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Uncertain Graph Sparsification
Panos Parchas, Nikolaos Papailiou, Dimitris Papadias, Francesco Bonchi

Abstract—Uncertain graphs are prevalent in several applications including communications systems, biological databases and social
networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive.
Sparsification has often been used to reduce the size of deterministic graphs by maintaining only the important edges. However,
adaptation of deterministic sparsification methods fails in the uncertain setting. To overcome this problem, we introduce the first
sparsification techniques aimed explicitly at uncertain graphs. The proposed methods reduce the number of edges and redistribute
their probabilities in order to decrease the graph size, while preserving its underlying structure. The resulting graph can be used to
efficiently and accurately approximate any query and mining tasks on the original graph. An extensive experimental evaluation with real
and synthetic datasets illustrates the effectiveness of our techniques on several common graph tasks, including clustering coefficient,
page rank, reliability and shortest path distance.
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1 INTRODUCTION

UNCERTAIN graphs, where edges are associated with
a probability of existence, have been used widely

in numerous applications. For instance, in communication
systems, each edge (u, v) is often associated with a reliability
value that represents the probability that the channel from u
to v will not fail. In biological databases, uncertain edges
between vertices representing proteins are due to error-
prone laboratory measurements. In social networks, edge
probabilities can model the influence between friends, or the
likelihood that two users will become friends in the future.

Several techniques have been proposed for diverse query
processing and mining tasks on uncertain graphs (e.g. [9],
[19], [29], [35]), most of which assume possible-world se-
mantics. Specifically, let G = (V,E, p) be an uncertain
(also called probabilistic) graph1, where p : E ! (0, 1]
assigns a probability to each edge. G is interpreted as a set
{G = (V,EG)}E

G

✓E of 2|E| possible deterministic graphs,
each defined on a subset of E. For example, since the
uncertain graph of Figure 1(a) consists of 6 edges, there are
2

6 possible worlds. Under this interpretation, exact process-
ing requires query evaluation on all possible worlds and
aggregation of the partial results. In general, the probability
of a query predicate Q is derived by the sum of probabilities
of all possible worlds G for which Q(G) = true:

Q(G) =
X

GvG,
Q(G)=true

Pr(G) (1)

Applying Equation (1), the probability that the uncertain
graph of Figure 1(a) contains a single connected component
is Pr[G is connected]=0.219. This is obtained by generating
the 2

6 deterministic graphs, and adding the probabilities of
the connected ones.

Consequently, exact processing is prohibitive even for
uncertain graphs of moderate size due to the exponential
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1. G is assumed simple, unweighted, undirected and connected.
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Fig. 1. Uncertain graph sparsification example.

number of worlds. Thus, most techniques provide approx-
imate results by applying Monte-Carlo (MC) sampling on
a random subset of possible worlds. However, even MC
may be very expensive for large uncertain graphs because
generating a sample is time consuming as it involves sam-
pling each edge. Moreover, due to the high entropy2 of
the uncertain graphs, there is significant variance among
the possible worlds, which implies the need of numerous
samples for accurate query estimation. This imposes huge
overhead at query processing cost because the query must
be executed at every sample.

In order to tackle the high cost, we develop techniques
for uncertain graph sparsification. Specifically, given G and a
parameter ↵ 2 (0, 1), the proposed methods generate a spar-
sified probabilistic subgraph G0

= (V,E0, p0), which con-
tains a fraction of the edges, i.e., E0

: E0 ⇢ E, |E0| = ↵|E|.
G0 preserves the structural properties of G, has less entropy,
and can be used to approximate the result of a wide range
of queries on G. Sparsification yields significant benefits in
execution time because the cost of sampling is linear to the
number of edges. Moreover, the required number of samples
is proportional to the graph’s entropy ([13], [18]), which is
lower in the sparsified graph. Finally, similar to the case of
deterministic graphs, sparsification reduces the storage cost,
and facilitates visualization of complex networks.

Figure 1(b) illustrates G0, a sparsified subgraph of G that
contains half the original edges. Observe that the edges of
G0 have higher probabilities than those in G, in order to
compensate for the missing ones. Assume, for instance, a
query that asks for the probability that G consists of a single

2. The entropy H(G) of an uncertain graph G is defined as the joint
entropy of its edges H(e) for all e 2 E. Due to the edge independence,
H(G) =

P
e2E H(e) =

P
e2E(�pe log pe � (1� pe) log(1� pe)).
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connected component. Since Pr[G0 is connected]=0.216 and
Pr[G is connected]=0.219, G0 can be used to effectively ap-
proximate the result of the query. Furthermore, the entropy
decreases from 0.94 to 0.4. Because G0 has fewer edges, it
is more efficient to sample and store. Additionally, since
it has less entropy, it requires fewer samples for accurate
estimation. Our goal is to generate sparsified graphs that
can be used for a variety of queries and tasks.

To the best of our knowledge, this is the first work on
uncertain graph sparsification. On the contrary, sparsifica-
tion has received considerable attention in the deterministic
graph literature. In that context, most techniques aim at
approximating all shortest path distances up to a multiplica-
tive or additive factor, or preserving all cuts up to an arbi-
trarily small multiplicative error. As we demonstrate in our
experimental evaluation, the adaptation of such methods to
uncertain graphs yields poor results. On the other hand, our
sparsification techniques achieve high accuracy and small
variance for common graph tasks by capturing the expected
node degrees, or the expected cut sizes up to a certain value.
Summarizing, the contributions of the paper are:
• We propose a novel framework of uncertain graph spar-
sification with entropy reduction.

• We design algorithms that reduce the number of edges
and tune the probability of the remaining ones to preserve
crucial properties.

• We experimentally demonstrate that the sparsified
graphs are effective for a variety of common tasks includ-
ing shortest path distance, reliability, page rank and others.
The rest of the paper is organized as follows. Section

2 surveys the related work. Section 3 defines the prob-
lem, introduces our uncertain sparsification framework and
presents baseline solutions motivated by the determinis-
tic graph literature. Section 4 proposes sparsification algo-
rithms that capture the expected vertex degrees. Section
5 analyzes rules to preserve cut sizes and modifies our
algorithms for this case. Section 6 contains an extensive
experimental evaluation on real and synthetic datasets, and
Section 7 concludes the paper.

2 RELATED WORK

Existing sparsification methods focus exclusively on deter-
ministic graphs. Section 2.1 and 2.2 present sparsification
techniques that preserve the shortest path distances and
graph cuts respectively. Section 2.3 discusses other related
methods.
2.1 Spanners
Sparsification aimed at preserving the shortest path dis-
tances between all node pairs is based on the concept of
t-spanner [34]. A t-spanner of a weighted deterministic
graph G = (V,E,w) is a subgraph G0

= (V,E0, w), E0 ✓ E
such that, for any pair of vertices u, v 2 V , their distance
in G0 is at most t 2 N+ times their distance in G, i.e.,
distG0

(u, v)  t · distG(u, v). The parameter t is the stretch
factor of G0. Computing a t-spanner with the minimum
number of edges has received considerable attention in the
literature [37]. Peleg and Schäffer [34] prove that a spanner
with stretch factor 2t�1 must have at least ⌦(n1+1/t

) edges.
Based on this lower bound, a simple technique [4] to

generate (2t�1)-spanners processes the edges in increasing

order of their weights. Initially, the spanner is E0
= ;.

An edge e = (u, v) is included to E0, if the distance
between u and v in E0 exceeds (2t � 1)we. The algorithm
has O(|E|n1+1/t

) time complexity due to the shortest path
distance computations. Roditty and Zwick [36] propose an
improved O(tn2+1/t

) time method, which incrementally
maintains a single source shortest path tree up to a given
distance. Baswana et. all [5] design a randomized algorithm
to compute a spanner of (2t � 1)-stretch and O(t|E|1+1/t

)

size in O(t|E|) expected time, which uses a novel clustering
approach and avoids distance computations. An adaptation
of this method provides a benchmark for our experimental
evaluation. Finally, [28] improves spanner size and algorith-
mic complexity by sacrificing constant factors in stretch.

2.2 Cut-based sparsifiers
Consider a deterministic, undirected, weighted graph G =

(V,E,w), where |V | = n. Given a vertex set S ✓ V , the cut
EG(S) is the set of edges with exactly one endpoint in S,
i.e, EG(S) = {(u, v) 2 E|(u 2 S, v /2 S)}. The size CG(S)
of the cut is the sum of weights of the edges in EG(S), i.e.,
CG(S) =

P
e2E

G

(S) we. Cut-based sparsification preserves
the size of all cuts of the graph within a multiplicative error.
Formally, given a dense weighted graph (|E| = ⇥(n2

))
and an approximation error ✏ 2 (0, 1), the output is
G0

= (V,E0, w0
), where E0 ✓ E and |E0| = O(n log n/✏2),

such that for any set S ✓ V , CG0
(S) is within ✏ of the

original cut size CG(S), i.e., CG0
(S) 2 (1 ± ✏)CG(S) with

high probability.
Algorithms for cut-based sparsification follow a two step

approach. The first assigns a probability pe to each edge
based on the topology of the graph. The second step samples
each edge with probability pe, and assigns weight w0

e / 1
p
e

to the sampled edges. Intuitively, sparsification through this
framework relies on the following observations:
• Edges in dense areas are not crucial for maintaining
the graph connectivity. Thus, they have low sampling
probability pe [15].

• Edges sampled with low pe are assigned large weights so
as to compensate for their missing neighbouring edges.

The existing methods assume integer weights and differ
mainly in the first step, i.e., that of choosing pe for each
edge e = (u, v). Benczúr and Karger [7] assign probabilities
inversely proportional to the k-strong connectivity3 of u, v.
Fung et al. [15] simplify analysis by utilizing sampling prob-
abilities inversely proportional to the size of the minimum
cut separating u and v. Nagamochi and Ibaraki [30] estimate
the edge connectivities using the NI index �e of an edge
e. The NI index is generated by iteratively constructing
spanning forests of the initial graph, while reducing the
weights of the selected edges. In essence, the NI index
is the last spanning forest that contains e, given that an
edge with weight we needs to participate in we contiguous
forests. To ensure that the sparse graph has O(n log n/✏2)
edges in expectation, the sampling probability is set to
pe =

⇢
�
e

, where ⇢ = O(log n/✏2). To see this, let E(|E0|)
denote the expected number of edges of G0. According

3. A maximal k-strong connected component is a maximal induced
subgraph of V that remains connected after removing up to k edges.
The k-strong connectivity of an edge (u, v) is the maximum k such that
u and v belong to the same k-strong connected component.
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to [8],
P

e 1/�e = O(n log n); thus, E(|E0|) =

P
e pe =

⇢
P

e 1/�e = O(n log

2 n/✏2). A more refined analysis [15]
reduces this to O(n log n/✏2). Section 3.3 modifies [30] as a
benchmark for our experiments.

Spielman and Srivastava [40] generate the electrical
equivalent of the graph by assuming resistors of 1⌦ at each
link. The sampling probability of edge (u, v) is proportional
to the amount of current that flows through e when a unit
voltage difference is applied to u, v. This approach also
preserves every eigenvalue of the original graph, leading
to the stronger notion of spectral sparsification[40]. [20], [23]
employ spanners in the context of spectral sparsification.
[20] utilizes spanners to approximate the "robust connectiv-
ity" q(u, v), i.e., the number of paths between vertices u
and v with length at most . It is proven that q(u, v) serves
as a good upper bound for the effective resistance of [40].
On the other hand, [23] extracts a collection of edge disjoint
spanners and then samples the remaining edges with fixed
probability, yielding a parallel algorithm that spectrally
preserves the graph. Furthermore, spectral sparsification
algorithms have been proposed for the streaming ([2], [3],
[21]) and dynamic [1] graph settings. For a more detailed
review of cut-based sparsification literature on deterministic
graphs, we refer the reader to [6].

2.3 Other related techniques

Other than the theoretical papers presented above, there has
been little work on implementing sparsification algorithms
for deterministic graphs. Linder et al.[26] propose some
heuristic methods aiming to preserve the structure of social
networks. Their main method Local Degree keeps only the
edges to hubs, i.e., vertices with high degree, claiming that
they are crucial for the topology of complex social networks.
However, the approach applies only on unweighted graphs
and does not perform weight redistribution among the
remaining edges; thus, it cannot be adapted to uncertain
graphs.

Some deterministic graph sparsification techniques fo-
cus on approximating the result of particular queries, as
opposed to structural graph properties. For instance, [10],
[27] sparsify a directed graph, while preserving the in-
fluence logs among its vertices. Satuluri et al. [39] apply
local sparsification in order to capture communities and
facilitate clustering. These approaches are specific to the
query in question, whereas we aim at generating sparsified
graphs applicable to multiple, possibly diverse, query types.
Subgraph sampling generates a subgraph of an input deter-
ministic graph that contains a small fraction of the nodes
(and edges), but has similar structural properties [17], [24].
This is different from sparsified graphs, which maintain the
input set of nodes. In our experiments, we apply [24] to
reduce the size of real graphs for expensive queries that
cannot terminate in the original graphs.

[32], [33] propose algorithms for generating determinis-
tic representative instances that approximate the expected
node degrees of the uncertain graph. Queries can then be
processed by applying conventional algorithms on these
instances. Since the representatives have fewer edges than
the original uncertain graph, this could be viewed as a
special case of sparsification. However, a representative
(i.e., deterministic graph) cannot be used to answer queries

whose output is uncertain, e.g., return the probability that
the graph consists of a single connected component, or
the probability that two vertices are reachable from each
other. On the other hand, our techniques generate uncertain
graphs that can be used for the same query and mining tasks
as the original graph. Moreover, the methods of [32], [33] do
not provide control over the number of edges in the rep-
resentative graphs. Intuitively, while [32], [33] aim at elim-
inating uncertainty by extracting a representative instance
(i.e., zero entropy), in this work we aim at decreasing the
uncertainty of the input graph (i.e., reducing its entropy).

3 PROBLEM DEFINITION AND FRAMEWORK

Let G = (V,E, p) be a probabilistic undirected graph, where
p : E ! (0, 1] is a function that assigns a probability p(u, v)
to each edge (u, v) 2 E. Given a sparsification ratio ↵ 2 (0, 1),
we extract from G a sparsified subgraph G0

= (V,E0, p0)
such that E0 ⇢ E and |E0| = ↵|E|. G0 should preserve the
structural properties of G, so that it can be used to accurately
approximate the result of diverse queries on G. Moreover,
G0 should reduce the entropy of G in order to decrease
the variance of the queries. In addition to diminishing the
storage overhead, sparsification yields significant benefits
in terms of query processing because the cost of sampling
is proportional to the number of edges4. Moreover, through
entropy reduction, the resulting graph is less uncertain, thus
it requires fewer samples for accurate query estimation.

3.1 Uncertain sparsification
As stated in Section 2, a prevalent goal of deterministic
graph sparsification is preservation of the cut sizes. The
notion of a cut can be extended naturally to uncertain
graphs. In this case, due to the linearity of expectation, the
expected size of a cut is the sum of the probabilities of the
edges involved in the cut.
Definition 1 (Expected cut size). Given an uncertain

graph G = (V,E, p) and a subset S ✓ V , the expected
cut size of S in G is the summation of the probabilities
of the edges with exactly one endpoint in S:

CG(S) =
X

e=(u,v)2E
u2S,v2V \S

pe

We define the absolute discrepancy �A(S) of a vertex set S in
a sparsified graph G0 as the difference of S’s expected cut
size in G0 to its expected cut size in G, i.e.,

�A(S) = CG(S)� CG0
(S)

Accordingly, the relative discrepancy �R(S) is the absolute
discrepancy of S divided by the original cut size:

�R(S) =
CG(S)� CG0

(S)

CG(S)

To simplify notation, we collectively refer to �A and �R as �,
and we only differentiate when required. In addition, we
use the term ’cut’ to also refer to the expected cut size.
Motivated by the work in deterministic sparsification, we
aim at cut-preserving sparsified graphs, or, using our nota-
tion, at minimizing discrepancy �. The exponential number

4. Sampling techniques have complexity O(E) [25].
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of cuts renders their exhaustive enumeration intractable.
To overcome this, we target cuts of sets S with specific
cardinality k.

Formally, given an integer k, we define the k-discrepancy
�k of a graph G0 as the sum of the absolute values of the
discrepancies for all sets with cardinality k:

�k(G0
) =

X

S✓V ,|S|=k

|�(S)|

where �(S) is the absolute or relative discrepancy of S. The
absolute discrepancy emphasizes vertices with high degree
because they are more likely to yield large absolute errors.
On the other hand, the relative discrepancy targets all node
degrees equally, by considering the relative error. We aim at
minimizing the sum of �i for 1  i  k, or equivalently
at preserving the size of all cuts up to k. Accordingly, the
problem we tackle in this work is:
Problem 1. Given an uncertain graph G = (V,E, p), and a

sparsification ratio ↵ 2 (0, 1), find an uncertain graph
G⇤

= (V,E⇤, p⇤), with |E⇤| = ↵|E| that minimizes the
sum of discrepancies

Pk
i=1 �i(G⇤

) up to a given k � 1.

In addition to discrepancy minimization, our methods aim
at entropy reduction. Observe that the two objectives are not
independent because, since the sparsified graph has fewer
edges, it is likely to have lower entropy as well. Minimiza-
tion of discrepancy refers to the quality of the sparsified
graph, while entropy reduction relates to the efficiency of
query processing. The proposed techniques apply a gradient
descent framework that finds a local minimum in terms of
discrepancy, but adjusts the gradient step with the aim of
reducing entropy.

For the special case of k = 1, minimizing �1 is equiv-
alent to preserving the expected degrees for all vertices,
which has been shown to be effective when generating
deterministic representatives of uncertain graphs [32]. Next,
we introduce two benchmark solutions, adapted from the
deterministic sparsification literature.
3.2 Benchmark solutions
Spanners and cut based sparsifiers stem from theoretical
papers, and to the best of our knowledge, they have not been
implemented or evaluated in practice. Furthermore, our
uncertain graph sparsification setting differs from that of
deterministic sparsification. All spanners focus on selecting
a subset of edges without changing their weights. On the
other hand, we modify the probabilities of edges in the
sparsified graph, in order to compensate for the eliminated
edges. Moreover, probabilities of the uncertain graphs, un-
like weights of deterministic graphs are bounded by 1,
inhibiting the direct application of cut-based sparsification
methods, all of which assume unbounded weights. Lastly,
uncertain sparsification explicitly targets to reduce the en-
tropy of the input graph so as to minimize the variance of
query estimators. Deterministic sparsifiers do not consider
entropy. Nevertheless, in the following, we extend two state-
of-the-art methods, one based on cut sparsifiers and the other
on spanners, to uncertain graphs. The resulting algorithms
are used as benchmarks in our experiments.

As a representative of cut sparsifiers, we adopt the NI
method5 of [30] by transforming the uncertain graph G to a

5. Any method of Section 2.2 can be applied similarly.

weighted deterministic Gw. Recall that NI requires integer
weights and an approximation parameter ✏ 2 (0, 1) to
produce a sparsified graph G0

w with O(n log n/✏2) edges
on expectation. Intuitively, the probabilities of G are directly
analogous to the weights of Gw in terms of (expected) cut
size. To maintain this analogy while ensuring we 2 N+, our
transformation divides each probability of G by the smallest
value pmin, and rounds the result to the closest integer, i.e.,
we = bpe/pmine. To relate ✏ to our sparsification ratio ↵,
we set ✏ =

p
n log n/↵|E|. Next, we use NI as a black

box to sparsify Gw into G0
w. However, since the number of

edges of G0
w in [30] is given on expectation with asymptotic

notation, it is not guaranteed to equal ↵|E|. If the resulting
graph has more (fewer) edges than ↵|E|, we iteratively
execute NI after increasing (decreasing) ✏ by a small factor
✓, until the first (last) graph for which |E0|  ↵|E|. The
remaining ↵|E| � |E0| edges are randomly sampled from
E \ E0 using the initial probabilities p. Intuitively, this
calibration process approximates the minimum ✏, which
ensures |E0|  ↵|E|. Finally, for each edge e, we convert
w0

e into p0e through the inverse transformation cupped by 1,
i.e, p0e = min{w0

e · pmin, 1}.
In order to apply spanners, we generate the weights of

Gw using the formula we = � log(pe) [35]. This transforma-
tion takes advantage of the logarithmic summation proper-
ties to preserve the most probable paths of G. For the tuning
of the stretch factor, we solve the equation ↵|E| = tn1+1/t

with respect to t in order to find the minimum spanner with
the required number of edges ↵|E|. Using the computed
value of t, we run the spanner algorithm of [5] on top of
Gw. As in the case of cuts, some calibration steps may be
required to approximate the minimum tmin that ensures
|E0|  ↵|E|. This time however, at each iteration, tmin

can only change by 1 because it is integer. After computing
G0

w = (V,E0, w), we add its edges in the sparse probabilistic
graph G0 using the initial probabilities p0 = p, since [5]
retains the original edge weights. The appendix contains
details and pseudocodes of the benchmark adaptations.

3.3 Framework
The proposed framework starts with an initialization step
that generates a connected unweighted backbone graph Gb.
Then two different techniques operate on Gb in order to pro-
duce the sparsified graph. Gradient Descent Backbone (GDB)
assigns probabilities to the edges of Gb without altering its
structure, i.e., the resulting graph has the same edges as Gb.
On the other hand, Expectation Maximization Degree (EMD)
updates both the structure of Gb and the edge probabilities.
In the rest of this section we focus on the initialization step.

A simple approach could sample the edges of G in ran-
dom order according to their probabilities, until it obtains
↵|E| edges6. However, this would not ensure the connectiv-
ity of Gb, especially for small ↵7. Disconnected graphs can
introduce large errors on various queries such as shortest
distances between vertices of different connected compo-
nents. Moreover, individual vertices may become entirely
disconnected, which would lead to high total discrepancy.

6. A similar approach has been applied in [26] for sparsification of
deterministic graphs.

7. We assume ↵ � |V |�1
|E| , otherwise the sparsified graph cannot

preserve the connectivity of the original.
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To overcome this problem, we generate connected back-
bone graphs using the following method, which is inspired
by the related work in deterministic sparsification [30]8. We
first compute a maximum spanning tree of G, where the
probabilities act as weights. Then, we remove the tree edges
from G and insert them to Gb. This process is repeated
until Gb contains ↵0|E| edges, where ↵0 < ↵. Note that
after the first application of the maximum spanning tree,
G may become disconnected; thus, subsequent applications
may return spanning forests instead of trees. Finally, the
remaining (↵ � ↵0

)|E| edges of Gb are generated by ran-
dom sampling based on the edge probabilities. Algorithm 1
illustrates backbone graph generation.

Algorithm 1 Backbone Graph Initialization (BGI)
Input: uncertain graph G = (V,E, p), sparsification ratio ↵,

spanning ratio ↵0

Output: backbone graph Gb = (V,Eb)

1: Eb  maximum spanning tree of E
2: E  E \ Eb

3: while |Eb| < ↵0|E| do
4: F  maximum spanning forest of E
5: Eb  Eb [ F
6: E  E \ F
7: while |Eb| < ↵|E| do
8: sample edge e 2 E with probability pe
9: if e is selected then

10: Eb  Eb [ {e}
11: E  E \ {e}

Parameter ↵0 tunes the number of edges obtained
through spanning forests. Intuitively, generating all ↵|E|
edges using spanning forests is not desirable because all
vertices would be treated equally, independently of their
degrees. In our experiments, we set the value of ↵0 so that it
is the minimum of 0.5↵ and the number of edges in the first
six maximum spanning forests.

Given the initial graph Gb, Section 4 proposes algorithms
that aim at minimizing the degree discrepancy �1, while
Section 5 focuses on preserving the expected cuts i.e., �k

for k > 1. In both cases probability values that would incur
high entropy are avoided.

4 PRESERVING EXPECTED DEGREES

We first focus on Problem 1 for k = 1, and describe methods
to generate a sparsified graph G0 that preserves the expected
degrees of all vertices in G. Section 4.1 describes probability
assignment that minimizes �1 using linear programming
(LP). Due to the inefficiency of LP on large graphs, Sec-
tions 4.2 and 4.3 propose GDB and EMD, which assign
probabilities inspired by gradient descent and expectation
maximization, respectively.

4.1 Optimal probability assignement for minimizing �1

Given the backbone graph Gb = (V,Eb), we wish to com-
pute the edge probabilities that minimize the discrepancy

8. Other deterministic sparsification methods such as t-bundle [23] or
Local Degree [26] could also be used.

for k = 1. Let d be a vector of size |V | that contains the
expected degrees of the original graph G. We represent Gb

by an incidence matrix Ab of size |V | ⇥ |Eb|. Using this
notation, an equivalent formulation for minimizing the sum
of absolute discrepancies �A is

min.
p0

|d�Abp
0| (2)

s.t. p0 2 (0, 1]|Eb

|

Lemma 1. For an incidence matrix Ab, there is a probability
assignment p⇤ that minimizes �1 for which the expected
degree d⇤u  du, 8u 2 V .

Proof : Consider a probability assignment p⇤ that minimizes
|d�Abp⇤| and let d⇤

= Abp⇤ be the new vector of expected
degrees. For the sake of contradiction, assume also that d⇤

contains illegal vertices, i.e., vertices with d⇤u > du. Each
illegal vertex u is adjacent to at least one legal vertex v, with
d⇤v  dv , otherwise the assignment is not optimal (setting
p⇤(u, v) = p(u, v) � ✏, for a small ✏ > 0 yields a better
result) . Let ✓ = d⇤u� du > 0. We prove that, if we subtract ✓
from p(u, v), then the resulting probability assignment p0:

p0e =

(
pe � ✓, if e = (u, v),

pe, otherwise

is also optimal. Let d0
= Abp0 be the corresponding vector

of expected degrees. Then,

d0i =

8
><

>:

d⇤i � ✓ = di, if i = u,

d⇤i � ✓, if i = v,

d⇤i , otherwise
(3)

Since p⇤ is optimal,
P

i2V |di � d⇤i | is minimum. Then,
X

i2V

|di � d⇤i | =
X

i2V \{u,v}
|di � d⇤i |+ |du � d⇤u|+ |dv � d⇤v|

=

X

i2V \{u,v}
|di � d0i|+ |du � du � ✓|+ |dv � d0v � ✓| (4)

Given that v is legal, dv � d⇤v � 0

(3)
=) dv � d0v � ✓ � 0. Thus,

Equation (4) becomes:
X

i2V

|di � d⇤i | =
X

i2V \{u,v}
|di � d0i|+ ✓ + |dv � d0v|� ✓ =

X

i2V

|di � d0i|

Since
P

i2V |di�d⇤i | is minimum,
P

i2V |di�d0i| is also min-
imum. Thus, p0 is optimal. By applying the above argument
to all illegal vertices we construct an optimal instance that
contains only legal vertices. ⇤

Through Lemma 1 we prove the following theorem.
Theorem 1. Given a backbone incidence matrix Ab and

an expected degree vector d, the optimal probability
distribution p⇤ for degree discrepancy �A, is the solution
of the following LP:

max.
p0

|p0|
s.t. Abp

0  d (5)

p0 2 (0, 1]|E|

Proof : According to Lemma 1, there exists an optimal
assignment p⇤ for which Abp⇤  d. We only need
to prove that the objective function is equivalent
to Equation (2). Let Ab = [au1 au2 . . . au

n

]

T ,
i.e., the row vectors of matrix Ab. Then
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min |d�Abp
0| = min

X

u2V

��du � aup
0�� (5)
= min

X

u2V

�
du � aup

0�

= max

X

u2V

aup
0
= max

X

u2V

pu = max |p0| ⇤

Theorem 1 states that the probability assignment step can
be performed optimally by any linear programming solver,
e.g. simplex [11]. However, the running time of such solvers
is prohibitive for large graphs, which is also confirmed
in our experimental evaluation. Moreover, LP does not
explicitly reduce entropy. The following method closely
approximates the optimal probability assignment at a small
fraction of the time, while also decreasing the entropy.

4.2 Gradient descent backbone
Given the backbone graph Gb = (V,Eb), Gradient Descent
Backbone (GDB) initially generates a seed uncertain graph
ˆG = (V,Eb, p̂), p̂ = p, and proceeds in iterations. Let p̂
and p0 be the probabilities of the previous and the current
iteration, respectively. At each iteration, GDB optimizes the
probability p0e of each edge e = (u0, v0), considering the
remaining probabilities fixed. To this end, we need to cal-
culate the derivative of the objective function

P
u2V |�(u)|.

Since |�(u)| is not differentiable at 0, we utilize the squared
discrepancy9 �2(u). Accordingly, the objective function of
GDB is D1 =

P
u2V �2(u). Its derivative with respect to p0e

is: @D0
1

@p0e
=

X

u2V

@�02(u)

@p0e
= �2 · �0(u0)� 2 · �0(v0) (6)

Therefore, changing the probability of edge e from p̂e to
p0e the discrepancy �0(u) becomes:

�0(u) =
ˆ�A(u) + (p̂e � p0e)

⇡(u)
(7)

where: ⇡(u) =

⇢
1 if �(u) = �A(u)
CG(u) if �(u) = �R(u)

and �A and �R correspond to absolute and relative discrep-
ancy, respectively. Substituting Equation (7) to Equation (6),
the probability that sets the first derivative to zero, is:

p0e = p̂e + stp, where stp =

⇡(v0)ˆ�A(u0) + ⇡(u0)
ˆ�A(v0)

⇡(u0) + ⇡(v0)
(8)

Equation (8) raises two concerns: First, probability p0e
may fall outside the range [0,1]. In this case, D1 is monotonic
in [0,1] because it is convex (i.e.,@

2D1
@p2

e

> 0). Second, the
probability increase stp may result to higher entropy for e,
which is not desirable. GDB overcomes these concerns by
assigning probabilities using the following rule:

p0e =

$

0

p̂e + h
⇡(v0)ˆ�A(u0) + ⇡(u0)

ˆ�A(v0)

⇡(u0) + ⇡(v0)

'1
(9)

where b0 xe1 = max{0,min{x, 1}} and h 2 [0, 1].
In essence, GDB performs gradient descent which is

guaranteed to reach a local minimum of the objective func-
tion [12]. Parameter h relates the step size of gradient decent
to the entropy. Intuitively, if the optimal assignment of
Equation (8), results in entropy increase, GDB adds only

9. Alternative approaches applicable to L1-norm, such as transforma-
tion to LP or usage of cutting plane methods [11], require a solver (e.g.,
simplex), whose running time is prohibitive for the size of our problem.

a fraction h of stp to pe, attenuating the negative side effect.
This is a common practice in gradient decent techniques:
instead of moving directly to the goal, move in smaller steps
towards the correct direction [12]. In addition to limiting
entropy increase, this allows other neighbouring edges to
update their probabilities, decoupling the local minimum
from the edge ordering.

Algorithm 2 contains the pseudocode of GDB. Lines 1-3
initialize G0 with all edges of the backbone graph Gb using
their corresponding probabilities in G. Then, the algorithm
iteratively examines every edge of E0 and decides its prob-
ability: if the optimal assignment of Equation (8) leads to
entropy increase, then stp is capped by parameter h (line
10). Otherwise, both the discrepancy and the entropy are
reduced by the optimal assignment, and no limit is applied.
The algorithm terminates when the improvement of the
objective function is below a threshold ⌧ . Each iteration of
the for loop requires constant time. Since there are ↵|E|
iterations within each repeat loop, the overall complexity
of GDB is O(Msteps · ↵|E|), where Msteps is the number of
steps of gradient descent (lines 4-11)10.

Algorithm 2 Gradient Descent Backbone (GDB)
Input: uncertain graph G = (V,E, p), backbone graph Gb =

(V,Eb), entropy parameter h
Output: sparse uncertain graph G0

= (V,E0, p0)
1: E0  ;
2: for each edge e = (u, v) 2 Eb do
3: E0  E0 [ {e}; p0e  pe
4: repeat
5: ˆD1 = D1(G0

)

6: for each edge e 2 E0 do
7: stp ⇡(v0)�̂A(u0)+⇡(u0)�̂A(v0)

⇡(u0)+⇡(v0)
; p0e  pe + stp

8: if p0e < 0 then p0e  0

9: else if p0e > 1 then p0e  1

10: else if H(p0e) > H(pe) then p0e  pe + h · stp
11: until | ˆD1 �D1(G0

)|  ⌧

Figure 2 illustrates the execution of GDB for �A with
↵ = 0.6 and h = 1 in the uncertain graph of Figure 2(a). The
edges of the backbone graph are depicted with bold, and
the absolute discrepancies are shown next to each vertex.
At each iteration, GDB examines edges (u1, u4), (u2, u4),
(u3, u4) and decides their best probabilities. For example,
for edge (u1, u4), p0(u1,u4)

= p(u1,u4) +
�(u1)+�(u4)

2 = 0.2 +

0.6+0
2 = 0.5. Figure 2(b) contains the output of GDB. Note

that at this point, Equation (9) cannot further modify the
probability of any edge in the output graph. GDB improved
the objective function D1 =

P
u2V �2(u) from to 0.56 to 0.36

and reduced the entropy from 3.85 to 2.60.

0.6

0.2 0.40

u1

u2u4
u30.4

0.2 0.4
0.2

0.1

(a) backbone graph Gb

0.3

0.3 0.3-0.3

u1

u2u4
u30.3

0..5

0.2

(b) output of GDB

Fig. 2. GDB example.

10. Msteps depends on the initial seed, the local minimum at conver-
gence and the gradient step h, which is not fixed and not linear [16].
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4.3 Expectation maximization degree
Since GDB only updates the edge probabilities of the back-
bone graph Gb = (V,Eb) (without inserting or removing
edges), it is sensitive to the choice of Gb. On the other hand,
Expectation-Maximization Degree (EMD) modifies both Eb

and the edge probabilities. EMD is inspired by Expectation-
Maximization [14], which is an iterative optimization frame-
work that estimates two sets of interdependent unknown
parameters. In our case, EMD estimates the following sets
of parameters: i) the set of edges in the sparsified graph and
ii) their probabilities.

Similarly to GDB, the objective function is D1 =P
u2V �2(u). EMD starts with the input backbone graph,

and the corresponding probabilities p of G. Then, it enters
the iterative process, which consists of two phases. E-phase
replaces edges of Eb with edges from E \ Eb considering
the edge probabilities fixed. The new graph is denoted by
G0

b = (V,E0
b). M -phase calls GDB to optimize the edge

probabilities considering G0
b = (V,E0

b) as fixed. We denote
with p̂ and p0 the probabilities of the previous and the
current iteration respectively.

Equation (9) provides a rule to estimate the values of
p0 with respect to some backbone graph Gb and entropy
parameter h. Accordingly, we need a rule to generate the
graph G0

b that minimizes the objective function with respect
to a fixed set of probabilities p̂. To this end, we define the
gain of an edge e = (u0, v0) as follows:

g(e)
��
p0
e

=

ˆ�2(u0)
��
0
� ˆ�2(u0)

��
p0
e

+

ˆ�2(v0)
��
0
� ˆ�2(v0)

��
p0
e

(10)

where p0e is the probability of Equation (9) and ˆ�(u0)
��
w

is
the degree discrepancy of vertex u0 for p̂e = w. Intuitively,
g(e) quantifies the maximum improvement to D1, incurred
by including e with the best probability p0e.

Our goal is to swap the edges of the current backbone Eb,
with edges from E \ Eb that have higher gain. An intuitive
approach stores the edges of E \Eb in a dynamic max-heap
H based on g(e). At every iteration, it removes each edge
e = (u, v) 2 Eb from Eb, and adds it in H. Consequently,
it recomputes the gains of all edges incident to u or v that
have been affected by e’s removal, and updates H with the
new gains. Then, it includes the top of H, eH , to the new
backbone E0

b. Lastly, it updates H after recalculating the gain
of edges incident to eH . Unfortunately, this approach yields
high computational cost for the following reasons:
• The size of H is O

�
(1 � ↵)|E|�. For small sparsification

ratio, H is prohibitively large.
• For every edge, O(|E|/|V |) heap operations must be
performed because each edge affects on average 2 · (1 �
↵)|E|/|V | other edges of H. Thus, the total heap overhead
of every E-phase is O

�
↵(1� ↵)|E|2 log |V |/|V |�.

EMD alleviates this overhead by maintaining a max-heap
Hv of the vertices V , based on their discrepancy �. The
method follows an approach similar to the above frame-
work. This time however, an edge e 2 Eb is swapped with
the edge es that is incident to the top of Hv , and has the
highest gain. This greatly reduces the running time of EMD
compared to the above framework:
• Hv has size O(|V |), which is much smaller than H.
• For every edge, EMD performs only O(1) heap opera-
tions because each edge affects the discrepancy of only

two vertices. Thus, at every E-phase, the total heap over-
head is O(↵|E| log |V |).
Algorithm 3 illustrates EMD. Lines 1-5 initialize �A, E0

and p. Lines 6-20 contain E-phase. Initially, EMD builds a
max-heap Hv of the vertices V based on �A. At the iterative
step, for each edge e = (u, v) 2 Eb, EMD excludes e from
Eb, calculates its gain g(e) and updates the corresponding
entries of Hv for the affected vertices u and v (line 12). Then,
it retrieves the top of Hv , namely vH , without removing
it from the heap. For all edges er 2 E \ Eb adjacent
to vH , EMD calculates their best probability according to
Equation (9). Using this probability, it computes the gain
g(er). Let emax = argmax{g(er), g(e)} be the edge with
the maximum gain among edges er and the original edge
e. EMD includes emax to the backbone graph and updates
the incident vertices umax, vmax in Hv (lines 19-20). This
process repeats until all edges have been examined. Based
on the new backbone graph, M-phase further optimizes the
probability assignment of G0

b by calling GDB(line 21). The
procedure terminates when the improvement of an iteration
is below a threshold ⌧ . Each iteration of the repeat loop
takes O(↵|E| log |V |) and O(Msteps · ↵|E|) for the E-phase
and M-phase respectively, where Msteps is the number of
steps required for the convergence of GDB. Thus the overall
complexity of EMD is O(Esteps · ↵|E|(log |V | + Msteps)),
where Esteps is the number of iterations of lines 6-22.

Algorithm 3 Expectation-Maximization Degree (EMD)
Input: uncertain graph G = (V,E, p), backbone graph Gb =

(V,Eb), entropy parameter h
Output: sparse uncertain graph G0

= (V,E0, p0)
1: E0  ;
2: initialize �A with expected degrees
3: for each edge e = (u, v) 2 Eb do
4: E0  E0 [ {e}; p0e  pe
5: �A(u) �A(u)� pe
6: repeat
7: ˆD1 = D1(G0

) // E-phase
8: initialize max-heap Hv of vertices V based on |�A|
9: for each e = (u, v) 2 E0 do

10: �A(u) �A(u) + p0e;�A(v) �A(v) + p0e
11: Eb.remove(e); pe  0

12: Hv.update(u, v);
13: vH  Hv.top()
14: for each edge er 2 E \ Eb adjacent to vH do
15: w  probability of Equation (9)
16: g(er)|w  gain of Equation (10)
17: emax = (umax, vmax) edge of max gain
18: pmax  probability of emax

19: E0
b.add(emax); pe

max

 pmax

20: Hv.update(umax, vmax)

21: G0
= GDB(G, G0

b, h) // M -phase
22: until | ˆD1 �D1(G0

)|  ⌧

Figure 3 illustrates the execution of E-phase of EMD,
for �A, in the uncertain graph of Figure 2(a), with the same
backbone Eb (in bold) and entropy parameter h = 1. At
the iterative phase, edge (u1, u4) is removed from Eb and
vertices u1, u4 update their discrepancy to the values of the
left table 3(a). The top of Hv is vertex u1 and its adjacent
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edges are (u1, u4), (u1, u2) and (u1, u3). Equations (9) and
(10) compute their best probability and gain respectively
(right table of Figure 2(a)). Edge (u1, u2) has the highest
gain 0.78, therefore it is included in the backbone E0

b. Figure
2(b) demonstrates E0

b with the corresponding probabilities
(discrepancies) next to the edges (vertices).

vertex δΑ
u 1 0.8
u 2 0.4
u 3 0.2
u 4 0.2

edge p' g

(u 1 ,u 4 ) 0.4 0.5
(u 1 ,u 2 ) 0.5 0.8

(u 1 ,u 3 ) 0.5 0.5

e=(u 1 ,u 4 ):

0.3

0.2 -0.10.2

u1

u2u4
u30.4

0.5

0.1

(a) Hv and relevant edges (b) after first iteration
at first iteration of E-phase

vertex δΑ

u 1 0.3
u 4 0.3
u 3 0.2
u 4 0

edge p' g

(u 1 ,u 4 ) 0.3 0.17

(u 1 ,u 3 ) 0.3 0.08
(u 2 ,u 4 ) 0.2 0.05

e=(u 2 ,u 4 ): 0

0.2 0

u1

u2u4
u30.4

0.5

0

0.3

(c) Hv and relevant edges (d) after second iteration
at second iteration of E-phase

Fig. 3. EMD example.

Let (u2, u4) be the second edge to be examined. The
left table of Figure 2(c) shows Hv after the exclusion of
(u2, u4). Again, the top of Hv is vertex u1. This time the
relevant edges are (u1, u4) and (u1, u3), along with the edge
under consideration (u2, u4). The right table contains their
corresponding best probability and gain. Edge (u1, u4) has
the highest gain, thus EMD includes it to E0

b. Figure 2(d)
contains E0

b. It can be easily verified that the remaining
edge (u3, u4) does not affect the backbone graph structure
(it is removed and reinserted), thus the E-phase is com-
plete. A subsequent M -phase on the updated backbone
graph, calculates the new p0 probabilities for the respective
edges (u1, u2), 0.55; (u1, u4), 0.2; and (u3, u4), 0.55. Note
that the resulting discrepancy D1 = 0.01 has improved
considerably. The original objective function �1 has also
decreased to 0.2, from 1.2 in the backbone graph of Figure
2(a). Similarly, entropy has decreased to 2.7 from 3.85 in the
original graph.

5 PRESERVING EXPECTED CUTS

EMD cannot be applied for k > 1 because our gain defi-
nition requires the computation of the discrepancy for all
k-cuts that contain an edge, whose number is exponential.
In the following we design a new rule that enables the
application of GDB to arbitrary values of k � 1. Since
|�(S)| is not differentiable at 0, we again utilize the squared
discrepancies �2(S), focusing on the absolute discrepancy
�A. Accordingly, the objective function is:

Dk =

kX

i=1

X

S✓V,|S|=k

�2A(S)

Its derivative with respect to p0e for an edge e = (u0, v0) is:
@D0

k

@p0e
= �2

kX

i=1

X

S✓V,|S|=k
u02S,v0 /2S

�0A(S)� 2

kX

i=1

X

S✓V,|S|=k
v02S,u0 /2S

�0A(S)

Changing the probability of edge e from p̂e to p0e the
discrepancies of all cuts that contain e become:

�0A(S) = ˆ�A(S) + p̂e � p0e (11)

Setting the derivative equal to zero and solving with respect
to p0e, using Equation (11), we obtain the best probability for
e:

p0e = p̂e +

kP
i=1

⇣ P

S✓V,|S|=k
u02S,v0 /2S

ˆ�A(S) +
P

S✓V,|S|=k
v02S,u0 /2S

ˆ�A(S)
⌘

kP
i=1

⇣ P

S✓V,|S|=k
u02S,v0 /2S

1 +

P

S✓V,|S|=k
v02S,u0 /2S

1

⌘ (12)

The computation of the above equation is not tractable
due to the fact that we need to enumerate all k-cuts that
contain edge e = (u0, v0). To avoid this we introduce the
following enumeration function: 

n

k

!

⌃

=

8
<

:

0 if k < 0

kP
i=0

�n
i

�
if k > 0

We count how many times the discrepancy of an edge is
present in the sum of the numerator. If the edge is incident
to u0 or v0, it will be counted

�n�3
k�1

�
⌃

times because we
restrict its other vertex from entering S. All other edges, not
incident to u0 or v0, will be counted 2

�n�4
k�2

�
⌃

times in the
sum, since only one of their incident vertices belongs to S.
kX

i=1

X

S✓V,|S|=k
v02S,u0 /2S

ˆ�A(S) =

 
n� 3

k � 1

!

⌃

ˆ�A(u0) + 2

 
n� 4

k � 2

!

⌃

ˆ

�(e)

where: ˆ

�(e) =
X

(u1,v1)2E,
u1 6=u0,v1 6=v0

pu1v1 � p̂u1v1

Therefore Equation (12) reduces to:

p0e = p̂e +

�n�3
k�1

�
⌃

⇣
ˆ�A(u0) +

ˆ�A(v0)
⌘
+ 4

�n�4
k�2

�
⌃
ˆ

�(e)

2

�n�2
k�1

�
⌃

(13)

Equation (13) proposes a probability change that weights
the degree discrepancies ˆ�(u0) and ˆ�(v0) versus the discrep-
ancy of the edges that are not incident to u0 and v0, ˆ

�(e).
The best probability p0e can exceed [0,1]. However, since
the objective function is again convex (i.e.,@

2D
k

@p
e

2 > 0), the
optimal probability is:

p0e =

$

0

p̂e + h

�n�3
k�1

�
⌃

⇣
ˆ�A(u0) +

ˆ�A(v0)
⌘
+ 4

�n�4
k�2

�
⌃
ˆ

�(e)

2

�n�2
k�1

�
⌃

'1

(14)

where the entropy parameter h 2 [0, 1] tunes the step size
of gradient decent.

The only modification of GDB, is that in line 7 of Algo-
rithm 2, the optimal step stp is replaced by the ratio in Equa-
tion (13). Special cases of the general rule include k = 1,
k = 2 and k = n. For k = 1 and absolute discrepancies �A,
the above equation reduces to Equation (9), and thus takes
into account only the degree discrepancies. For k = 2, the
best probability is:

p20e =

$

0

p̂e + h
(n� 2)

⇣
ˆ�A(u0) +

ˆ�A(v0)
⌘
+ 4

ˆ

�

e

(2n� 2)

'1
(15)
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For k = n, the update rule changes to the following
formula, which distributes the cumulative probability of
eliminated edges to all the remaining ones. This corresponds
to random probability reassignment.

pn0
e =

$

0

p̂e + h
X

e12E0\{e}
(pe1 � p̂e1)

'1
(16)

The general rule of Equation (14) is analytic and does not
require any enumeration of cuts. Consequently, the running
time of GDB is insensitive to k and depends only on the
convergence speed of gradient descent.

6 EXPERIMENTS
In our evaluation, we use two real undirected uncertain
graphs with various sizes, densities, and edge probabilities,
summarized in Table 1. Flickr [35] is a social network, where
edge probabilities are based on the principle that similar
interests indicate social ties. This is the densest dataset; a
vertex has on average about 130 neighbours. Twitter [9] is
extracted from the popular online micro-blogging service.
Probabilities denote the influence that the associated users
exert on each other. Although sparser than Flickr, Twitter has
higher average probability on the edges.

dataset vertices edges |E|/|V | E[pe] E[du]
Flickr 78 322 10 171 509 129.89 0.09 22.93
Twitter 26 362 663 766 25.17 0.15 7.71

Synthetic 1 000

77 099 77.1

0.09

12.7
147 565 147.5 24.3
269 325 269.3 44.3
435 336 435.3 71.5

TABLE 1
Characteristics of datasets.

In order to assess the behaviour of the methods in graphs
with increasing density, we also use 4 synthetic undirected
datasets, whose characteristics are summarized in Table 1.
They all stem from an induced subgraph of Flickr with 1000
vertices, where edges have been added between random
pairs of vertices, until the density becomes 15, 30, 50, 90
% of the complete graph. The additional edge probabilities
follow the same distribution as the original Flickr.

All methods were implemented in C++ and executed
in a single core of an Intel Xeon E5-2660 with 2.20GHz
CPU and 96GB RAM. Section 6.1 assesses variants of the
proposed methods on the objective function of Problem 1
for various values of k in order to identify the best ones
depending on the problem characteristics. We refer to the
graph characteristics preserved by these objective functions
(degrees/cut sizes and entropy) as structural properties.
Section 6.2 and 6.3 compare representative variants against
the benchmarks on structural properties and common graph
queries, respectively. Lastly, Section 6.4 examines the run-
ning time of all sparsification techniques and compares it
against the query processing time.

6.1 Assessment of proposed techniques
We evaluate the proposed methods GDB (Gradient Descent
Backbone) and EMD (Expectation Maximization Degree) on
structural properties using absolute degree discrepancy11.

11. The respective relative discrepancy results are similar and omit-
ted.

As a benchmark, we use LP, the linear programming tech-
nique of Section 4.1, which, given a backbone graph, yields
the optimal probability assignment that minimizes �1 with
entropy parameter h = 1. Because LP fails to terminate
within reasonable time in the real datasets, the experiments
are performed on an induced subgraph of Flickr that con-
sists of 5,000 vertices and 655,275 edges, and was extracted
using Forest Fire [24].

We use the following notation to differentiate among
variants of each method:
• A and R superscripts denote the variants that aim at
minimization of the absolute �A and relative �R discrep-
ancy, respectively. The first type favors nodes with high
degree by targeting the absolute error, whereas the second
treats all degrees equally.

• t suffix signifies that the backbone graph is generated
by Algorithm 1, which ensures connectivity. Absence of
this suffix means that the backbone is created by Monte
Carlo sampling on the original graph, until reaching of
↵|E| edges. We refer to this as the random backbone.

• k = {2, n} subscript denotes GDB preserving k-cuts.
Absence of this subscript implies that k = 1 (i.e., preser-
vation of the expected degrees).
Table 2 shows the mean absolute error (MAE) of the

absolute degree discrepancy �A of variants of GDB, EMD
and LP for sparsification ratio ↵ ranging from 8% to 64%.
GDBA

n has by far the worst performance as it randomly
distributes the missing probabilities to all edges of G0.
The accuracy of GDBA, GDBR and GDBA

2 is similar and
comparable to LP for the corresponding backbone graph.
The backbone graphs generated by Algorithm 1 benefit
all variants (compared to random backbones). However,
for ↵ = 8%, the spanning nature of the graph increases
the discrepancy of some vertices that would be otherwise
disconnected. In this case, LP and GDB perform better using
random backbones as input. In general, EMD improves the
accuracy compared to the respective GDB versions by re-
structuring the backbone. Methods that preserve the rela-
tive discrepancy have similar behaviour to those aiming at
absolute discrepancy. The variant with the best overall per-
formance is EMDR-t, which achieves the highest accuracy
for all values of ↵ > 8%, shown in bold in Table 2.

8% 16% 32% 64%
LP 1.04 2.56E-02 4.22E-03 2.70E-04

GDBA 1.19 2.68E-02 4.38E-03 3.92E-04
GDBR 1.21 2.67E-02 4.38E-03 3.92E-04
GDBA

2 1.73 4.25E-02 4.74E-03 6.04E-04
GDBA

n 5.78 3.27 2.17 1.8
EMDA 1.33 2.56E-02 1.22E-03 7.89E-13
EMDR 1.35 2.18E-02 1.43E-03 1.79E-12
LP-t 2.27 2.95E-04 2.99E-05 2.62E-12

GDBA-t 3.54 1.78E-03 1.82E-04 1.66E-04
GDBR-t 2.47 4.11E-04 2.99E-05 2.62E-12
EMDA-t 2.53 1.83E-04 4.81E-12 8.23E-13
EMDR-t 2.55 9.23E-05 8.17E-13 7.34E-13

TABLE 2
Mean Absolute Error (MAE) of absolute degree discrepancy �A(u)

(Flickr reduced).

Figure 4(a) shows the MAE of the cut discrepancies ver-
sus ↵. Since it is intractable to measure all cuts, we randomly
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select 1000 k-cuts for k = 1 up to |V | for each value of k,
and we compute the average absolute discrepancy. LP is
excluded because it explicitly aims at �1. Similar to Table 2
and for the same reasons, GDBA

n under-performs the other
variants for ↵ > 8. The superior performance of GDBA

n for
↵ = 8% is explained as follows. In Flickr (also in the reduced
graph), the average probability is 0.09; thus, the expected
number of edges is approximately 0.09|E|. For ↵ < 9% the
sparsified graph does not contain enough edges to reach the
expected number under any probability assignment. GDBA

n

assigns the maximum probability p = 1 to all available
edges. On the contrary, the rest of the methods, respecting
the constraints on degree and 2-cuts, do not entirely redis-
tribute the missing probabilities. For ↵ > 8%, this ceases to
be the case and they yield high accuracy.
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Fig. 4. (a) MAE of cut size discrepancy �A(S) and (b) execution time
(Flickr reduced).

Figure 4(b) illustrates the running time as a function of
↵. For both GDB and EMD the running time is independent
of the discrepancy (absolute or relative), and the structure
of the backbone graph. In addition, GDB optimizes cut sizes
using analytic equations; thus its performance is insensitive
to k. Accordingly, the plots of GDB and EMD capture all
variants of each method. Both techniques are significantly
faster than LP, which cannot be applied for large graphs.
EMD is slower than GDB since the latter is invoked as
a module for the M -phase of the former. However, the
overhead is small, which confirms the efficiency of the
vertex (as opposed to edge) heap.

In order to compare against the benchmark methods, we
select as representative variants of our techniques EMDR-t
and GDBA. EMDR-t has the most balanced performance for
the settings of Table 2 and Figure 4(a). GDBA is in general
inferior, but it outperforms EMDR-t for sparsification ratio
↵ = 8%. Moreover, the two variants collectively cover all
combinations of discrepancy type and backbone structure.
Thus, in the following, the terms EMD and GDB refer to
these variants. Since in the remaining we use the real graphs,
LP is excluded due its high cost.

A final remark concerns the fine-tuning of entropy pa-
rameter h 2 [0, 1] in GDB (and EMD, since GDB constitutes
one of its modules). Recall from Section 4.2 that h reduces
the gradient descent step size when the optimal probability
assignment increases entropy. Figure 5(a) plots the MAE of
the absolute degree discrepancy �A versus the sparsification
ratio, for various values of h. In the extreme case of h = 0,
GDB yields poor performance for �A because it discards any
probability assignment that increases the edge entropy. On
the other hand, for h = 1 GDB yields the best result on �A,
but the worst entropy values as shown in Figure 5(b), which
plots the relative entropy H(G0)

H(G) versus ↵. Intermediate val-

ues of h span between these two extremes. In the remaining,
we set h = 0.05 as it has the most balanced performance.
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Fig. 5. Effect of entropy parameter h on GDB (Flickr reduced).

6.2 Comparison with benchmarks on structural proper-
ties
We compare EMD and GDB against the benchmarks NI and
SS. Recall that NI constitutes the adaptation of a cut-based
deterministic sparsification method, whereas SS extends a
spanner-based technique to the uncertain setting. Figure 6
plots the MAE of the absolute degree discrepancy �A(u) and
the MAE of the cut discrepancy �A(S) (objective function
for k = 1 and k � 1, respectively) versus ↵. The proposed
methods consistently outperform the benchmarks for both
structural properties in all datasets. The low accuracy of SS
can be explained by the fact that it was designed to capture
shortest path distances, instead of cuts or degrees. NI is com-
parable to the proposed techniques for small values of ↵ in
Twitter that have high edge probabilities. In these cases, the
backbone graph is almost deterministic (most edges have
probability 1) and there is little space for improvement by
EMD and GDB. For the other settings, NI fails because it as-
sumes unbounded weights. Bounding the maximum weight
to 1 seriously affects both its performance and its theoretical
guarantees: NI yields a mild probability redistribution that
fails to preserve degrees and cuts in practice. Moreover, NI
is designed for dense graphs with E = ⇥(n2

), whereas the
evaluated datasets are much sparser. As expected from Table
2 and Figure 4(a), in most settings EMD outperforms GDB.
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Fig. 6. MAE of absolute degree discrepancy �A(u) and absolute cut size
discrepancy �A(S) (real datasets).

Figure 7 plots MAE of �A(u) and �A(S) as a function
of the graph density (percentage of the complete graph),
on the synthetic datasets, which are denser than the real
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ones. The sparsification ratio ↵ is fixed to 16%. As the
graph density increases, all methods yield increasing er-
ror. To see why this happens, consider SS that does not
perform probability redistribution. In the simplified case of
uniform edge distribution on the vertices with mean prob-
ability p̃, MAE(�A(u))=

p̃(1�↵)
|V | |E|. Since all other factors

are constant, MAE(�A(u)) increases linearly with |E|. NI
that applies limited probability redistribution yields smaller
error. Clearly the winner again is EMD with much smoother
increase, verifying its robustness for dense graphs.
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Figure 8 plots the relative entropy of the sparsified
graphs versus the sparsification ratio (real datasets) and
the density (synthetic datasets). The relative entropy of a
sparsified graph G0 is the ratio H(G0)

H(G) , where G is the original
graph. EMD and GDB have at least an order of magnitude
less entropy for small ↵ compared to NI and SS which over-
all perform similarly. This is expected since our methods
aim at reducing entropy, unlike the competitors that are
designed for deterministic graphs (zero entropy). Relative
entropy increases with ↵, always remaining less than 1.
Figure 8(c) plots the entropy of the synthetic graphs with
↵ = 16%. The relative entropy is constant as the percentage
of edges in the sparsified graph remains the same.

6.3 Comparison with benchmarks on queries

We evaluate the following graph queries. (i) Pagerank (PR) is
a measure of the node’s influence in the graph and has been
widely used to rank Web page search results according to
their links [31]. (ii) Shortest path distance (SP) is the average
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Fig. 8. Graph entropy H (real and synthetic datasets).

shortest distance between a pair of vertices in all worlds
excluding the ones that disconnect them. SP is essential
for any task involving shortest path computations [35]. (iii)
Reliability (RL) is the probability that a vertex is reachable
from another in the graph. It is a common metric for the
resilience of router networks. (iv) Clustering coefficient (CC)
is the ratio of the number of edges between the neighbours
of a vertex to the maximum number of such links. CC
constitutes an important metric for search strategies and
social networks [22]. Although we evaluate CC and PR on
all vertices of G, we choose 1000 random vertex pairs for the
evaluation of SP and RL because the evaluation on all pairs
would be too expensive to terminate for our datasets.
Quality results. Let G0 be a sparsified subgraph of G, and
a query Q. Q is evaluated through Monte-Carlo sampling
on 500 possible worlds of both G0 and G. The various
outcomes of Q in different samples of G0 form a cumulative
distribution FG0,Q(x) of results. To quantify the similarity of
G0 to G with respect to Q, we have to measure the differ-
ence between FG0,Q(x) and FG,Q(x). To this end, a robust
metric is the earth mover’s distance Dem [38]. Intuitively,
Dem measures the minimum change that aligns the two
distributions. Formally, let {x0, x1, · · · , xM} be the ordered
set of all observed results of Q in G and G0. To compute Dem

we apply the following equation:

Dem(G,G0, Q) =

MX

i=1

��FG,Q(xi)� FG0,Q(xi)
�� · (xi � xi�1)

Figure 9 plots Dem versus the sparsification ratio. Each
row of diagrams corresponds to a dataset and each column
to a query. With few exceptions, GDB and EMD outperform
the benchmarks for all settings, usually by a wide margin.
Moreover, the diagrams are consistent with those on struc-
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Fig. 9. Earth mover’s distance Dem for Pagerank (PR), Shortest Path distance (SP), Reliability (RL) and Clustering Coefficient (CC) (real datasets).
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tural properties, confirming the correlation of our objective
functions with the performance of the sparsified graphs for
diverse queries. SS yields the highest error even on the SP
metric, which constitutes its focus. The main cause for its
poor performance is that it does not involve any probability
redistribution. Although NI achieves good approximation
for CC, it usually introduces large error for the rest of the
queries. EMD is the winner for high sparsification ratio,
while GDB is preferable for small ↵ in most queries. This
is in accordance with Figure 6, where GDB preserves better
the structural properties for ↵ = 8%.

Figure 10(a) (resp. Figure 10(b)) illustrates Dem of PR
(resp. SP) on the synthetic datasets, as a function of density
for ↵ = 16%. The proposed techniques clearly yield smaller
error than the benchmarks. Observe that PR is node centric
and highly correlated with the degree; thus, the diagram of
Figure 10(a) is similar to that of Figure 7(a). The plots of
CC are similar to those of PR and omitted. On the other
hand, the error of SP decreases with increasing density
because more alternative short paths are available, due to
the abundance of edges. RL has practically zero error for all
methods, since the dense graph has reliability almost 1 for
all pairs of vertices.
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Fig. 10. Earth mover’s distance Dem for Pagerank (PR) and Shortest
Path distance (SP) (synthetic datasets).

Variance results. We assess the performance of the various
sparsifiers with respect to the variance of an MC estimator
on the above queries. Specifically, due to the randomized
nature of MC estimators, different executions of the same
experiment may yield different results. The variance quanti-
fies the deviation of results from the mean. Let �(G) denote
the result of an MC simulation on an uncertain graph G.

A sparsified graph with low variance on MC estimator12

implies the need of fewer samples for accurate estimation.
Specifically, according to the theory of MC simulations, the
unknown expected value of a query in G belongs to the
confidence interval CI = [�(G) � 1.96�(G)/pN,�(G) +

1.96�(G)/pN ] with probability 95%, where �(G) is the
variance of the query in G and N is the number of samples.
Let the confidence width CW be the length of the confidence
interval, i.e., CW = 2CI = 3.92�(G)/pN . In order to
achieve the same level of accuracy CW between the original
graph G and the sparsified G0, we require

CW = CW 0 ! �(G)/
p
N =�(G0

)/
p
N 0 !

N 0/N =

�
�(G0

)/�(G)�2. (17)

Intuitively, small relative variance �(G0)
�(G) implies the need of

fewer samples for accurate estimation. This is why variance
is among the most important metrics for the quality of MC
simulation (see [18], [25]). However, calculating the actual
variance is intractable. Thus, we follow a strategy similar
to [25] for an unbiased estimator of the variance of �(G),
denoted as �̂(G). Specifically, we run each estimator (�i(G))
100 times. Then the unbiased estimator of the variance of
�(G) is �̂(G) =

P100
i=1(�i(G) � ¯

�(G))2/99, where ¯

�(G)
denotes the mean of �i(G) for (i = 1, · · · , 100).

Figure 11 illustrates the relative variance of the queries
versus the sparsification ratio ↵. Let �̂(G) and �̂(G0

) denote
the variance of the MC estimator on the original and the
sparsified graph respectively. The y-axis represents the rel-
ative variance, i.e., the ratio �̂(G0)

�̂(G) . Each row of diagrams
corresponds to a dataset and each column to a query. Con-
sistently, EMD and GDB drop the variance of the original
graph up to several orders of magnitude. On the other hand,
NI and SS have, in most cases, higher variance than the
original graph. The justification of this result is based on
the fact that NI and SS perform limited (if any) probability
redistribution. Assume for instance the SP query. During
evaluation we only consider reliable possible worlds for
which the distance of the query points is less than infinite.
Sparsification without probability redistribution reduces the

12. Slightly abusing notation, we use the term "variance of G" to
imply the variance of a query estimator on a graph G.
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Fig. 11. Relative variance for Pagerank (PR), Shortest Path distance (SP), Reliability (RL) and Clustering Coefficient (CC).
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number of possible worlds for which a path exists. Conse-
quently, a bigger proportion of possible worlds is discarded,
increasing the variance of the estimator, which now depends
on fewer samples. Moreover, according to the small world
phenomenon, the majority of shortest paths are small (i.e.,
less than 10). Thus, the removal of edges is more likely to af-
fect the the probability of short paths. This in turn increases
the probability of larger paths, inflating the variance.

Our techniques alleviate the above short-comings by ap-
plying aggressive probability redistribution that preserves
the expected number of edges, reducing the entropy of the
sparsified graphs. This results in many edges having proba-
bility one. For instance, in Twitter with ↵ = 8%, 75% of the
edges of GDB have probability 1. In comparison, in NI only
25% of the edges are deterministic. As ↵ increases, fewer
edges reach probability 1; thus, the variance of EMD and
GDB increases. This result is very important and highlights
one of the core differences of our methods compared to the
competitors: the goal for entropy reduction.

6.4 Running time
The next experiment measures the running time of GDB,
EMD and NI in the real graphs. As shown in Figure 12,
the proposed methods usually terminate within a minute,
whereas NI is more than an order of magnitude slower. SS
is omitted from the diagrams because it requires several
hours to terminate. For GDB the running time grows with
the sparsification ratio ↵ because the cost of each step is
proportional to ↵|E|. For EMD the effect of increasing ↵ is
attenuated by the smaller number of Esteps that are required
for convergence. This is expected because as the sparsified
graph becomes denser, more edges can compensate towards
the objective by altering their probabilities; thus, the struc-
ture of the graph is less important. For instance, in Twitter
the number of Esteps is {4, 4, 2, 1} for ↵ = {8, 16, 32, 64}
respectively.
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Fig. 12. Execution time of sparsification algorithms (real graphs).

Figures 13(a) and (b) plot the query execution time
versus the sparsification ratio ↵, on Flickr and Twitter
respectively13. Due to the smaller variance of the queries
in the sparsified graphs (as illustrated in Figure 11), fewer
samples are required for accurate Monte Carlo simulation,
especially for smaller ↵. Based on Equation 17 and Figure 11,
we have utilized N = {10, 100, 500, 1000, 1000} samples for
↵ = {8, 16, 32, 64, 100} respectively. Note that ↵ = 100%

refers to the original, unsparsified graph. In all cases the
query processing cost drops as the number of edges in the
sparsified graph decreases. Compared with Figure 12, with
the exception of RL that terminates very fast for ↵ = 8,
graph sparsification is much faster than query execution,

13. The graphs have been sparsified using EMD.

even for small ↵. For instance, in Flickr PR, SP and CC
require one to four orders of magnitude more processing
time than the corresponding sparsification through EMD,
the slowest of our techniques. As expected, queries in Flickr
are slower than the corresponding ones in Twitter due to
Flickr’s larger size.
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Fig. 13. Query processing time (real graphs).

Summarizing the experiments, as shown in Table 2 and
Figures 4, 6 and 7, the proposed techniques capture well
the structural properties of the input uncertain graph, even
if they do not constitute their explicit optimization criterion.
For instance, variants that aim at the relative discrepancy �R,
e.g. EMDR-t, also preserve the absolute one �A. According
to Figures 9-10, the preservation of structural properties
leads to accurate results for various queries with different
characteristics. Moreover, by reducing the entropy of the
uncertain graph (Figure 8), our methods decrease the vari-
ance of the MC estimator of all evaluated queries (Figure
11). This reduces the processing time, as considerably fewer
samples are required for accurate query estimation (Figure
13). As opposed to the proposed methods, techniques based
on deterministic sparsification usually fail, in terms of result
quality, variance and execution time. Finally, our algorithms
are efficient and applicable to large uncertain graphs.

7 CONCLUSION

Sparsification has often been used to reduce the size of
deterministic graphs and facilitate efficient query process-
ing. However, it has not been applied previously to un-
certain graphs, although they incur significantly higher
cost for common query and mining tasks. This paper
introduces novel sparsification techniques that, given an
uncertain graph G = (V,E, p) and a parameter ↵ 2
(0, 1), they return a subgraph G0

= (V,E0, p0), such that
E0

: E0 ⇢ E, |E0| = ↵|E|. G0 preserves the structural prop-
erties of G, has less entropy than G, and can approximate
the result of various queries on G.

The proposed methods, GDB (Gradient Descent Back-
bone) and EMD (Expectation Maximization Degree), involve
an initialization and a probability assignment step. First,
a backbone deterministic graph Gb with ↵|E| edges is
generated. In order to obtain G0, GDB assigns probabilities
to the edges of Gb aiming at preserving the expected vertex
degrees or cut sizes, while reducing the entropy. In addition
to assigning probabilities, EMD also changes the structure
of Gb by adding or removing edges. An extensive experi-
mental evaluation with real and synthetic uncertain graphs
confirms that GDB and EMD consistently outperform bench-
marks adapted from the deterministic graph literature, on
several graph queries and metrics. In the future, we intend
to investigate sparsification of multigraphs and weighted
uncertain graphs.
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APPENDIX

Algorithm 4 Nagamochi Ibaraki (NI)
Input: graph Gw = (V,E,w), approximation parameter ✏
Output: sparse graph G0

w = (V,E0, w0
)

1: E0  ;; Ec  E; F0 = ;
2: r = 0

3: while Ec 6= ; do
4: r  r + 1

5: compute a spanning forest Fr of Ec such that
(Fr \ Fr�1) \ Ec = ;

6: for each edge e 2 Fr do
7: we  we � 1

8: if we = 0 then
9: sample e with probability

`e = min {log |V |/(✏2 · r), 1}
10: if e is sampled then
11: E0  E0 [ {e} with w0

e  we/`e
12: else
13: discard e
14: Ec  Ec \ {e}

This section provides details of the benchmark methods
NI [30] and SS [5]. Algorithm 4 contains the core iterative
process of NI. The method requires as input an approxima-
tion parameter ✏, which is initially tuned depending on our
parameter ↵; ✏ =

q
|V | log2 |V |/↵|E|. The result set E0 is

initially empty and the set of available edges Ec  E. At
each iteration r, a spanning forest Fr is computed on the
set Ec with the requirement that if an edge e appears in
Fr�1, then it must also appear in Fr (contiguous spanning
forests). Each time an edge e is covered by a spanning
forest, we is reduced by one. When we becomes 0, e is
sampled with probability `e = min {log |V |/(✏2 · r), 1}. If
e is selected, then line 11 adds it to the result set. Otherwise,
e is discarded. The iterative process stops when all edges of
E have been examined. Intuitively, the sampling probability
`e approximates the connectivity of edge e; if e belongs to
a sparse subgraph, it is covered by spanning trees of early
iterations, therefore it is sampled with high probability. On
the other hand, an edge in a dense component is covered
after several iterations r, thus it’s sampling probability is
significantly smaller.

Algorithm 5 presents the main process of SS [5], which
computes a (2t� 1)-spanner of O(t ·m1+1/t

) expected size.
The algorithm performs t�1 iterations, incrementally form-
ing clusters of vertices with the minimum edge that connects
them. Ci maintains the set of vertex clusters for iteration
i. Initially, Ci contains |V | sets of individual vertices (line
3) and the spanner E0 is empty. At each iteration, a set
of clusters, Ri, is selected with probability n�1/t for each

cluster. For each vertex u /2 Ri that is not yet connected to
the spanner, SS examines its neighbours. If none of them is
in Ri, then for each adjacent cluster c 2 Ci�1, SS adds the
least weight edge to E0, and updates the clusters (lines 22-
25). If u has an adjacent node in Ri, the least weight edge
e = (u, v 2 Ri) is added to the spanner (line 10). Then, SS
iterates over all edges of u, adding for each adjacent cluster
c, the minimum weight edge e0, if w(e0) < w(e) (line 17). To
ensure that the resulting spanner is connected, the algorithm
joins all remaining clusters using the connecting edge with
the minimum weight (lines 26 - 28).

Recall from Section 3.3 that, in both methods, the ex-
pected number of edges is given in O-notation, thus the
sparsified graph is not guaranteed to reach ↵|E| edges.
To ensure this, we run Algorithms 4 and 5 with modified
parameters to approximate the smallest ✏ and t that contains
E0 < ↵|E|. The remaining ↵|E| � |E0| edges are sampled
using the original probabilities.

Algorithm 5 Spanner Sparsification (SS)
Input: uncertain graph G = (V,E,w), t
Output: sparse spanner G0

= (V,E0, w)
1: E0  ; spanner edges
2: VS  ; spanner vertices
3: C0 = {{u}|u 2 V } clusters
4: for i=1 to t-1 do
5: Ri  sample Ci�1 with probability n�1/t

6: Ci  Ri

7: for each u 2 V \ VS and u /2 Ri do
8: NR  N(u) \Ri neighbours of u in Ri

9: if NR 6= ; then
10: e minimum weight edge u, v 2 NR

11: E0  E0 [ e, VS  VS [ u
12: E  E \ E(u,NR)

13: merge clusters Ci(v), Ci(u)
14: for each cluster c 2 Ci�1 and c /2 Ri do
15: e0  minimum weight edge
16: if w(e0) < w(e) then
17: E0  E0 [ e0

18: E  E \ E(u, c)
19: merge clusters c, Ci(u)

20: else
21: for each cluster c 2 Ci�1 do
22: e minimum weight edge u,N(u) \ c
23: E0  E0 [ e, VS  VS [ u
24: E  E \ E(u, c)
25: merge clusters c, Ci(u)

26: for each c 2 Ct�1 do
27: e minimum weight edge c, v 2 N(c)
28: E0  E0 [ e
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