for skyline computation in
database systems and discusses the relation between sky-
lines and NN queries.

2.1 Continuous Monitoring of Spatial Queries

Assuming static range queries over moving objects, Q-index
[22] uses an R-tree [9], [4] at the server to index the queries.
When updates from moving objects arrive, the server
probes the R-tree to retrieve the influenced queries. Q-index
utilizes the concept of safe regions to reduce the number of
updates. In particular, each object p is assigned a circular or
rectangular region such that p needs to issue an update only
if it exits this area. Kalashnikov et al. [14] show that a grid
implementation of Q-index is more efficient (than R-trees)
for main-memory evaluation. Monitoring Query Manage-
ment (MQM) [7] and Mobieyes [10] exploit the object
computational capabilities in order to reduce the processing
load of the server. In Scalable INcremental hash-based
Algorithm (SINA) [19], the server continuously updates the
reported results by performing a spatial join between
moving objects and queries in three phases: 1) the hashing
phase receives information about moving objects and
queries and generates positive updates, 2) the invalidation
phase is performed every T time stamps or when the
memory is full and reports negative updates, and 3) the
joining phase, triggered after the invalidation phase, joins
the contents of the main-memory with those of the disk,
generating both positive and negative updates.

The aforementioned methods focus on range query
monitoring, and their extension to the NN search is either
impossible or nontrivial. Henceforth, we discuss algo-
rithms that target explicitly NN processing. Koudas et al.
[13] describe aDaptive Indexing on Streams by space-
filling Curves (DISC), a technique for e-approximate
kNN queries over streams of multidimensional points.
The returned kth NN lies at most e distance units farther
from q than the actual kth NN of q. DISC partitions the
space with a regular grid of granularity such that the
maximum distance between any pair of points in a cell is
at most e. To avoid keeping all arriving data in the
system, the server maintains only K points for each cell c.
An exact kNN search in the retained points corresponds to
an approximate ekNN answer over the original data set,
provided that k � K. DISC indexes the data points with a
B-tree that uses a space-filling curve mechanism to
facilitate fast updates and query processing. The authors
show how to adjust the index to 1) use the minimum
amount of memory in order to guarantee a given error
bound e or 2) achieve the best possible accuracy, given a
fixed amount of memory. DISC can process both snapshot
and continuous ekNN queries.

Yu et al. [29] propose a method, hereafter referred to as
YPK-CNN, for continuous monitoring of exact kNN queries
in update streams. All objects are assumed to fit in main
memory and are indexed with a regular grid of cells with
size � � �. The server does not process updates as they

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

1. Dimensionality reduction techniques are commonly applied to
decrease the number of dimensions so that the documents can be indexed
effectively.

arrive but directly applies the changes to the grid. When a
continuous query q is evaluated for the first time, a two-step
NN search technique retrieves its result. The initial step
visits the cells inside an iteratively enlarged square R
around the cell cq covering q until k objects are found.
Fig. 1a shows an example of a single NN query, where the
first candidate NN is p1, with distance d from q. p1 is not
necessarily the actual NN, since there may be objects (for
example, p2) in cells outside R, with a distance smaller than
d. To retrieve such objects, the second step searches in the
cells intersecting the square search region ðSRÞ centered at
cq, with side length 2 � dþ �, and determines the actual kNN
set of q therein. In Fig. 1a, the server processes p1 up to p5

and returns p2 as the actual NN. The accessed cells appear
shaded. To maintain the result in subsequent time stamps, it
computes the current distance dmax of the previous NN that
moved farthest from q and retrieves the new NN set by
searching in all cells intersecting the square centered at cq,
with side length 2 � dmax þ �.

SEA-CNN [28] focuses exclusively on monitoring the
NN changes, without including a module for the first-time
evaluation of an arriving query q (that is, it assumes that the
initial result is available). The server indexes moving objects
with a regular grid. The answer region of a query q is defined
as the circle with center q and radius best dist, where
best dist is the distance of the current kth NN. Bookkeeping
information is stored in the cells that intersect the answer
region of q to indicate this fact. When updates arrive at the
system, the server determines a circular search region SR
around q and computes the new kNN set of q therein.

To determine the radius r of SR, SEA-CNN distinguishes
the following cases: 1) If some of the current NNs move
within the answer region or some outer objects enter it, then
the server sets r ¼ best dist and processes all objects falling
in the answer region in order to retrieve the new NN set. 2)
If any of the current NNs moves out of the answer region,
then r ¼ dmax (where dmax is the distance of the furthest
previous NN), and the NN set is computed among the
objects lying in SR. Assume that in Fig. 1b, the current NN
p2 issues an update reporting its new location p02. The server
sets r ¼ dmax ¼ distðp02; qÞ, determines the cells intersecting
SR (these cells appear shaded), collects the corresponding
objects (p1 up to p7), and retrieves the new NN p1. 3) Finally,
if the query q moves to a new location q0, then the server sets

r ¼ best distþ distðq; q0Þ and computes the new kNN set of
q by processing all the objects that lie in the circle centered
at q0, with radius r.

Conceptual partitioning monitoring (CPM) [18] is the
state-of-the-art NN monitoring method for update streams.
It assumes the same system architecture, indexing, and
bookkeeping structures as YPK-CNN and SEA-CNN. When
a query q arrives at the system, the server computes its
initial result by organizing the cells into conceptual (hyper)
rectangles based on their proximity to q. Each rectangle rect
is defined by a direction and a level number. The direction is
U, D, L, or R (for up, down, left, and right), and the level
number indicates how many rectangles are between rect
and q. Fig. 2a illustrates the conceptual partitioning of the
space around the cell c4;3 of q in our running example. If
mindistðc; qÞ is the minimum possible distance between any
object in cells c and q, then the NN search considers the cells
in ascending mindistðc; qÞ order.

In particular, CPM initializes an empty heap H and
inserts 1) the cell of q, with key equal to 0, and 2) the
level 0 rectangles for each direction DIR, with key
mindistðDIR0; qÞ. Then, it starts deheaping entries itera-
tively. If the deheaped entry is a cell, then it examines the
objects inside and updates accordingly the list best NN of
the closest NNs found so far. If the deheaped entry is a
rectangle DIRlvl, then it inserts into H 1) each cell
c 2 DIRlvl, with key mindistðc; qÞ, and 2) the next level
rectangle DIRlvlþ1, with key mindistðDIRlvlþ1; qÞ. The
algorithm terminates when the next entry in H (corre-
sponding to either a cell or a rectangle) has a key greater
than the distance best dist of the kth NN found. It can be
easily verified that the server processes only the cells that
intersect the circle with the center at q and the radius
equal to best dist. This is the minimal set of cells to visit
in order to guarantee correctness. In Fig. 2a, the search
processes the shaded cells and returns p2 as the result.

The encountered cells constitute the influence region of q,
and only updates therein can affect the current result. When
updates arrive for these cells, CPM monitors how many
objects enter or leave the circle centered at q, with radius
best dist. If the outgoing objects are more than the incoming
ones, then the result has to be computed from scratch.
Otherwise, the new NN set of q can be inferred by the
previous result and the update information, without
accessing the grid at all. Consider the example in Fig. 2b,

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 3

Fig. 1. YPK-CNN and SEA-CNN examples. (a) NN search in YPK-CNN.

(b) Update handling in SEA-CNN.
Fig. 2. CPM examples. (a) NN search. (b) Update handling.

where p2 and p3 move to positions p02 and p03, respectively.
Object p3 moves closer to q than the previous best dist, and,
therefore, CPM replaces the outgoing NN p2 with the
incoming p3. The evaluation in [18] confirms that CPM is
significantly faster than YPK-CNN and SEA-CNN for all
tested problem settings. Section 4 discusses its adaptation to
sliding windows.

2.2 Skyline Queries

Assume that, as in Fig. 3a, we have a set of hotels, and for
each hotel, we store its price (y-axis) and category (x-axis; 1
means one star, and so forth). The skyline contains the most
interesting hotels p1, p2, and p3, that is, the ones that are not
dominated by another hotel on both dimensions. For
example, p2 dominates p4, p7, p8, p9, and p10 because it is
cheaper, and at the same time, it belongs to a higher (or at
least the same) category. In other words, p2 is preferable (to
p4, p7, p8, p9, and p10) according to any preference function,
which is increasingly monotone on the x-axis and decreas-
ingly monotone on the y-axis. Similar examples can be
given for skylines that minimize/maximize any combina-
tion of dimensions. Skyline computation has received
considerable attention in relational databases [5], [25] and
Web information systems [2]. Lin et al. [17] and Tao and
Papadias [27] propose methods for skyline monitoring over
sliding windows. The skyline maintenance is performed by
an in-memory incremental algorithm, which discards
records that cannot participate in the skyline until their
expiration.

Skylines are closely related to the NN search. In
particular, it can be easily shown that the first NN (that
is, p2 in Fig. 3a) of point (5, 0) always belongs to the skyline.
Based on this observation, the method in [15] applies an NN
algorithm on point (5, 0) to retrieve p2. Then, it prunes all
the points in the shaded area in Fig. 3a, since they are
dominated by p2 (and, therefore, they are not part of the
skyline). The remaining space is split into two partitions
based on the coordinates of p2, and the process is repeated
recursively. Papadias et al. [20] propose an improved
algorithm based on incremental NN computation, which
is optimal in terms of I/O accesses.

Motivated by the fact that the NN always belongs to the
skyline, we follow the opposite direction; that is, we use
skyline maintenance to monitor NN results. Since the
skyline corresponds to single NN retrieval (whereas we
are interested in kNNs), we adopt the concept of k-skyband

[20]. Specifically, the k-skyband contains the points that are
dominated by at most k� 1 other ones. According to this
definition, the skyline is a special instance of the skyband,
where k ¼ 1. In Fig. 3b, the 2-skyband consists of all points
ðp1; . . . ; p6Þ in the shaded region. Section 3 illustrates how to
exploit the k-skyband (in a transformed space) for effi-
ciently maintaining kNNs over sliding windows.

3 PRELIMINARIES

Assuming a two-dimensional space, each tuple p of the
input stream has the form < p:id; p:x; p:y; p:t > , where p:id
is a unique identifier for p, p:x and p:y are its x and
y coordinates, and p:t is its arrival time. Stream records are
treated as points, and thus, for the rest of the paper, the
terms “tuple,” “point,” and “record” are used interchange-
ably. Since in real-world systems processing takes place at
discrete time stamps, multiple points may arrive/expire in
the same processing cycle. Our discussion focuses on this
general scenario,2 but the proposed algorithms apply
without modification to cases where points stream in/
expire one by one.

Similar to existing monitoring approaches ([13], [29], [28],
[18]), we use a regular grid to index the valid data because a
more complicated access method (for example, a main-
memory R-tree) is very expensive to maintain dynamically.
The extent of each cell on every dimension is � so that cell ci;j
at column i and row j (starting from the low left corner of the
workspace) contains all valid points with the x-coordinate in
the range ½i � �; ðiþ 1Þ � �Þ and the y-coordinate in the range
½j � �; ðjþ 1Þ � �Þ. Conversely, given a point p with coordi-
nates ðp:x; p:yÞ, its covering cell can be determined (in
constant time) as ci;j, where i ¼ bp:x=�c, and j ¼ bp:y=�c.

Furthermore, it is important to provide an efficient
mechanism for evicting expiring data. In both versions of
the sliding window (that is, count-based and time-based),
the points are evicted in a first-in, first-out manner, since W
contains the most recent ones. Therefore, all the valid point
positions are stored in a single list. The new arrivals are
placed at the end of the list, and the points that fall out of
the window are discarded from the head of the list. Each
cell contains a list of pointers to the corresponding (valid)
points, as shown in Fig. 4. Since insertions and deletions to a
cell also occur in a first-in, first-out fashion, each operation
on the content list takes Oð1Þ time.

The running queries q are stored in a query table QT . QT
maintains for each q a unique identifier q:id, its coordinates
q:x and q:y, the number of NNs required q:k, and its current
result q:best NN . The distance of the kth point in q:best NN
(referred to as q:best dist) implicitly defines the influence
region of q. To restrict the scope of the kNN maintenance
algorithms, each cell c is associated with an influence list ILc
that contains an entry for each query q whose influence
region intersects c. Since the query influence regions change
dynamically, ILc is organized as a hash table on the query
identifiers for supporting fast search, insertion, and deletion
operations.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 3. Skyline and skyband examples: (a) Skyline. (b) 2-skyband.

2. The same assumption underlies the previous NN monitoring
techniques (for example, [29] and [28]), as well as most data stream
management systems (for example, [6] and [16]).

We propose two monitoring algorithms: the first one
adapts CPM to sliding windows, whereas the second
utilizes the concept of k-skyband. In order to demonstrate
the relation between k-skyband and kNN in the context of
append-only streams, we use the example in Fig. 5a, where
the server monitors a 2NN query q over 10 valid points. The
horizontal axis denotes the expiration time of points, and
the vertical dimension indicates their distance from q.
Assuming that there are no further arrivals, we can predict
all future results. The 2NN set at time 0 is fp1; p2g. When p1

expires at time 1, it is replaced by p4. At time 2, p4 expires,
and the result becomes fp2; p3g. Similarly, at time 3, the
2NN set is fp5; p3g. Finally, at time 4, p6 replaces p5. The
important observation is that the points that appear in the
result at some time are the ones that belong to the
2-skyband in the distance-time space. The skyband records
in our example are shown solid in Fig. 5b (which is similar
to Fig. 3b, except for the meaning of the axes).

Lemma. Given the expiration time of all valid points in the
system and assuming that there are no further arrivals, the
points that will appear in the result of a kNN query q in the
future are exactly the ones that belong to the k-skyband in the
distance (from q)-expiration time space.

Proof. Consider a point p that belongs to some (future) kNN
result. Then, there exists some time instance when p has a
larger distance than (is dominated by) at most k� 1 other
valid points. Therefore, p is part of the k-skyband.
Conversely, consider that p belongs to the k-skyband in
the distance-time space. This implies that there are at most
k� 1 other points with a distance lower than that of p,
which expire after p. Thus, there exists some time
instance when p is one of the kNNs of query q. tu

The validity of the above lemma is independent of the
dimensionality; that is, the skyband is always computed in
the two-dimensional distance-time space even if the data
dimensionality is higher than 2. The lemma, however,
assumes that there are no point arrivals. In Section 5, we
present an algorithm that maintains the k-skyband dyna-
mically and utilizes it to continuously report NN results, as
old points expire and new ones enter the system. The
reduction from the kNN to the k-skyband monitoring
applies to both kinds of sliding windows (that is, count-
based and time-based ones) because, in both cases, the

expiration order is the same as the arrival order. Moreover,
it extends to general data indexes, even though we focus on
regular grids (for the reasons explained at the beginning of
the section). Before introducing the skyband-based algo-
rithm, we discuss the adaptation of CPM to sliding
windows in Section 4.

4 CPM ON SLIDING WINDOWS

CPM applies to the sliding window model by considering
that the expiring points move infinitely far away from
any query. However, several improvements of the update
handling module are possible. The first-time result of a
query q is produced with the NN computation algorithm
of CPM, in the way discussed in Section 2.1. The
processed cells constitute the influence region and receive
an entry for q in their influence lists. If best dist is the
distance of the kth NN, then the current result can
change only due to point arrivals and expirations in the
circle with center at q and radius equal to best dist.
Assume that, in the current processing cycle, a set Pins of
points arrive at the system, whereas a set Pdel of existing
ones expire. Before processing the updates, we initialize
for each query q 1) a list q:in list with maximum capacity
of k entries to store the best incoming records3 and 2) a
counter of outgoing NNs q:out count ¼ 0. For each point
p 2 Pins, we insert (a pointer to) p into the content list of
the corresponding cell c. Next, we traverse the influence
list ILc. For every query q 2 ILc, we compare distðp; qÞ
with q:best dist. If distðp; qÞ � q:best dist, then p is treated
as an incoming point and is inserted into q:in list. Note
that q:in list maintains only the k best incomers, since we
do not need more than that in any case. Concerning the
expirations, for each record p 2 Pdel, we delete it from its
cell c and traverse the influence list ILc. For every
q 2 ILc, we check whether p belongs to the current result
q:best NN . If p 2 q:best NN , then we delete p from
q:best NN and increase q:out count by 1. The next step
of the algorithm is to determine the new results. For each
query q, if q:in list contains at least as many points as
q:out count, then the result consists of the k best points in
q:best NN [q:in list. Otherwise (if q:in list has fewer

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 5

Fig. 4. Index and bookkeeping data structures.

3. The list q:in list is a temporary data structure, which is discarded after
update handling terminates.

Fig. 5. Transformation of a 2NN query into a 2-skyband in the distance-

time space: (a) Point life spans. (b) 2-skyband.

entries than q:out count), the result of q is computed from
scratch with the CPM NN search algorithm described in
Section 2.1.

Consider the example in Fig. 6a, where the result of a
3NN query q consists of records p1, p2, and p3 (the existing
points appear hollow). Assume that p4 and p5 arrive at the
system (new points appear solid), whereas p1 and p2 expire.
Current NNs p1 and p2 are expunged from the system,
yielding q:out count ¼ 2. On the other hand, arriving
records p4 and p5 have distance less than best dist and are
inserted into q:in list. Since the number of incoming points
is equal to q:out count, we merge q:in list with the
remaining NNs (that is, p3) and form the new result
best NN ¼ fp5; p4; p3g. Even though best dist changes, we
do not update the influence lists of the cells that no longer
influence q (that is, the shaded cells that do not intersect the
inner circle). The influence lists are updated only after
NN computation from scratch, as discussed next. This lazy
approach does not affect the correctness of the algorithm
because potential insertions (or deletions) in these cells are
simply ignored (upon comparison with the new best dist).

Assume that, in the next processing cycle, Pins ¼ fp6g and
Pdel ¼ fp3g, as shown in Fig. 6b. Point p6 has a larger distance
than best dist, and, thus, it is simply inserted into its cell. The
expiring NN p3 yields q:out count ¼ 1. Since there are no
incoming points, the result of q has to be computed from
scratch. The new NN set contains p4, p5, and p6. Its influence
region contains the cells intersecting the circle centered at q
and with a radius equal to the new best dist ¼ distðp6; qÞ.
The final step of the algorithm is to remove q from the
influence list of all cells (that is, the shaded cells outside the
outer circle in Fig. 6b) that no longer influence q (recall from
Fig. 6a that the lists of these cells were not updated during
the previous update handling). The updating procedure
starts with the entries that remain4 in the search heapH after
NN computation and continues in a way similar to the NN
search. However, instead of processing the contents of the
encountered cells, we simply delete q from their influence
lists. The update terminates when deheaping the first cell c
whose ILc does not contain q; the remaining cells do not
contain q in their lists, since theirmindist is guaranteed to be

higher than or equal to mindistðc; qÞ. The complete CPM
algorithm for the sliding window model is illustrated in
Fig. 7. The influence list updating procedure is performed in
lines 19-26.

When a query q is terminated, we delete it from the
query table and remove it from all the influence lists in
the grid. The latter task is performed in a way similar to
lines 19-26. Query movement is handled as a deletion
followed by a new query insertion.

5 SKYBAND kNN MONITORING

The Skyband NN (SNN) algorithm exploits the skyband in
order to avoid computation from scratch when some NNs
expire. Consider, for instance, a 2NN query q and the
records in Fig. 8a, shown as intervals in the two-
dimensional distance-time space. A number in parentheses
corresponds to the dominance counter ðDCÞ of each point p,
that is, the number of points with a smaller distance (to q),
which arrive after5 p. At time 0, the result of the 2NN query
contains p2 and p3, whereas the 2-skyband contains p2, p3,
p5, and p7. At time 3, p9 arrives and expires after all other
points in the system. It follows that 1) p9 is not dominated
by any point (that is, p9:DC ¼ 0) and 2) all the points p with
distðp; qÞ � distðp9; qÞ are dominated by p9. Therefore, the
dominance counters of p5, p3, and p7 increase by 1; that is,
p5:DC ¼ 1, and p3:DC ¼ p7:DC ¼ 2. Consequently, p3 and
p7 are removed from the 2-skyband at time 3. The updated
2-skyband, shown in Fig. 8b, contains p2, p9, and p5. The
new 2NN set consists of the two elements in the skyband
with the smallest distances (that is, p2 and p9). After the
expiration of p2 (at time 5), the result changes to fp9; p5g.

In general, the monitoring of future results is reduced to a
k-skyband maintenance task. SNN restricts the skyband
maintenance for a query q to points falling inside its
influence region. Specifically, the initial kNN set of q is
retrieved by the NN computation module of CPM. The
retrieved points are inserted into q.skyband, which contains
entries of the form < p:id; distðp; qÞ; p:DC > in ascending
order of distðp; qÞ. Then, SNN scans q.skyband, and for each
point p, it computes p:DC. To speed up the dominance
counter computation, the arrival time of every processed
element of q.skyband is stored into a balanced tree BT sorted
in descending order. Thus, p:DC is simply the number of
points that precede p in BT (since the NNs are processed in
ascending distance order, these points are preferable to p in
terms of both distance and expiration time). Each internal
node in BT contains the cardinality of the subtree rooted at
that node so that the computation of each dominance
counter takes Oðlog kÞ time. After the dominance-counter
computation, BT is discarded, and q.skyband contains
exactly k elements; q:best dist is the distance of the kth
element. The above procedure takes in total Oðk � log kÞ time.

The skyband maintenance module handles only points p
with distðp; qÞ less than or equal to the q:best dist after the
previous NN computation from scratch. When such a point
arrives at the system, it is inserted into q.skyband, increasing
its cardinality. The first k points of the skyband constitute

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

4. Some cells and rectangles are enheaped even though their distance
exceeds best dist. These entries are not deheaped during the result
computation and reside in the search heap H after the NN retrieval.

5. In both count-based and time-based windows, the arrival order is the
same as the expiration order.

Fig. 6. Update handling examples. (a) Pins ¼ fp4; p5g and Pdel ¼ fp1; p2g.
(b) Pins ¼ fp6g and Pdel ¼ fp3g.

the q:best NN (in accordance with the CPM terminology),

which is not stored explicitly. The dominance counter of all

points with a distance higher than distðp; qÞ is increased by

1, and the ones whose counter reaches k are evicted.

Regarding deletions, the element p of q.skyband with the

earliest arrival time (that is, the one expiring first) belongs

to the current result, as can be shown by contradiction.

Specifically, if the expiring point p was not in the current

result, then all the k NNs would dominate p, since they have

smaller distance and expire later. Thus, p could not belong

to the k-skyband. Returning to the maintenance procedure,

when a point expires, it is removed, and the first k elements

of the updated q.skyband are reported as the new q:best NN .

Note that the deleted p does not dominate any other point,

and therefore, the dominance counters of the remaining
elements in q.skyband are not affected.

The SNN algorithm is illustrated in Fig. 9. An important
remark concerns situations where the skyband contains less
than k points. This happens when some NNs expire, and
the recent arrivals were not inserted into the skyband
(because their distance was larger than q:best dist). In such
cases, we have to compute the result from scratch and form
a new skyband. The pseudocode of Fig. 9 handles this case
in lines 18-20.

SNN is expected to be faster than CPM, since it involves
less frequent calls to the NN search algorithm. For instance,
consider the example in Fig. 6b, where p6 arrives, and p3

expires at the same processing cycle. As discussed in
Section 4, in this scenario, CPM recomputes the query from
scratch. SNN, on the contrary, avoids the NN search
overhead. Since distðp6; qÞ is less than distðp1; qÞ (that is,
the best dist after the last recomputation from scratch; see
Fig. 6a), SNN inserts p6 into the skyband and directly
reports it as the third NN when p3 is deleted. On the other
hand, the space requirements of SNN are higher than CPM,
since it maintains the skyband (which is a superset of the
current NN set) of each query. In Section 6, we analytically
compare the performance and space requirements of the
proposed algorithms.

6 PERFORMANCE ANALYSIS

Similar to previous approaches in the literature [14], [18],
[28], [29], we assume that 1) the average data cardinality at
each time stamp is N , 2) the valid positions are uniformly
distributed in a unit two-dimensional workspace, and 3) the

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 7

Fig. 7. The sliding window version of the CPM algorithm.

Fig. 8. Skyband maintenance. (a) Point p9 arrives. (b) The new

2-skyband.

stream rate is, on the average, r points per processing cycle.
If � is the cell extent per axis, then the total number of cells
is ð1=�Þ2, and each cell contains, on the average, N � �2

points. According to [18], the running time of the kNN
computation module (involved in both CPM and SNN) is
Tcomp ¼ OðC � logC þ C �N � �2 � log kÞ. The quantity C cor-
responds to the number of cells intersecting the influence
region of a query, and it holds that C ¼ Oðdk=ðN � �2ÞeÞ. The
term OðC � logCÞ is due to heap operations (enheaping/
deheaping cells and conceptual rectangles), and the term
OðC �N � �2 � log kÞ is due to updates of q:best NN with
encountered points, assuming that q:best NN is implemen-
ted as a red-black tree.

Concerning the maintenance cost of CPM, in every
processing cycle, r new points arrive at the system, whereas
r old ones expire. Hence, the grid update time is OðrÞ. Each
cell receives r � �2 insertions and r � �2 deletions. Therefore,
the influence region of a query q is affected by 2 � C � r � �2

events. The time required to check whether the correspond-
ing points belong to the current result is OðC � r � �2Þ (by
comparing with q:best dist). Among them, k � r=N new
points are considered for insertion into q:best NN , and k �
r=N old ones are deleted from it; the total cost for updating
q:best NN is Oðk � r � log k=NÞ. Note that, for uniform data
distribution, the number of insertions in the influence
region of q equals the number of deletions therein. There-
fore, the number of incoming points equals the number of
outgoing ones, and CPM does not invoke the kNN
computation from scratch. In this case, the time complexity
of CPM for a processing cycle is

TCPM ¼ OðrþQ � ðC � r � �2 þ k � r � log k=NÞÞ;

where Q is the number of running queries.
For SNN, the index update cost is the same as for CPM

(that is, OðrÞ). Also, the number of the arriving (expiring)
points in the cells intersecting the influence region of a
query q is OðC � r � �2Þ. Initially (after the application of the
kNN computation module), the skyband contains k ele-
ments. Among the inserted (deleted) points, Oðk � r=NÞ
have a distance less than q:best dist and have to be included

in (excluded from) the skyband. An insertion to q.skyband
requires OðkÞ time because we have to retain the order
(according to distance) and, at the same time, update the
dominance counters of the entries with distance higher than
that of the new point. Each deletion also has OðkÞ cost.
Similar to CPM, according to the uniformity assumption,
the k-skyband contains exactly k elements, and SNN does
not resort to computations from scratch. In summary, the
total running time is TSNN ¼ OðrþQ � ðC � r � �2 þ k2 � r=NÞÞ
for each processing cycle.

Finally, we analyze the memory requirements of the
proposed methods. The index has OðN þN þQ � CÞ size,
where OðNÞ, OðNÞ, and OðQ � CÞ are the amounts of storage
required for theN valid points, forN pointers (in the content
lists of the cells), and for the influence lists of the Q queries,
respectively. Each query table entry for CPM has size Oð2þ
2 � kÞ for storing the query coordinates and the tuple <
p:id; distðp; qÞ > for every point p in the result. For SNN,
each entry of QT takes up Oð2þ 3 � kÞ, since in addition to
the identifier and the distance, q.skyband also contains the
dominance counters of the points. Recall that SNN does not
need to explicitly store q:best NN because the result set
consists of the first k entries of q.skyband. To summarize, the
space requirements of CPM and SNN are SCPM ¼ OðN þ
Q � ðC þ 2þ 2 � kÞÞ and SSNN ¼ OðN þQ � ðC þ 2þ 3 � kÞÞ,
respectively.

In summary, for uniform data, the result updating of
CPM is more efficient than the skyband maintenance of SNN
(with time complexitiesOðk � r � log k=NÞ andOðk2 � r=NÞ per
query, respectively). For nonuniform data, however, SNN is
expected to be faster than CPM because the latter resorts
more frequently to kNN computation from scratch. This is
also verified by our experiments. Concerning the space
overhead, SNN uses more memory than CPM because
1) q.skyband stores additional information about the dom-
inance counters and 2) in practice, the k-skyband may
contain more than k entries. The performance of both
algorithms depends on the cell sidelength �. Large cells
minimize the time spent on heap operations but lead to
unnecessary processing of points that are outside the

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 9. The SNN algorithm.

influence region (but fall in cells that intersect the influence
region). Large � also implies lower space consumption
because queries are affected by fewer cells, and the cell
influence lists take up less memory. The running time of the
proposed techniques increases with k,Q,N , and r. The same
holds for the space consumption, with the exception of r.

7 OTHER NN QUERY TYPES

In this section, we extend the proposed algorithms to
variations of the NN search. In particular, we describe the
monitoring of constrained NN and aggregate NN (ANN)
queries. A constrained NN query q specifies a region of
interest and requests the NNs of q therein [8]. Consider, for
instance, the example in Fig. 10, where the user requests the
NN of q among the points that have higher x and
y coordinates than q (that is, the region of interest is the
striped area). CPM and SNN can be easily adapted to
monitor constrained NNs over sliding windows. The
difference is that, during the initial NN set computation,
we enheap only cells and conceptual rectangles that
intersect the region of interest and process only points that
fall inside it.

In Fig. 10, the algorithm enheaps rectangles U0, U1, U2,
R0, R1, and R2, it processes the shaded cells, and it returns
p3 as the result. Note that the unconstrained NN of q is point
p2, but it is not encountered because its cell is not visited.
On the other hand, point p4 is processed but ignored
because it falls outside the (constrained) region of interest.
Concerning the monitoring of result changes, neither CPM
nor SNN requires modifications. The deheaped cells
(appearing shaded in Fig. 10) receive an entry for q in their
influence lists, and only updates therein are monitored.

Another interesting variant is the ANN. Given a set of
query points Q ¼ fq1; q2; . . . ; qng and a data point p, the
aggregate distance adistðp;QÞ is defined as a function f
over the individual distances distðp; qiÞ between p and each
point qi 2 Q. The result of the ANN query is the point p that
minimizes adistðp;QÞ. Papadias et al. [21] propose algo-
rithms for snapshot ANN queries on static data sets when f
is a monotonically increasing6 function over the individual
distances distðp; qiÞ. Under the same assumption (that is,
monotonicity of f), both CPM and SNN extend to ANN

monitoring over sliding windows. In the following, we
focus on the sum, max, and min aggregate functions, as
they are the most commonly used ones.

Consider n users at locations q1; q2; . . . ; qn and f ¼ sum.
The ANN minimizes adistðp;QÞ ¼ �qi2Qdistðp; qiÞ, that is,
the sum of distances that the users have to travel in order to
meet at the position of p. Similarly, if f ¼ max, then the
ANN query reports the point p that minimizes the
maximum distance that any user has to travel to reach p.
In turn, this leads to the earliest time that all users will
arrive at the location of p (assuming that they move with the
same speed). Finally, if f ¼ min, then the result is the
point p that is closest to any user, that is, p has the smallest
adistðp;QÞ ¼ minqi2Qdistðp; qiÞ.

To extend our algorithms to continuous ANN monitor-
ing, we have to use a different partitioning of the space
(than that of simple NN queries). Consider the example in
Fig. 11a, where Q ¼ fq1; q2; q3g. The partitioning applies to
the space around the minimum bounding rectangle (MBR)
M of Q, as shown in the figure. Given a rectangle rect, the
function amindistðrect; QÞ ¼ fqi2Qmindistðrect; qiÞ is a low-
er bound of the distance adistðp;QÞ for any point p in rect.
Due to the monotonicity of f , the amindist of the conceptual
rectangles in a direction is increasing with their level
number. This property allows for the application of the
conceptual partitioning methodology to compute the first-
time result.

The ANN search initially enheaps the cells c intersecting
M with key amindistðc;QÞ and the level 0 rectangles for
each direction DIR with key amindistðDIR0; QÞ. Then, it
starts deheaping entries iteratively. If the deheaped entry is
a cell c, then the algorithm computes adistðp;QÞ for every p
inside c and updates the list best NN of the best points
found so far. It also inserts q into the influence list ILc. If the
entry is a conceptual rectangle, then it enheaps the
corresponding cells and the next level rectangle in the
same direction, with keys equal to their amindist. The
procedure terminates when the next entry in the heap has a
key equal to or greater than the distance best dist of the kth
ANN found.

Returning to our running example and letting f ¼ sum,
the ANN search enheaps all the cells falling in M, U0, D0,
andL0 and deheaps the ones appearing shaded in Fig. 11b. It
processes points p1, p2, and p3 and returns p2 as the result.
The monitoring of the ANN set upon point arrivals and

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 9

Fig. 10. A constrained NN search example. Fig. 11. An ANN search example. (a) Conceptual partitioning.

(b) Processing when f ¼ sum.

6. A function f is monotonically increasing iff xi � x0i 8i implies that
fðx1; . . . ; xnÞ � fðx01; . . . ; x0nÞ.

expirations is the same as in Sections 4 and 5 for CPM and
SNN, respectively. The only difference is that, now, the
measure of interest is the aggregate distance of the points. In
the case of SNN, this implies that the k-skyband is computed
and maintained in the aggregate distance-time space.

The algorithms also apply to max and min ANN query
monitoring, by defining amindistðrect;QÞ and adistðp;QÞ
accordingly. Consider Figs. 12a and 12b, where f ¼ max
and f ¼ min, respectively. The ANN search processes the
shaded cells and returns p2 as the result in both cases. Note
that, for f ¼ max, it visits the cells that overlap with the
intersection of all circles with centers at qi and radii equal to
best dist because these cells have amindistðc; qÞ < best dist
and could potentially contain points with lower aggregate
distance than best dist. For the same reason, when f ¼ min,
it processes the cells that overlap with at least one of the
circles with centers at qi and radii equal to best dist.

The number n of query points in Q may be large, and
computing the aggregate distance of points (cells) may be
very expensive because it requires calculation of n euclidean
distances (mindist functions). Depending on the definition
of f , some points (cells) can be pruned without computing
all these n distances. For example, assume that f ¼ sum. If,
while computing adistðp;QÞ ðamindistðc;QÞÞ, the sum of
distances calculated so far exceeds the current best NN , then
point p (cell c) can be immediately pruned (without
considering the remaining points in Q). Similarly, when
f ¼ max, if the distance of point p (mindist of cell c) from one
of the query points is already larger than best NN , then p ðcÞ
can be safely excluded from consideration, without wasting
further computations for the exact value of amindist. On the
other hand, in the case of min, such an optimization is not
possible.

8 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate CPM and SNN.
Sections 8.1 and 8.2 study their performance for NN and
ANN monitoring, respectively. In both cases, the input
stream is created by randomly choosing points from a real
data set of 1,314,620 two-dimensional points, correspond-
ing to end points of streets in Los Angeles (available at
www.rtreeportal.org). The data set is normalized to cover
a unit workspace (that is, [0, 1] � [0, 1]). We assume count-
based windows with size N between 100,000 and

1,000,000 records. During each time stamp, r new points
arrive at the system. In our NN monitoring experiments
(Section 8.1), we use two sets of queries: in UNI, queries
are uniformly distributed in the workspace, whereas in
SKW, they are randomly drawn from our real data set
(that is, they follow the same distribution as the stream
points). In Section 8.2, each ANN query consists of n
points uniformly distributed in a square. The square
covers area Aq, and its location is randomly chosen in
the workspace. The simulation length is 100 time stamps.
Table 1 summarizes the parameters under investigation,
along with their ranges and default values. In each
experiment, we vary a single parameter while setting the
remaining ones to their default values. The asterisk next to
a description indicates that it is used only in the ANN
experiments. For all simulations, we use a Pentium
3.2 GHz CPU with a 1 Gbyte memory.

8.1 NN Monitoring

In this section, we focus on the monitoring of conven-
tional NN queries. First, we study the effect of the grid
granularity on CPM and SNN for the default settings
(that is, N ¼ 100; 000, r ¼ 1; 000, Q ¼ 1; 000, and k ¼ 16).
For UNI queries (Fig. 13a), we experiment on grids with
102 up to 1002 cells, whereas for SKW (Fig. 13b), we reach
up to 4502 because the optimal granularity7 is much
higher than UNI. We plot the overall running time in
seconds, in logarithmic scale. The best performance for
both algorithms is achieved with a 50 � 50 grid for UNI
and a 330 � 330 one for SKW. The optimal grid
granularity for SKW is much finer, because SKW queries
follow the data distribution and the cells around them
contain many points. In both cases, a very fine grid is
expensive because of the heap operations on the cells,
whereas a sparse one leads to unnecessary processing of
points outside the query influence regions. For the
remaining experiments, we use the respective optimal
granularities for UNI and SKW.

In Fig. 14, we vary N from 100K to 1M, and set the arrival
rate r to N=100 tuples per time stamp (that is, during each
time stamp, 1 percent of the data points are replaced by new
ones). As shown in Figs. 14a and 14b, the running time
increases with N . SNN is more than two times faster than
CPM for both UNI and SKW. Over the 100 time stamps of
the simulation, for UNI (SKW), CPM computes a query
from scratch 12.9 (13.6) times on the average, versus only 4.4
(4.9) for SNN. An interesting observation, which is apparent
in all experiments, is that both algorithms are slower for
UNI. This happens because in UNI, the queries are more
likely to lie far away from their NNs (as they follow
different distribution from the data), and NN search
enheaps/deheaps many cells before retrieving the results.

Next, we set N ¼ 100; 000 and vary r between 0 and
100,000; that is, 0 percent up to 100 percent of the valid
points are replaced per time stamp. Figs. 15a and 15b show
the running time versus r for UNI and SKW, respectively.
The number next to each measurement is the average
number of NN computations from scratch (during the

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 12. ANN search examples for (a) f ¼ max and (b) f ¼ min.

7. “Optimal” here refers to the granularity that leads to the lowest CPU
cost for the default parameters.

100 time stamps of the simulation) per query. The
performance degrades with r because a larger arrival rate
causes more frequent recomputations and higher index

update cost. SNN is better than CPM, except for r ¼ N (that
is, 100,000) and SKW queries. In this case, even though SNN
performs fewer recomputations, it is slower than CPM,
because 1) the NN search is relatively cheap for SKW (as the
NNs are found close to the queries) and 2) the cost of

updating the skybands and the dominance counters is high
(in every time stamp, k insertions and k deletions take place
in each of them). Note that, for r ¼ 0, the algorithms have
the same cost, since they both retrieve the initial result of
each query and do not perform any further computation

(there are no data insertions/deletions in the subsequent
time stamps).

In order to study the effect of the query cardinality, we
vary Q between 1,000 and 5,000 and plot the running time
for UNI and SKW in Figs. 16a and 16b, respectively. The

CPU cost of both methods scales linearly with Q, and SNN
is the best algorithm. Similar to the data cardinality
(Fig. 14), the performance gap increases with Q, verifying
the better scalability of SNN to large problems.

Figs. 17a and 17c show the processing time versus the
number k of NNs for UNI and SKW. The influence region of
the queries and, consequently, the number of processed
cells/points increases with k, implying higher NN retrieval
and maintenance overhead for both methods. SNN is faster
in all cases, and since it performs fewer recomputations
than CPM, its degradation with k is smaller. Figs. 17b and
17d illustrate the corresponding space requirements. SNN
consumes only a few kilobytes more space than CPM. A
larger k implies longer influence lists and, thus, higher
memory consumption for both methods. The numbers
appearing above the measurements for SNN correspond to
the average cardinality of the skybands in the system.
Interestingly, SNN maintains very few extra points.

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 11

TABLE 1
System Parameters

Fig. 13. CPU time versus grid granularity. (a) UNI. (b) SKW.

Fig. 14. CPU time versus number of valid points N ðr ¼ N=100Þ. (a) UNI. (b) SKW.

8.2 Aggregate Nearest Neighbor Monitoring (ANN)

In this section, we evaluate our methods for ANN monitor-
ing. We focus on sum and max aggregate functions. The
results for min were very similar to sum and were thus
omitted. First, we fine-tune the grid granularity, similar to
Fig. 13. The best grid size is 140� 140 for sum and 80� 80 for
max; we use this granularity for all of the following
experiments. Fig. 18 shows the CPU time versus the area
Aq of the MBR of the queries (using the default settings for
the remaining parameters, that is, N ¼ 100; 000, r ¼ 1; 000,
Q ¼ 1; 000, and k ¼ 16). We vary Aq from 1 percent to
16 percent of the total workspace area. For small Aq, the
points of each query are close to each other, leading to small
influence regions. When Aq is larger, ANN retrieval and
maintenance considers more cells/data points. SNN is 2.5-
3 times better than CPM for both f ¼ sum and f ¼ max. Both
methods are faster for max because the optimization for the
aggregate distance calculation (presented in the last para-
graph in Section 7) saves more computations than for sum.

Fig. 19 studies the effect of n (that is, the number of
points in each query). Aggregate distance calculations (for
points and cells) are more expensive for larger n, leading to
higher ANN computation and maintenance costs. Since the
advantage of SNN over CPM is the reduced number of
ANN retrievals from scratch, their difference grows as k

(and, consequently, the cost per ANN retrieval) increases.
Fig. 20a (Fig. 20b) shows the CPU time versus k for

f ¼ sum ðf ¼ maxÞ. The performance of both algorithms

degrades with k because the influence regions grow. SNN is

faster in all cases. Its difference from CPM increases for

larger k because, similar to Fig. 19, NN computations

become more costly.

9 CONCLUSION

This paper constitutes the first work addressing the

problem of continuous kNN monitoring over sliding

windows. As a first solution, we extend the state-of-the-

art NN monitoring algorithm for update streams (CPM) to

the sliding window model. Next, we present SNN, which

utilizes a generalized concept of skybands for maintaining

NNs. Both approaches compute the initial result of each

query with an algorithm that processes the minimum

number of cells. Only insertions/deletions within these

cells can potentially invalidate the current kNN set. There-

fore, the maintenance of the result considers only point

arrivals and expirations therein. The difference of SNN

from CPM is that it maintains a superset of the current

result in the form of a k-skyband in the distance-time space.

Both methods apply to time-based and count-based

windows. Moreover, they can be easily adapted to other

query types such as constrained NN and aggregate NN

monitoring. An extensive experimental evaluation demon-

strates that SNN outperforms CPM for all parameter

settings while consuming a negligible amount of extra

space.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 15. CPU time versus arrival rate r. (a) UNI. (b) SKW.

Fig. 16. CPU time versus query cardinality Q. (a) UNI. (b) SKW.

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 13

Fig. 17. Performance versus number k of NNs. (a) UNI - CPU time. (b) UNI - Space. (c) SKW - CPU time. (d) SKW - Space.

Fig. 18. CPU time versus area of query MBR Aq. (a) f ¼ sum. (b) f ¼ max.

Fig. 19. CPU time versus number of points in query n. (a) f ¼ sum. (b) f ¼ max.

A direction for future work concerns the derivation of
cost models for nonuniform data. For instance, the
proposed models could be extended and combined with
multidimensional histograms to provide accurate estima-
tions for query optimization (in systems that involve
monitoring of multiple query types). Another interesting
direction would be the development of methods on
nonregular grids (recall that all existing methods apply
regular grids). In this case, the partitioning of the data space
should take into account the data distribution, which may
change with time. Although nonregular grids complicate
query processing, they are expected to yield performance
gains for highly skewed data. Finally, we plan to investigate
distance functions that take into account freshness, in
addition to distance; that is, the data do not expire when
they fall out of the window, but their utility continuously
drops with time.

ACKNOWLEDGMENTS

This work was supported by grant HKUST 6184/05E from
Hong Kong RGC.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and Issues in Data Stream Systems,” Proc. ACM Symp.
Principles of Database Systems (PODS ’02), 2002.

[2] W. Balke, U. Gunzer, and J. Zheng, “Efficient Distributed
Skylining for Web Information Systems,” Proc. Int’l Conf. Extend-
ing Database Technology (EDBT ’04), 2004.

[3] R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
Neighbor and Reverse Nearest Neighbor Queries for Moving
Objects,” The VLDB J., vol. 15, no. 3, pp. 229-250, 2006.

[4] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, “The R�-
Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’90), 1990.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” Proc. Int’l Conf. Data Eng. (ICDE ’01), 2001.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G.
Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring
Streams—A New Class of Data Management Applications,” Proc.
Int’l Conf. Very Large Data Bases (VLDB ’02), 2002.

[7] Y. Cai, K. Hua, and G. Cao, “Processing Range-Monitoring
Queries on Heterogeneous Mobile Objects,” Proc. Int’l Conf. Mobile
Data Management (MDM ’04), 2004.

[8] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. Abbadi,
“Constrained Nearest Neighbor Queries,” Proc. Seventh Int’l Symp.
Spatial and Temporal Databases (SSTD ’01), 2001.

[9] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’84), 1984.

[10] B. Gedik and L. Liu, “MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a Mobile
System,” Proc. Int’l Conf. Extending Database Technology (EDBT ’04),
2004.

[11] A. Henrich, “A Distance Scan Algorithm for Spatial Access
Structures,” Proc. ACM Int’l Symp. Advances in Geographic Informa-
tion Systems (ACM GIS ’84), 1984.

[12] G. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[13] N. Koudas, B. Ooi, K. Tan, and R. Zhang, “Approximate NN
Queries on Streams with Guaranteed Error/Performance
Bounds,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’04), 2004.

[14] D. Kalashnikov, S. Prabhakar, and S. Hambrusch, “Main-Memory
Evaluation of Monitoring Queries over Moving Objects,” Dis-
tributed and Parallel Databases, vol. 15, no. 2, pp. 117-135, 2004.

[15] D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries,” Proc. Int’l Conf. Very
Large Data Bases (VLDB ’02), 2002.

[16] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. Tucker, “Semantics
and Evaluation Techniques for Window Aggregates in Data
Streams,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’05), 2005.

[17] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows,” Proc. Int’l Conf. Data
Eng. (ICDE ’05), 2005.

[18] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
Partitioning: An Efficient Method for Continuous Nearest
Neighbor Monitoring,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’05), 2005.

[19] M. Mokbel, X. Xiong, and W. Aref, “SINA: Scalable Incremental
Processing of Continuous Queries in Spatio-Temporal Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’04),
2004.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline
Computation in Database Systems,” ACM Trans. Database Systems,
vol. 30, no. 1, pp. 41-82, 2005.

[21] D. Papadias, Y. Tao, K. Mouratidis, and C. Hui, “Aggregate
Nearest Neighbor Queries in Spatial Databases,” ACM Trans.
Database Systems, vol. 30, no. 2, pp. 529-576, 2005.

[22] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch,
“Query Indexing and Velocity-Constrained Indexing: Scalable
Techniques for Continuous Queries on Moving Objects,” IEEE
Trans. Computers, vol. 51, no. 10, pp. 1124-1140, Oct. 2002.

[23] N. Roussopoulos, S. Kelly, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’95), 1995.

[24] Z. Song and N. Roussopoulos, “k-Nearest Neighbor Search for
Moving Query Point,” Proc. Seventh Int’l Symp. Spatial and
Temporal Databases (SSTD ’01), 2001.

[25] K. Tan, P. Eng, and B. Ooi, “Efficient Progressive Skyline
Computation,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’01),
2001.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 20. CPU time versus number k of ANNs. (a) f ¼ sum. (b) f ¼ max.

[26] Y. Tao and D. Papadias, “Spatial Queries in Dynamic Environ-
ments,” ACM Trans. Database Systems, vol. 28, no. 2, pp. 101-139,
2003.

[27] Y. Tao and D. Papadias, “Maintaining Sliding Window Skylines
on Data Streams,” IEEE Trans. Knowldege and Data Eng., vol. 18,
no. 3, pp. 377-391, Mar. 2006.

[28] X. Xiong, M. Mokbel, and W. Aref, “SEA-CNN: Scalable
Processing of Continuous k-Nearest Neighbor Queries in Spatio-
Temporal Databases,” Proc. Int’l Conf. Data Eng. (ICDE ’05), 2005.

[29] X. Yu, K. Pu, and N. Koudas, “Monitoring k-Nearest Neighbor
Queries over Moving Objects,” Proc. Int’l Conf. Data Eng. (ICDE
’05), 2005.

[30] B. Zheng and D. Lee, “Semantic Caching in Location-Dependent
Query Processing,” Proc. Seventh Int’l Symp. Spatial and Temporal
Databases (SSTD ’01), 2001.

[31] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee, “Location-
Based Spatial Queries,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’03), 2003.

Kyriakos Mouratidis received the BSc degree
from the Aristotle University of Thessaloniki,
Greece, and the PhD degree from the Hong
Kong University of Science and Technology,
both in computer science. He is an assistant
professor in the School of Information Systems,
Singapore Management University. His re-
search interests include spatiotemporal data-
bases, data stream processing, and mobile
computing.

Dimitris Papadias is a professor in the Depart-
ment of Computer Science and Engineering,
Hong Kong University of Science and Technol-
ogy (HKUST). Before joining HKUST in 1997, he
worked and studied at the German National
Research Center for Information Technology
(GMD), the National Center for Geographic
Information and Analysis (NCGIA), Maine, the
University of California, San Diego, the Techni-
cal University of Vienna, the National Technical

University of Athens, Queen’s University, Canada, and the University of
Patras, Greece. He has published extensively and has been involved in
the program committees of all major database conferences including the
ACM SIGMOD International Conference on Management of Data, the
International Conference on Very Large Data Bases (VLDB), and the
International Conference on Data Engineering. He is an associate editor
of the VLDB Journal and the IEEE Transactions on Knowledge and Data
Engineering, and he is on the editorial advisory board of Information
Systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MOURATIDIS AND PAPADIAS: CONTINUOUS NEAREST NEIGHBOR QUERIES OVER SLIDING WINDOWS 15

