
HybMig: A Hybrid Approach to Dynamic Plan
Migration for Continuous Queries

Yin Yang, Jürgen Krämer, Member, IEEE Computer Society, Dimitris Papadias, and

Bernhard Seeger, Member, IEEE Computer Society

Abstract—In data stream environments, the initial plan of a long-running query may gradually become inefficient due to changes of the

data characteristics. In this case, the query optimizer will generate a more efficient plan based on the current statistics. The online

transition from the old to the new plan is called dynamic plan migration. In addition to correctness, an effective technique for dynamic

plan migration should achieve the following objectives: 1) minimize the memory and CPU overhead of the migration, 2) reduce the

duration of the transition, and 3) maintain a steady output rate. The only known solutions for this problem are the moving states (MS)

and parallel track (PT) strategies, which have some serious shortcomings related to the above objectives. Motivated by these

shortcomings, we first propose HybMig, which combines the merits of MS and PT and outperforms both in every aspect. As a second

step, we extend PT, MS, and HybMig to the general problem of migration, where both the new and the old plans are treated as black

boxes.

Index Terms—Query processing.

Ç

1 INTRODUCTION

LONG-RUNNING, continuous queries are typical in data
stream management systems. During the execution of

such a query, the major factors affecting the efficiency, such
as the selectivity and the stream rate, may change in an
unexpected manner [4]. Consequently, the running query
plan, which is computed based on past statistics, may
become inefficient. When this situation occurs, the query
processor needs to adopt a semantically equivalent but
more efficient new plan, optimized using the current
statistics. The change of query plans must be performed
online, without affecting the correctness of the output. This
transition is referred to as dynamic plan migration [18].

The problem of dynamic plan migration is challenging
when the running query plan involves stateful operators.
An operator is stateful if it contains internal states that are
computed based on previously received tuples. Otherwise,
it is stateless. For example, a selection that filters the input
stream according to a static condition is usually implemen-
ted as a stateless operator. In contrast, more complicated
operators, like joins and aggregations, must maintain
internal states in order to generate the correct answer.
Since these internal states contain information that is vital to
the correctness of the output, simply discarding a running
query plan with stateful operators causes information loss.

To illustrate this problem, we use an example of join
reordering with symmetric, sliding-window, binary joins
[9], [10]. Fig. 1 shows two semantically equivalent plans

joining four input streams, A, B, C, and D. The old plan, i.e.,
the one that is currently running, is a left-deep plan, while
the new plan (after migration) is a right-deep plan. The
internal states are shown as rectangular boxes on both sides
of each join operator (denoted by an oval). In the old plan,
PðððABÞCÞDÞ, the topmost operator ABCD has two internal
states, SABC and SD, storing tuples from ABC and D,
respectively.1 These tuples have been processed, but cannot
be discarded since they may generate future results. For
instance, although a tuple in SABC has already been joined
with every entry of SD, it may still be matched with a
subsequent arrival from input D.

The only known solutions for dynamic plan migration
are the moving states (MS) and parallel track (PT) strategies
[18]. MS temporarily suspends the output stream and
generates the operator states in the new plan. Continuing
the example, MS first moves SA, SB, SC , and SD from the
old plan to the new one. Then, it computes SCD and SBCD by
joining tuples in SB, SC , and SD. Finally, it discards the old
plan and produces results using only the new one. These
state computations can be very expensive. Furthermore,
since the query results during the migration are delayed,
MS may cause a violation of the responsiveness require-
ments of the query [3].

PT runs both plans in parallel and combines their results.
During the transition, PT outputs results produced by both
plans after eliminating duplicates. As discussed in Section 2,
the output rate of PT gradually decreases to zero during
migration. Furthermore, the application of PT imposes
some rather restrictive semantics for temporal ordering.
Finally, PT and MS were proposed for join reordering and
their extension to plans with arbitrary operators is not clear.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007 1

. Y. Yang and D. Papadias are with the Department of Computer Science,
Hong Kong University of Science and Technology, Clearwater Bay, Hong
Kong. E-mail: {yini, dimitris}@cs.ust.hk.

. J. Krämer and B. Seeger are with the Department of Mathematics and
Computer Science, University of Marburg, Marburg, Hessen, Germany.
E-mail: {kraemerj, seeger}@mathematik.uni-marburg.de.

Manuscript received 15 June 2006; revised 5 Oct. 2006; accepted 6 Oct. 2006;
published online 18 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0301-0606.

1. We use juxtaposition to denote the join operation and parenthesis to
specify the join order, e.g., PðððABÞCÞDÞ denotes the left-deep join plan. Join
predicates and interoperator queues are omitted for brevity. We assume
that a predicate is checked at the lowest join operator. Section 2.1 provides
further explanation on the contents of the internal states and the join
algorithm.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Motivated by these problems, we first propose HybMig,
a hybrid approach that combines and extends the advan-
tages of MS and PT without sharing their shortcomings.
HybMig generates a steady output rate during the transi-
tion, and has lower CPU cost and shorter migration
duration than both MS and PT. Furthermore, it is
compatible with both the temporal ordering definition in
[18] and a more popular max-ordering. Then, we extend
HybMig (as well as PT and MS) to the general problem of
dynamic plan migration, treating both plans as black boxes.
The rest of the paper is organized as follows: Section 2
surveys related work. Section 3 describes the algorithmic
framework of HybMig. Section 4 adapts all methods to
general plans with arbitrary operators. Section 5 contains a
comprehensive set of experiments and Section 6 concludes
the paper.

2 RELATED WORK

Section 2.1 discusses some basic concepts in the literature of
data streams, and Section 2.2 presents MS and PT.
Section 2.3 overviews alternative approaches to adaptive
query optimization.

2.1 Preliminaries

Sliding windows are the most common technique to deal
with infinite inputs. According to this methodology, each
incoming tuple ti is associated with a timestamp ti:ts. Two
tuples can be joined if the difference of their timestamps
does not exceed a predefined window, which may be
different for each pair of streams. Hereafter, for simplicity,
we assume the existence of a global window size w. Formally,
two input tuples ti and tj with timestamps ti:ts and tj:ts can
join only if jti:ts� tj:tsj � w. In our discussion, we follow
the global ordering assumption, that is, for any two input
tuples ti and tj, ti arrives before tj if and only if ti:ts � tj:ts.

Join processing involves three steps: purge-probe-insert.
Consider, for instance, the operator AB in Fig. 1a. An
incoming tuple ti from input stream A first purges tuples of
SB, whose timestamp is earlier than ti:ts� w (such tuples
cannot be joined with any subsequent arrival from A due to
the global ordering assumption). Then, it probes SB and joins
with its tuples. Finally, ti is inserted into SA. Once a join
result is generated, it must also be assigned a timestamp,
since it may constitute an input for a subsequent operator.

Let t be a result produced by joining input tuples t1; . . . ; tm
(also called components of t). There are several alternatives
for assigning t:ts, given the timestamps t1:ts; . . . ; tm:ts. A
popular one is t:ts ¼ maxmi¼1 ti:ts [2]. For example, in Fig. 1,
let t be an output tuple of the operator AB, produced by
joining t1 (from A) and t2 (from B). Then, t:ts is the later
timestamp between t1:ts and t2:ts. Assuming that t1:ts and
t2:ts represent the arrival time of the two tuples, then t:ts
can be interpreted as the earliest time that t can be created.

Furthermore, it is essential for the correctness of the
purge-probe-insert framework that output tuples be pro-
duced in the order of their timestamps. Consider, on the
contrary, that another tuple t0 with t0:ts > t:ts in the result
of AB is generated before t. The purging step triggered
by t0 removes from SC all tuples whose timestamp is
before t0:ts� w. Thus, when t is produced later, its
matching SC tuples in the interval ½t:ts� w; t0:ts� wÞ have
already been expunged, leading to incomplete results. In
order to avoid this problem, every operator must adhere
to the following max ordering requirement: For any two
output tuples t and t0 with component timestamps
ft1:ts; . . . ; tm:tsg and ft01:ts; . . . ; t0m:tsg, if t is produced
before t0, then maxmi¼1 ti:ts � maxmi¼1 t

0
i:ts.

2.2 Plan Migration Methods

Moving states (MS) consists of three main steps: state
matching, state moving, and state recomputation. The first step
identifies matching states, i.e., pairs of states, in the old and
the new plan, respectively, whose tuples have the same
schema. In Fig. 1, SA, SB, SC , and SD exist in both plans and
are matching states. SAB and SABC exist only in the old plan
(Fig. 1a), whereas SCD and SBCD exist only in the new one
(Fig. 1b). These correspond to unmatched states. State
moving transfers the matching states of the old to the new
plan. For instance, after the second step, SA, SB, SC , and SD
in the new plan of Fig. 1b contain the tuples that existed in
the corresponding state of the old plan immediately before
migration. Note that the unmatched states ðSBC; SBCDÞ of
the new plan are still empty. The final step fills these states
in a bottom-up manner. Specifically, MS first constructs SCD
by joining SC and SD. Then, it builds SBCD by joining SB
and SCD. The unmatched states SAB and SABC in the old
plan are then discarded and the migration process
terminates.

The cost of MS is dominated by the recomputation step
with complexity OðwhÞ, where w is the length of the sliding
window and h is the height of the operator tree [18]. As
shown in the experiments of [18], MS is expensive for
several stream settings. Furthermore, during its execution,
the output stream is suspended, potentially causing a
bottleneck for the entire system.

Whereas MS exploits reusability, parallel track (PT)
utilizes parallelism by executing both the old plan and the
new plan simultaneously and combining their results. Fig. 2
illustrates the application of PT to the example of Fig. 1.
After the initialization of the new plan, all its states are
empty (i.e., there is no state moving and recomputation as
in MS). The input streams A, B, C, and D are connected to
both plans, which run in parallel. Let new be the tuples that
arrive after the start of the migration and old be the ones
that already exist in SA, SB, SC , and SD of the old plan. In

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

Fig. 1. Two semantically equivalent plans. (a) Old plan: PðððABÞCÞDÞ.

(b) New Plan: PðAðBðCDÞÞÞ.

order to avoid duplicates, results containing only new tuples
are eliminated at the topmost operator ðABCDÞ of the old
plan because they are generated by the new plan. Note that
such duplicates cannot be eliminated before ABCD because
a result of ABC that includes only new tuples may still be
joined with an old D tuple. In general, the new plan
produces only output where all tuples are new. Every other
combination of old and new tuples is generated by the old
plan. The migration terminates when the old plan contains
only new tuples.

The parallel execution cannot guarantee the correct order
of the output tuples, since results can be generated by the
new or the old plan in any order. To overcome this
complication, PT uses the following PT ordering requirement:
For any two output tuples t and t0 with component
timestamps ft1:ts; . . . ; tm:tsg and ft01:ts; . . . ; t0m:tsg, if t is
produced before t0, then there must exist ið1 � i � mÞ such
that ti:ts � t0i:ts. This requirement is implemented by
directing the output of the new plan to a buffer. The
contents of the buffer are released after the termination of
the migration. Thus, every tuple t generated by the previous
plan precedes any other t0 produced by the new one. Since t
contains at least an old component ti, the condition ti:ts �
t0i:ts is always satisfied.

Note that this definition of temporal ordering is not
compatible with the max ordering requirement discussed in
Section 2.1. Assume, for instance, that t has component
timestamps t1:ts ¼ 1 and t4:ts ¼ 4, where t1 is old and t4 is
new. Similarly, the components of t0 are t2:ts ¼ 2 and
t3:ts ¼ 3, where both t2 and t3 are new. According to max
ordering, t should be generated after t0 because it has a larger
maximum timestamp ðt:ts ¼ 4; t0:ts ¼ 3Þ. PT, however, can
only produce t before t0 since it contains an old tuple. A
straightforward extension of PT to capture other temporal
ordering definitions, i.e., to buffer all results for a sufficiently
long period and sort them before output, incurs significant
performance penalty.

Another problem of PT refers to the output rate.
According to [18], the migration duration for h > 1 is 2w,
where w is the window size and h is the height of the
operator tree. As discussed in Section 3.5, under the max
ordering and global ordering assumptions, a tighter bound for
the duration is w. Throughout migration, the only reported
tuples come from the old plan since the new plan is
buffered. These tuples have at least one old component and
gradually expire, so that the output rate constantly
decreases during the transition.

2.3 Alternative Approaches

Besides dynamic plan migration, there are other approaches
to adaptive query processing that render plan migration
either trivial, e.g., [7], [17], or unnecessary, e.g., [4], [15].
M-Join [17] only stores past received tuples from the source
streams. Each source maintains an ordering of other
streams according to which the join is performed; plan
migration simply means changing these orderings without
any additional cost. The inherent drawback of this approach
is that no intermediate results are stored and work must be
repeated. In the old plan of our running example, an
incoming tuple tD from source stream D joins directly with
intermediate ABC tuples stored in SABC . If M-Join were
used, tD would join with A tuples in SA, then with B tuples
in SB, and finally with C tuples in SC . In general, although
M-Join requires less memory and a simpler plan migration
algorithm, its CPU cost can be prohibitively expensive, as
shown in the experiments of [7], especially when both the
stream rates and the join selectivity are high.

Adaptive caching [7] is based on M-Join and stores the
intermediate results in the form of caches. Migration can be
performed by simply discarding all previous caches and
gradually filling the new ones. When the transition starts,
the system performance suddenly drops to that of the
M-Join, and gradually improves. This method is only
discussed for hash joins and its application to other join
algorithms (e.g., nested loop joins), or other stateful
operators, is not straightforward.

Eddies [4], [15] incorporate a different perspective to
adaptive query processing. Queries are processed without
fixed plans. Instead, an optimized routing for each tuple is
computed individually, so that the system is very adaptive
to changes in data characteristics. The cost of this flexibility,
however, is high overhead since optimization is performed
at the tuple level. Moreover, similar to M-Join, since Eddies
do not store intermediate results, they are inefficient for
high stream rates and nonselective operators. An adaptive
approach for the Eddies architecture [8] alleviates this
problem by storing intermediate results and performing
explicit plan migrations using a method similar to MS.

Finally, plan migration is only one of several interesting
problems related to query adaptivity in stream management
systems. Query scrambling [16] proactively joins received
tuples to prepare for future changes in stream characteristics
(while plan migration is performed after the change).
Operator scheduling [5] adjusts resource allocation to different
operators in order to reduce main memory consumption.
These approaches can be combined with plan migration to
enhance performance.

3 HYBMIG

HybMig integrates the reusability aspects of MS with the
parallel execution paradigm of PT. Section 3.1 discusses a
preprocessing step that performs subquery sharing. Sec-
tion 3.2 presents the main algorithmic module of HybMig.
Section 3.3 explains the mechanism for preserving temporal
ordering. Section 3.4 optimizes HybMig through a back-
ground state computation. Section 3.5 summarizes the
properties of HybMig.

YANG ET AL.: HYBMIG: A HYBRID APPROACH TO DYNAMIC PLAN MIGRATION FOR CONTINUOUS QUERIES 3

Fig. 2. Example of PT.

3.1 Subquery Sharing

Subquery sharing [13] is commonly used in stream proces-
sing systems to eliminate redundant work. Fig. 3 illustrates
the application of subquery sharing to dynamic plan
migration. Note that the old (left-deep) and new (bushy)
plans share operator AB. Clearly, the state SAB in the new
plan does not need to be computed by joining tuples in SA
and SB, but can be moved directly using a step similar to
state moving in MS.

The application of this optimization to PT is not trivial. In
order to provide a solution, observe that, when the old and
the new plans run in parallel, the common subquery AB is
computed twice. Fig. 4 shows the HybMig solution for this
plan migration task: The operator AB is shared between the
old and the new plans, thus the redundant work is avoided.
Equivalently, AB can be treated as a single source. If
E ¼ AB, the old plan can be expressed as PððECÞDÞ and the
new one as PðEðCDÞÞ.

In general, when the old and the new plans contain
common subqueries, we call the migration reducible.
Another example of a reducible task is the migration from
PðððABÞCÞDÞ to PððAðBCÞÞDÞ. The difference between the two
plans is the join ordering for obtaining ABC; the last join
operator which joins ABC with D can be shared between
the two plans. HybMig treats reducible migration tasks
with the decomposition module of Fig. 5. Once the task is
found to be reducible, it is decomposed into two smaller
tasks (two pairs of new/old plans). The decomposition is
done recursively until the migration task is nonreducible. A
trivial migration task whose new and old plans are the same
is simply discarded.

In the example in Fig. 3, the original migration task is
decomposed into two smaller tasks: T1 : PðABÞ to PðABÞ and
T2 : PððECÞDÞ to PðEðCDÞÞ, where E ¼ ðABÞ. T1 is trivial and
discarded. Decomposition constitutes a preprocessing step,
which generates several nonreducible migration tasks. For
the following discussion, we assume that decomposition
has already been applied and the only matching states are
those whose schema contains a single source stream.

3.2 Shifting Workload

In Section 2.2, we defined as new the tuples that arrive after
the start of the migration and old as the ones that arrived
before. A join result may contain any possible combination
of old and new tuples. Table 1 illustrates these combinations
for the output of an operator ABCD. The first case (all
components are old) has been produced before the start of
the migration. The remaining ones are generated during or
after the migration. For PT, the old plan produces tuples of
Cases 2-15, and the new one generates only tuples of
Case 16. Intuitively, especially at the beginning of migra-
tion, most of the work is performed by the old plan.
Furthermore, since, as discussed in Section 2.2, duplicate
elimination in the old plan occurs at the topmost operator,
several of the intermediate results (containing only new
components) may be redundant. The goal of HybMig is to
shift the computation to the new plan as quickly as possible,
and to eliminate duplicate results at the lowest operator.

Assuming again the migration task of Fig. 1, HybMig
performs the state matching/moving step of MS, i.e., it
moves SA, SB, SC , and SD of the old plan to their
corresponding operators in the new plan. Since the two
plans run in parallel, we do not remove these states from the
operators in the old plan. Instead, they are shared between

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

Fig. 3. A sharing opportunity. (a) Old plan: PðððABÞCÞDÞ. (b) New plan:

PððABÞðCDÞÞ.

Fig. 4. Migrating from PðððABÞCÞDÞ to PððABÞðCDÞÞ.

Fig. 5. The decomposition module of HybMig.

the two plans. In Fig. 6, the four states SA, SB, SC , and SD in
the new plan are dashed to indicate that they are shared
with the old plan. The dashed states are only conceptual, i.e.,
for a pair of matching states in the old and the new plan,
there exists only one list of tuples in the system since their
contents are exactly the same during the entire migration.
For instance, when a new tuple A arrives, there is a single
insertion in SA, which is reflected in both plans. Since
matching states are shared and contain no duplication, the
memory overhead of the migration is minimal. This step is
called state sharing.

After state sharing, the only empty states in the new plan
are SCD and SBCD, which are unmatched. Thus, the new
plan can immediately produce results whose C and D

components are not simultaneously old. More precisely, the
plan can generate tuples of Cases 2, 3, 4, 6, 7, 8, 10, 11, 12, 14,
15, and 16 in Table 1. The remaining cases (5, 9, and 13)
must be produced by the old plan. Note that the new plan
generates 12 out of the 15 cases (excluding Case 1 that exists
before migration) as compared with only one case using PT.
This means that HybMig shifts the workload earlier (than
PT) to the new plan, leading to better performance since the
new plan is supposed to be much more efficient. This is
verified in our experimental evaluation, where HybMig
outperforms PT immediately after the beginning of the
migration period.

It now remains to clarify how the output of the old plan
is restricted to the Cases 5, 9, and 13 not generated by the
new one. The common property of these three cases is that
both C and D components are old. Therefore, when a new C

or D arrives, it should not be joined in the old plan. This
implies that the input sources C and D can be disconnected
from the old plan, as illustrated in Fig. 6. Furthermore, a

new A or B tuple should be joined only with old C and D.
This is achieved by modifying the join predicates in the top
two operators ABC and ABCD. Consider, for instance, a
new tuple AB at the operator ABC. Since SC is shared (i.e.,
common) in the two plans, it contains both new and old C
tuples. In order to ensure that the AB tuple is joined only
with old C, we change the join predicate of ABC to: original
predicate AND (C is old). The second condition is satisfied if
the timestamp of C precedes the starting time of migration
tsstart. Fig. 7 illustrates HybMig for right-deep plans.

The case that the new plan is a bushy join is more
complicated. Consider the migration task shown in Fig. 8.
After sharing the matching states, the new plan is not
capable of producing two kinds of output tuples: 1) those
that have old A and B (Cases 2, 3, and 4), because the state
SAB is empty and 2) those that have old C and D (Case 5, 9
and 13) because SCD is empty. These combinations have to
be generated by the old plan. In general, if the new plan is
bushy, we cannot simply disconnect a source stream from
the old plan because a result (of the old plan) may have a
new tuple from any stream. In our example, there is always
a case among the ones that cannot be produced by the new
plan (Cases 2, 3, 4, 5, 9, and 13) that has new in column A, B,
C, or D.

Instead of disconnecting inputs, HybMig prunes inter-
mediate results using a characteristics table that summarizes
the properties of the tuples that must be generated by the
old plan. Table 2 illustrates these properties for the
migration task of Fig. 8. The “�” symbol means that the
corresponding component can be either new or old. For
example, a new tuple from C in the old plan must join with
an old B in the first join operator BC and an old A in the
second operator ABC. This is achieved by modifying the
join predicates to original predicate AND ((A and B are old)
OR (C and D are old)).

Fig. 9 illustrates the general HybMig algorithm, which
also handles the case that the new plan is right-deep. In
particular, let I1 and I2 be the inputs of the lowest operator
in the right-deep join. The characteristics table contains a
single entry h �;� ; old; oldi, meaning that the old plan can
only generate tuples involving old I1 and I2. Thus, a new
tuple of I1 or I2 is immediately pruned, which in effect
disconnects these two streams from the old plan. In terms of
implementation, we can use tuple lineage for efficient
pruning of intermediate results. Specifically, a bitmap is
appended to each intermediate tuple, indicating which

YANG ET AL.: HYBMIG: A HYBRID APPROACH TO DYNAMIC PLAN MIGRATION FOR CONTINUOUS QUERIES 5

TABLE 1
Old/New Status for the Four Components

Fig. 6. State sharing in HybMig.

entries in the characteristics table are violated. Whenever
we join with new tuples in the operator states, we check all
currently satisfied entries and update the bitmap for the
result tuple. If all entries are violated, the intermediate tuple
is discarded.

3.3 Preservation of Temporal Ordering

Recall from Section 2.2 that PT adopts the requirement that,
if an output tuple t is produced before t0, then there must
exist a pair of components such that ti:ts � t0i:ts. In order to
satisfy this requirement, it buffers the output of the new plan
until the end of the migration period, increasing the memory
consumption and decreasing the output rate. Moreover, the
PT ordering requirement is not compatible with the commonly
used max ordering requirement, which states that if t is
produced before t0, then maxmi¼1ti:ts � maxmi¼1t

0
i:ts. HybMig

can adhere to both temporal ordering requirements by
adopting two mechanisms that incur minimum overhead.

The first mechanism is shown graphically in Fig. 10a.
When a new tuple t arrives from a source stream, HybMig
first feeds it to the old plan (Step 1) and produces results
(Step 2), which are directly inserted into the output queue.
After that, t gets processed in the new plan (Step 3),
possibly generating more results (Step 4). If another tuple t0

arrives during the processing of t, it waits until all four
steps are finished, after which the Step 1 of t0 starts. Note
that t0 is not necessarily from the same source stream as t.
This processing order takes precedence over scheduling
mechanisms in a DSMS, e.g., [5].

Proof of Correctness. We first show that the above
implementation of HybMig always complies with the
max ordering requirement. Based on the global ordering
assumption, the timestamp ti:ts of an incoming tuple ti is
larger than (or equal to) that of all the tuples stored in the
operator states. This means that, during the processing of

ti, the largest component timestamp of all the generated
results is ti:ts. Now, assume two output tuples t and t0

such that t is generated before t0. Let ti and t0i be the latest
components of t and t0, respectively. In order to satisfy
the max ordering requirement, it must hold that ti:ts � t0i:ts.
Since t appears before t0 in the output queue, ti must
arrive before t0i because HybMig completes generating all
outputs for one incoming tuple before starting another.
Thus, due to the global ordering assumption, ti:ts � t0i:ts.

Next, we show that HybMig satisfies the PT ordering
requirement, given that the old and the new plan comply
with it. Assume again output tuples t (with latest
component ti) and t0 (with latest component t0i) such
that t is generated before t0. Our goal is to show that there
is a pair of components such that tk:ts � t0k:ts. If t and t0

are generated by the same plan, then they satisfy PT
ordering by default. Similarly, if ti and t0i are different,
then ti:ts � t0i:ts, as shown in the proof for max ordering.
Thus, it remains to analyze the case that 1) t and t0 are
generated by different plans and 2) ti ¼ t0i. Since ti is the
latest component of t and t0, they were both generated
during the processing of ti. HybMig completes the
processing of ti in the old plan before feeding it to the
new one. Thus, t must be generated by the old plan and t0

by the new one. Therefore, t must satisfy at least one case
in the characteristic table, meaning that at least one
component tk is old. The counterpart t0k of this component
in t0 is new, implying that tk:ts � t0k:ts. tu

In some systems involving distributed operators, it may
not be possible to process tuples in the order imposed by
the four steps of Fig. 10a. In these cases, we allow
parallelism by using two FIFO queues, Qold and Qnew, to
synchronize the outputs, as shown in Fig. 10b. Specifically,
the tuples generated from the old and the new plans are
appended to Qold and Qnew, respectively. A special merge
operator ensures temporal ordering by combining the
tuples from the two queues so that their order is exactly
the same as that of the serialized version. In particular, the
operator extracts all tuples from Qold with the same latest
component ti (i.e., generated by the processing of ti). Next,
it switches to Qnew reading tuples (also generated by the
processing of ti) until the latest component changes. Then, it
goes back to Qold and repeats the same process in a round-
robin fashion. This solution allows a high degree of
parallelism at the cost of additional CPU/memory over-
head for maintaining the queues.

3.4 Background State Computation

Background state computation (BSC) is an optimization of
HybMig that reduces the migration duration for systems

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

Fig. 7. HybMig for right-deep new plan.

Fig. 8. Migration task to bushy plan. (a) Old plan: PðððABÞCÞDÞ. (b) New

plan: PððABÞðCDÞÞ.

involving long windows and relatively low arrival rates.
Such a system may have additional capacity during the
migration, which is utilized by BSC to compute the operator
states of the new plan in the background. The migration
terminates when BSC completes all operator states in the
new plan. Similar to MS, the computation of the states is
performed in a bottom-up manner. The major difference is
that MS must complete all operator states before returning
any result, whereas every state computation of BSC has an
immediate effect on the main thread of HybMig.

Consider the example in Fig. 1 and its HybMig solution
in Fig. 6. BSC first computes the state SCD by joining the old
tuples in SC and SD. Then, it merges the computed SCD
(denoted as SBSC

CD in the following) with the currently
running SCD (denoted as SMain

CD), which contains only new
components, to obtain the complete operator state. This
merging is done by prepending SBSC

CD to SMain
CD . For example,

when SBSC
CD ¼ ðt1; t2; t3Þ and SMain

CD ¼ ðt4; t5Þ, the merged state
will be ðt1; t2; t3; t4; t5Þ. When the operator states are
implemented as linked lists, the merging simply means
linking two lists together, which takes constant time. In
addition, this merging step preserves both max and PT

temporal ordering, since SBSC
CD contains only old tuples while

SMain
CD contains only new tuples.

The main thread then uses the complete SCD, meaning
that the only incomplete state in the new plan is SBCD.
Accordingly, the only kind of output tuples that cannot be
generated by the new plan are those whose B, C, and D
components are simultaneously old (Case 9). Therefore, we
can immediately disconnect source stream B from the old

plan. This accelerates HybMig because more workload
(Case 5 and Case 13) is shifted to the new plan.

After the computation of SCD, the background thread
computes SBCD, which is subsequently merged with the
currently running SBCD. The old plan is discarded and the
migration is over. In general, if the new plan is a right-deep
join, the computation of each state (by BSC) causes the
disconnection of one input from the old plan. The stream to
be disconnected can be determined by examining the
schema difference between the last and next computed
state. In our example, after the termination of SCD and before
the computation of SBCD, stream B should be disconnected.

If the new plan is bushy, BSC always chooses one of
the lowest states to compute, breaking ties arbitrarily. In
the example of Fig. 8, the two states SAB and SCD to be
computed are on the same level, so BSC can start with
either one, say, SAB. After computing SAB, the entry
hold; old;� ; � i in the characteristic table can be removed
and, correspondingly, the workload of producing three
cases (2, 3, 4) of output tuples is shifted to the new plan.
Since the characteristics table now contains a single entry
h �; � ; old; oldi, the effect of removing hold; old; � ; � i is the
same as that of disconnecting streams C and D from the
old plan. Note that the speed-up is higher than that of
right-deep plans, where a state computation disconnects
only one input. The migration terminates after the
completion of the last state SCD. Fig. 11 shows the
general BSC algorithm handling all types of plans.

As a further optimization, BSC uses a slightly different
join algorithm from that of MS. A key observation is that old
tuples gradually expire when BSC is executed in the
background thread. In order not to produce a result tuple
that expires before the computation is completed, we join
the tuples in reverse temporal order using the symmetric join
algorithm. The computation terminates when all remaining
tuples expire. This join algorithm is described in Fig. 12.

The correctness of BSC lies in two facts. First, BSC does
not cause any missing or duplicate results. This is because,
at any time instance, the main thread HybMig properly
divides the workload between the two plans, i.e., a result
tuple will be produced either by the old plan or by the new
plan. Second, the inclusion of BSC in HybMig does not
violate its temporal ordering constraint, independently of
the temporal ordering (max or PT) used. This is because
both BSCJoin and the state merging procedure preserve
temporal ordering.

YANG ET AL.: HYBMIG: A HYBRID APPROACH TO DYNAMIC PLAN MIGRATION FOR CONTINUOUS QUERIES 7

TABLE 2
Characteristics Table for Fig. 8

Fig. 9. The general HybMig algorithm.

Fig. 10. Order preserving mechanisms of HybMig. (a) Serialized.

(b) Parallel.

3.5 Discussion

Assuming that the system has sufficient processing
capacity (at least equal to the amortized processing cost
per tuple), the migration duration of HybMig is w. After w,
the old plan cannot produce any results and, thus, is safely
removed. This can be proven by contradiction. Suppose
that the old plan generates a result tuple t after tsstart þ w,
where tsstart is the beginning of migration. According to
the division of workload between the two plans, t must
contain at least one old component tj with tj:ts < tsstart.
Meanwhile, the latest component of t must be a new tuple
ti with ti:ts > tsstart þ w. Then, ti:ts� tj:ts > w, contra-
dicting the global window constraint. Note that this result
is independent of the temporal ordering (max or PT) and
applies to both HybMig and PT. When BSC is invoked, the
migration duration of HybMig depends on the termination
time of the background thread. If BSC completes all states
in the new plan at tbsc finish < tsstart þ w, the migration
duration is tbsc finish � tsstart; otherwise, it remains w.

In summary, HybMig integrates the advantages of PT
and MS: 1) for low stream rates, BSC utilizes the idle system
resource to compute states, thus behaving as an optimized2

version of MS, without suspending the output stream, 2) for
high stream rates (where background computation is not
possible), it behaves more like optimized PT, with im-
proved reusability aspects, higher output rates, and better-
founded temporal ordering semantics.

4 EXTENDING TO ARBITRARY PLANS

In practice, a plan may involve other stateful operators
beyond joins. Such an example is the user-defined aggregation
operator (UDA), used in systems like Aurora [1]. Since UDA
is Turing complete [14], its internal states can be very
complex. On the other hand, MS, PT, as well as HybMig
focus on migration tasks involving only join reorderings. In
this section, we generalize the three techniques to handle
arbitrary plans treated as black boxes. Section 4.1 presents
the generalized moving states (GMS), Section 4.2 presents the
generalized parallel track (GPT), and Section 4.3 presents the
generalized hybrid migration (GHM) approach. Section 4.4
concludes with an analytical comparison of the three
techniques.

4.1 Generalized Moving States

GMS first suspends the output stream, extracts old tuples,3

i.e., those that arrived between tsstart � w and tsstart, and
feeds them to the new plan in the order of timestamps. Recall
that MS would recompute operator states. In GMS, this is not
possible, since plans constitute black boxes. Instead, GMS 1)
suspends the input streams, 2) runs the new plan to process
the old tuples, and 3) ignores all outputs produced. When
this process terminates, the old plan is discarded and
migration is complete. The input streams are connected to
the new plan, and query processing is resumed. The
correctness of GMS lies in the fact that the operator states
in the new plan are properly built before it starts to generate
outputs.

4.2 Generalized Parallel Track

The most challenging part for adapting PT to the general
migration problem is how to combine the results of the two
plans so that duplicates are avoided and temporal ordering
is preserved. The answer of GPT to this question is
surprisingly simple: It does not combine the results of the
two plans during the migration. Instead, GPT directly
outputs all results from the old plan and connects the
output of the new one to a null sink as shown in Fig. 13. The
duration of migration using GPT is w, after which both the
old plan and the null sink are discarded. Query processing
resumes with the new plan.

Proof of Correctness. The outputs of GPT are correct,
complete and properly ordered both during and after the
migration. During migration, the new plan Pnew has no
impact on the output; the old plan Pold does not undergo
any modifications and thus continues to generate correct
outputs. After the migration, Pold is dropped and Pnew
continues to generate outputs. Thus, it suffices to prove
that Pnew generates exactly the same result as Pold if Pold
were still running. Suppose that there is a new plan P 0new
identical to Pnew that started at the same time as Pold. Since
the new and the old plans are semantically equivalent, the
outputs of P 0new and Pold are indistinguishable.

Next, we show that Pnew has exactly the same operator
states as P 0new, and, therefore, generates identical results.
A key observation is that, after w, all tuples that arrived
before the start of migration have expired and do not
affect the operator states of P 0new. The only tuples that
influence the states of P 0new are those that arrive during

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

Fig. 11. Background state computation.

2. Recall that, unlike MS, in BSC, each state computation has an
immediate effect on the output rate.

3. In order to do this, the system either provides an interface to extract
old tuples from operator states as in MS or proactively keeps a copy of
tuples from source streams as in [6].

the migration. Since Pnew receives all these tuples, its
operator states are identical to those of P 0new. Therefore,
after the migration, the output of Pnew is exactly the same
as P 0new, which is identical to that of Pold. tu
Note that GPT, when applied to join reordering, over-

comes the decreasing output rate and temporal ordering
incompatibility problems of PT. In particular, the output
rate is the same as if only the old plan were running during
the entire migration period. Furthermore, since the output
of GPT is identical to that of Pold, the ordering of results is
correct under any definition of temporal ordering.

4.3 Generalized Hybrid Migration

GHM combines the general frameworks of GPT and GMS to
simultaneously meet responsiveness goals and minimize
the migration duration. As shown in Fig. 14, GHM is similar
to GPT, with three notable differences. First, the inputs are
not directly connected to the new plan. Instead, each feeds
to a FIFO queue, initialized with old tuples extracted from
the old plan (i.e., similar to GMS). The second difference
between GHM and GPT is that, during migration, the old
plan is given a higher priority in order to achieve a high
output rate. This is performed through a process similar to
background state computation, i.e., the new plan is executed as
a background thread. Finally, the duration of migration
may be shorter than w. In particular, the migration task
terminates when all the queues are empty, signaling that
the two plans are consuming the same inputs. Then, the old
plan, the null sink, and the input queues are discarded. The
inputs are linked directly to the new plan, and the outputs
of the new plan are connected to their corresponding output
queues. Compared to GPT, GHM is more proactive since it
exploits spare system capacity to accelerate the migration.

Proof of Correctness. Similar to GPT, during migration, the
old plan generates correct results. The nontrivial part of
the proof is to show that, after migration, the new plan
Pnew has the correct states. Suppose tsfinish is the
timestamp that the migration terminates. Clearly, tsfinish
is later than the timestamp tsstart when the migration
starts, thus, tsfinish � w � tsstart � w. At tsfinish, the new
plan has processed all tuples from tsstart � w to tsstart
extracted from the old plan, and all incoming tuples from
tsstart to tsfinish. Therefore, the new plan has processed all
tuples in the last w time units. As in the case of GPT, the
new plan has the correct operator states and continues to
produce correct outputs after the migration. tu

4.4 Analysis

Consider that, during migration, the average stream rate for
each stream is � , the total number of streams is n, and the
average time required by the old (new) plan to process an
input tuple is denoted as ToldðTnewÞ. For GMS, the migration
duration is equal to the total CPU time spent on processing
the old tuples. Assume that the average stream rate between
tsstart � w and tsstart is � 0, and the average CPU time
consumed (by the new plan) for processing one old tuple is
T 0new. Note that the new plan is supposed to be better at
processing new tuples than old ones, i.e., T 0new � Tnew. Then,
the migration duration/CPU time of GMS is

DurationGMS ¼ CPUGMS ¼ T 0new � number of old tuples

¼ T 0new � ð� 0w� nÞ ¼ � 0nwT 0new:

During the migration period, the system is kept at its peak

load and, thus, incoming tuples are buffered in the input

queues waiting to be processed. The number of these tuples
can be estimated by �n�DurationGMS ¼ �nð� 0nwT 0newÞ.
After the migration, the system starts to process these
buffered input tuples and produce results. Consequently,

there is a sharp spike in the output rate. At each time unit

during this spike, 1=Tnew input tuples are processed and, at
the same time, �n new input tuples flow in. Therefore, the

length of this spike can be estimated by

SpikeLenGMS ¼ �nð� 0nwT 0newÞ
�

1
�
Tnew � �n

¼ �� 0n2wT 0newTnew

�
1� �nTnew:

GPT executes both plans in parallel during its migration
duration: DurationGPT ¼ w. Considering that �n input

tuples arrive at each time unit, overall �n� w tuples need

to be processed by both plans. Thus, its CPU cost is

YANG ET AL.: HYBMIG: A HYBRID APPROACH TO DYNAMIC PLAN MIGRATION FOR CONTINUOUS QUERIES 9

Fig. 12. The join algorithm used in BSC.

Fig. 13. The generalized PT solution.

Fig. 14. The generalized hybrid migration solution.

CPUGPT ¼ �nwðTold þ TnewÞ:

The old plan produces all outputs. Considering that the old
plan has a higher priority, one can assume that the new plan
starts processing a tuple after the old plan completes it.
Thus, given that the system has sufficient processing
capacity, the average delay of an output tuple is Told.

Finally, in the case of GHM, the migration period can be
divided into two phases with duration d1 and d2, respec-
tively. The first phase ends when the new plan has
processed all old tuples. Similar to GMS, the new plan
(running as a background thread) needs to process � 0nw old
tuples, each costing Tnew time. Meanwhile, the old plan
(main thread) has to process �nd1 new arrivals during d1.
Considering that the system is at its peak load, we have

d1 ¼ � 0nwT 0new þ �nd1Told:

Therefore, d1 ¼ � 0nwT 0new
.

1� �nTold. The second phase
ends when the migration is over, i.e., when all input queues
are empty. Similar to the first phase, the length d2 is equal to
the total CPU time of the two threads during the second
phase:

d2 ¼ �nðd1 þ d2ÞTnew þ �nd2Told:

Therefore,

d2 ¼ �nd1Tnew

.
1� �nTnew � �nTold

¼ �� 0n2wTnewT
0
new

.
ð1� �nToldÞð1� �nTnew � �nToldÞ:

Thus, the total migration duration (which equals total CPU
time similar to GMS) of GHM is

DurationGHM ¼ d1 þ d2 ¼ �nd1Tnewð1� �nToldÞþ

�� 0n2wTnewT
0
new

.
ð1� �nToldÞð1� �nTnew � �nToldÞ:

Because all results are produced by the old plan (main
thread), the average output delay is the same as for GPT,
i.e., Told.

5 EXPERIMENTS

We have implemented the proposed algorithms, as well as
MS and PT, in C++ using the PIPES data stream manage-
ment system [12]. For our experiments, we use the same
methodology as [18]. Specifically, we pick two different
query execution plans, Pold (before the migration) and Pnew
(after). Every experiment consists of two phases: a warm-up
and a migration phase. During the warm-up, Pold is
executed for a sufficiently long time (five times the
window length in all experiments), with the stream
characteristics set in favor of the old plan. Then, we alter
the stream properties so that Pnew becomes more efficient

and start the migration phase. All joins are implemented
using the nested loop algorithm [11].

The experiments investigate the output rate, memory
consumption, and CPU cost (during the migration phase) as
a function of the following parameters: 1) size of the sliding
window, 2) stream rate, and 3) number of participating
streams. The ranges of these parameters4 are summarized in
Table 3, with the default values shown in bold. All the
experiments are executed on a workstation with two
Pentium IV 3.0GHz CPUs and 2Gbytes main memory. We
use the serialized mechanism (see Fig. 10) to preserve tuple
ordering in HybMig, but the parallel mechanism leads to
similar conclusions. Section 5.1 presents a comparison of
HybMig with existing methods, Section 5.2 focuses on the
effects of subquery sharing and background state computation
on HybMig, and Section 5.3 discusses the generalized
algorithms.

5.1 Comparison of HybMig, MS, and PT

In the first set of experiments, the query to be evaluated is a
clique-join of all streams, i.e., there is a join condition
between each pair of streams. Pold is always an extreme left-
deep plan, while the new plan can be right-deep (denoted
as Pr

new) or bushy ðPb
newÞ. During the warm-up phase, we

feed the first stream ðAÞwith rare values that are difficult to
join with other streams. We use selh to denote this high
selectivity (of joining A with another stream) and sell for the
selectivity of joining any other pair of streams. In all
experiments, we set sell ¼ 0:05 and selh ¼ 0:0025. Since
joining A with other streams leads to small output size, an
extreme left-deep join is the best plan ðPoldÞ during this
phase.

When the migration phase begins, we change the stream
values such that the last stream (e.g., F when joining six
streams), instead of the first one, is fed with rare values
(leading to selh). Accordingly, a right-deep join ðPr

newÞ that
processes F first is preferable during (and after) the
migration phase. A bushy plan is constructed by modifying
the corresponding right-deep plan so that the ðn� 4Þth and
the ðn� 3Þth streams are joined first. Since bushy plans also
join the last stream first, they are more efficient than left-
deep plans. Table 4 illustrates all plans used in this set of
experiments. Note that these migration tasks do not have
sharing opportunities. Furthermore, we do not apply BSC
since we want to demonstrate the superiority of HybMig
without any optimizations. Subquery sharing and BSC are
evaluated independently in Section 5.2.

Fig. 15 compares the output rate of MS, PT, and HybMig
as a function of time (migration starts at time 0), using the

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

4. For simplicity, we assume that all streams have the same arrival rate.
Experiments with different rates for different streams yield similar results
and are omitted for brevity.

TABLE 3
Parameters under Investigation

default settings, Pold and Pr
new. The output rate of MS is zero

during the first 50 seconds of the migration phase because
MS recomputes the states in the new plan. As shown in the
next experiment, during this time, the system is completely
saturated. After that, MS processes delayed input tuples
and the output rate soars to 42.8 tuples per second. The
output rate of PT constantly decreases, reaching zero at w
(180 seconds). This happens because, eventually, the old
tuples expire, while the output of the new plan is buffered.
The burst after the end of the migration occurs when PT
releases the contents of the buffer. The spikes of the output
rate in both MS and PT may lead to system overload and
should be avoided. On the other hand, HybMig has a steady
output rate. In particular, no output tuple is delayed more
than 1 second. The results for bushy plans are similar and
omitted.

Next, we compare the memory consumption (Fig. 16a)
and CPU cost (Fig. 16b) over 1:2w time (216 seconds) after
the migration starts. For each second, which is the finest
time unit, the space consumption is measured as the total
number of tuples in all operator states at the end of the
second. The CPU cost is the total number of times that the

join predicate is evaluated during that second. We use these
measures because they are platform-independent and can
be calculated accurately. Both memory and CPU axes are in
logarithmic scale.

According to Fig. 16b, for MS, the system is initially
saturated due to the state recomputation operations. This
leads to high space consumption as the operator states are
filled and the new tuples wait to be processed. After that,
both memory and CPU costs drop until w, at which point all
old tuples expire. Note that the memory consumption starts
decreasing earlier (at 49 seconds) than the CPU cost (at
60 seconds). This is because, after state recomputation
terminates at the 49th second, the system has to process
delayed inputs, during which the system is still saturated but
memory cost drops quickly. This period corresponds to the
spike in the output rate of MS shown in Fig. 15. On the other
hand, the memory and CPU overhead of PT constantly
increases until w, reflecting the inefficiency of the old plan.
HybMig has a more balanced behavior and lower overall cost
than both algorithms. Furthermore, it outperforms PT at
every time-stamp. The sudden decrease of the overhead for
HybMig (and PT) at w is caused by the elimination of the old
plan, which signals the end of migration.

We now investigate the effect of the window size
(minutes), average stream rate (tuples/second), and number
of participating streams. Specifically, we set two parameters
to their default values, and vary the third one in the range
shown in Table 3. Figs. 17, 18, and 19 present the memory
and CPU overhead for right deep plan Pr

new (columns) and
bushy plan Pb

new (lines). In each experiment, we measure
peak memory and total CPU cost during the migration
phase. All vertical axes are in logarithmic scale. HybMig
clearly outperforms MS and PT by a wide margin under all
settings. These results, combined with the constant output
rate (Fig. 15) and stable behavior (Fig. 16), confirm the
superiority of HybMig over the existing approaches.

Note that, in Fig. 18, we limit the maximum stream rate
to 1.6 tuples per second, because 1) the CPU overhead of MS
and PT increases fast with the rate and the experiments (for
MS and PT) take very long to terminate, and 2) when the
stream rate exceeds 2.3, MS causes memory overflow.
Furthermore, the rates remain constant throughout the
lifespan of the streams. We follow this approach since we
change the stream characteristics (and the plan of choice) by
altering the data distribution (i.e., the join selectivity as

YANG ET AL.: HYBMIG: A HYBRID APPROACH TO DYNAMIC PLAN MIGRATION FOR CONTINUOUS QUERIES 11

TABLE 4
All Query Execution Plans

Fig. 15. Output rate/time (w ¼ 3, � ¼ 1, n ¼ 6, and Pold to Pr
new).

Fig. 16. Overhead/time (w ¼ 3, � ¼ 1, n ¼ 6, and Pold to Pr
new). (a) Memory consumption. (b) CPU cost.

discussed in the beginning of the section). The important
issue is that the new plan fits the new stream characteristics
better than the old one, independently of why the change
occurred (e.g., due to distribution or stream rate).

5.2 Effects of Optimizations

In order to evaluate subquery sharing, we use a set of
migration tasks with sharing opportunities: 1) Pold is the
same as in Section 5.1, while 2) Pnew is constructed by
changing Pold to a bushy plan that joins the last two streams
first. For example, when n ¼ 6, Pold ¼ PðððððABÞCÞDÞEÞF Þ and
Pnew ¼ PððððABÞCÞDÞðEF ÞÞ. Fig. 20 compares two versions of
HybMig, with and without sharing, as a function of number
of participating streams n (the remaining parameters w and
� have their default values). Sharing improves performance
up to a factor of 2.

Recall that background state computation uses idle CPU
cycles to reduce the duration of migration when the system
is underutilized (i.e., low arrival rates). Fig. 21a illustrates
the migration time as a function of the stream rates. The
diagram also includes MS and PT, since they were not

evaluated on this aspect in Section 5.1. MS has the shortest
duration for � up to 1 tuple/seconds, and the longest for
larger values. This is because, for low rates, the number of
tuples in operator states is small and the unmatched states
of the new plan can be efficiently computed (signaling the
end of migration). On the other hand, for � > 1, the
computation of intermediate states becomes very expensive
and the migration duration may exceed w several times
(about 5 for � ¼ 1:6). The duration for PT is always w ð¼
180 secondsÞ except when the system is overloaded (e.g.,
� ¼ 1:6), because in this case, the total CPU cost exceeds the
window length.

In HybMig (without BSC), the migration requires
180 seconds in all cases because, due to the lower CPU
cost, the system can handle the tested arrival rates. The
application of BSC significantly reduces the migration time
for low arrival rates (i.e., the duration is negligible for � ¼
0:4 and � ¼ 0:7). As the rates increase, the effect of BSC
decreases since the higher load does not permit extensive
background computations. Fig. 21b shows the CPU over-

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

Fig. 17. Overhead/window w ð� ¼ 1; n ¼ 6Þ. (a) Memory consumption. (b) CPU cost.

Fig. 18. Overhead/stream rate � ðw ¼ 3; n ¼ 6Þ. (a) Memory consumption. (b) CPU cost.

Fig. 19. Overhead/number of streams n ðw ¼ 3; � ¼ 1Þ. (a) Memory consumption. (b) CPU cost.

head versus � . Even with the application of BSC, HybMig

has a lower cost than MS and PT.

5.3 Evaluation of the Generalized Methods

In the experiments for the generalized methods, we use a

migration task similar to the default task in Section 5.1

(w ¼ 3, � ¼ 1, n ¼ 6, and Pold to Pr
new), except that 1) we add

a sliding-window median operator on top of the topmost

join in each plan and 2) every plan is encapsulated into a

single black box UDA. Since the median operation is not

distributable, we cannot combine the results from the two

plans. Meanwhile, the operator states are not accessible

because of the encapsulation of the UDAs, thus, state

recomputation is impossible. Therefore, MS, PT, and

HybMig are inapplicable. Instead, Fig. 22 compares their

generalized versions GMS, GPT, and GHM in terms of the
output rate and CPU overhead.

The rates of GHM and GPT are similar, whereas GMS
suspends the output stream during the migration. Com-
paring Figs. 22a and 15, note that (as discussed in
Section 4.2) GPT does not suffer from the bursty behavior
of PT. Regarding the CPU overhead, GHM and GMS are
similar since they both recompute intermediate states in
the new plan. The sudden drop in the CPU costs signals
the end of the migration, which in GHM and GMS is much
earlier that GPT.

6 CONCLUSION AND FUTURE WORK

This paper investigates dynamic plan migration in data
stream management systems. The existing techniques MS
and PT: 1) incur high memory/CPU overhead, 2) lead to

YANG ET AL.: HYBMIG: A HYBRID APPROACH TO DYNAMIC PLAN MIGRATION FOR CONTINUOUS QUERIES 13

Fig. 20. Effect of subquery sharing/ n ðw ¼ 3; � ¼ 1Þ. (a) Memory consumption. (b) CPU cost.

Fig. 21. Effect of BSC/ � (w ¼ 3, n ¼ 6, Pold to Pr
new). (a) Duration. (b) CPU cost.

Fig. 22. Evaluation of GMS, GPT, and GHM ðw ¼ 3; � ¼ 1; n ¼ 6Þ. (a) Output rate/time. (b) CPU overhead/time.

bursty output rates, and 3) in the case of PT, have limited
applicability to a specific temporal ordering requirement.
Motivated by these problems, we propose HybMig, a novel
technique, which outperforms the previous approaches on
all aspects. In addition to join reordering, we study dynamic
migration for plans involving arbitrary operators. We treat
these plans as black boxes and propose three techniques,
GMS, GPT, and GHM, motivated by MS, PT, and HybMig,
respectively.

This work opens several directions for future work. So
far, we have focused on the case that exact results are
required during migration. The first interesting problem is
how to obtain a good approximation of the output during
migration in the presence of insufficient system resources.
Furthermore, we intend to investigate the problem of plan
migration in relational databases when a query needs to
access multiple portions of the database that exhibit
different properties, as suggested in [6].

ACKNOWLEDGMENTS

This work was supported by grant HKUST 6184/05E from
Hong Kong RGC.

REFERENCES

[1] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S.B. Zdonik, “Aurora: A New
Model and Architecture for Data Stream Management,” VLDB J.,
vol. 12, no. 2, pp. 120-139, 2003.

[2] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query
Language: Semantic Foundations and Query Execution,” VLDB J.,
vol. 15, no. 2, pp. 121-142, 2006.

[3] A. Arasu, M. Cherniack, E.F. Galvez, D. Maier, A. Maskey, E.
Ryvkina, M. Stonebraker, and R. Tibbetts, “Linear Road: A Stream
Data Management Benchmark,” Proc. Int’l Conf. Very Large Data
Bases, 2004.

[4] R. Avnur and J.M. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, 2000.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas,
“Operator Scheduling in Data Stream Systems,” VLDB J., vol. 13,
no. 4, pp. 333-353, 2004.

[6] S. Babu, P. Bizarro, and D. DeWitt, “Proactive Re-Optimization,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, 2005.

[7] S. Babu, K. Munagala, J. Widom, and R. Motwani, “Adaptive
Caching for Continuous Queries,” Proc. Int’l Conf. Data Eng., 2005.

[8] A. Deshpande and J.M. Hellerstein, “Lifting the Burden of History
from Adaptive Query Processing,” Proc. Int’l Conf. Very Large Data
Bases, 2004.

[9] L. Golab and M.T. Öszu, “Processing Sliding Window Multi-Joins
in Continuous Queries over Data Streams,” Proc. Int’l Conf. Very
Large Data Bases, 2003.

[10] P.J. Haas and J.M. Hellerstein, “Ripple Joins for Online Aggrega-
tion,” Proc. ACM SIGMOD Int’l Conf. Management of Data, 1999.

[11] J. Kang, J.F. Naughton, and S. Viglas, “Evaluating Window Joins
over Unbounded Streams,” Proc. Int’l Conf. Data Eng., 2003.

[12] J. Krämer and S. Seeger, “PIPES—A Public Infrastructure for
Processing and Exploring Streams,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, 2004.

[13] S. Krishnamurthy, M.J. Franklin, J.M. Hellerstein, and G. Jacobson,
“The Case for Precision Sharing,” Proc. Int’l Conf. Very Large Data
Bases, 2004.

[14] Y. Law, H. Wang, and C. Zaniolo, “Query Languages and Data
Models for Database Sequences and Data Streams,” Proc. Int’l
Conf. Very Large Data Bases, 2004.

[15] S. Madden, M. Shah, J.M. Hellerstein, and V. Raman, “Con-
tinuously Adaptive Continuous Queries over Streams,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, 2002.

[16] T. Urhan, M.J. Franklin, and L. Amsaleg, “Cost Based Query
Scrambling for Initial Delays,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 1998.

[17] S. Viglas, J.F. Naughton, and J. Burger, “Maximizing the Output
Rate of Multi-Way Join Queries over Streaming Information
Sources,” Proc. Int’l Conf. Very Large Data Bases, 2003.

[18] Y. Zhu, E.A. Rundensteiner, and G.T. Heineman, “Dynamic Plan
Migration for Continuous Queries over Data Streams,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 2004.

Yin Yang received the BE degree in computer
science from Shanghai Jiaotong University,
China, in 2004. He is a PhD student in the
Department of Computer Science, Hong Kong
University of Science and Technology. His
research interests include spatial, temporal,
and spatio-temporal databases, query proces-
sing in data stream management systems, and
database security.

Jürgen Krämer received the diploma (mas-
ter’s) degree in computer science in 2003 from
the University of Marburg, Germany. He is
currently a research assistant in a project
funded by the German Research Foundation
(DFG), pursuing a PhD degree in database
systems supervised by Professor Seeger. His
research interests include architectures and
algorithms for query processing in database
and data stream systems, query semantics,

optimization, and index structures. He is one of the senior software
architects of the open source library XXL—a library of advanced query
processing algorithms—and the principle designer and implementer of
the PIPES stream processing infrastructure. He is a member of the
IEEE Computer Society and the ACM.

Dimitris Papadias is a professor of computer
science and engineering, Hong Kong University
of Science and Technology (HKUST). Before
joining HKUST in 1997, he worked and studied
at the German National Research Center for
Information Technology (GMD), the National
Center for Geographic Information and Analysis
(NCGIA, Maine), the University of California at
San Diego, the Technical University of Vienna,
the National Technical University of Athens,

Queen’s University (Canada), and the University of Patras (Greece).
He has published extensively and been involved in the program
committees of all major database conferences, including SIGMOD,
VLDB, and ICDE. He is an associate editor of the VLDB Journal, the
IEEE Transactions on Knowledge and Data Engineering, and on the
editorial advisory board of Information Systems.

Bernhard Seeger received the diploma (mas-
ter’s) degree in mathematics from the University
of Würzburg and the PhD degree in computer
science from the University of Bremen. He is a
professor of databases systems in the Institute of
Computer Science at the University of Marburg,
Germany. His research interests include spatial
and temporal database systems, indexing and
query processing techniques, and data stream
management. He is an associate editor of the

VLDB Journal and has been a reviewer for various international research
associations. He has been a committee member for all major database
conferences. He is the head of the development teams of the open
source library XXL and the PIPES stream processing infrastructure. He
is a member of the IEEE Computer Society and the ACM.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

