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Engineering Methods for Differentially Private
Histograms: Efficiency Beyond Utility

Georgios Kellaris, Stavros Papadopoulos, and Dimitris Papadias

Abstract—Publishing histograms with ε-differential privacy has been studied extensively in the literature. Existing schemes aim at
maximizing the utility of the published data, while previous experimental evaluations analyze the privacy/utility trade-off. In this paper
we provide the first experimental evaluation of differentially private methods that goes beyond utility, emphasizing also on another
important aspect, namely efficiency. Towards this end, we first observe that all existing schemes are comprised of a small set of
common blocks. We then optimize and choose the best implementation for each block, determine the combinations of blocks that
capture the entire literature, and propose novel block combinations. We qualitatively assess the quality of the schemes based on the
skyline of efficiency and utility, i.e., based on whether a method is dominated on both aspects or not. Using exhaustive experiments on
four real datasets with different characteristics, we conclude that there are always trade-offs in terms of utility and efficiency. We
demonstrate that the schemes derived from our novel block combinations provide the best trade-offs for time critical applications. Our
work can serve as a guide to help practitioners engineer a differentially private histogram scheme depending on their application
requirements.

Index Terms—differential privacy, histograms, efficiency, experimental evaluation.
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1 INTRODUCTION

The histogram is a basic statistical tool for describing
a dataset distribution. Publishing histograms raises privacy
concerns, which motivated numerous works [1], [2], [3], [4],
[5], [6], [7], [8] to target at preserving privacy through the
concept of ε-differential privacy [9]. The idea is to perturb
the histogram bins prior to their publication in a way
that protects each individual record in the data. The ε
parameter controls the privacy level. Lower ε values offer
better privacy, but increase the perturbation. The higher the
perturbation, the higher the error and, thus, the lower the
utility of the published histogram.

Existing work on differentially private histograms fo-
cuses solely on maximizing data utility, for a given ε and
for various query types. In addition, previous experimental
evaluations on the topic [7], [10] assess the quality of a
method based solely on the trade-off between privacy and
utility for various datasets. We argue that efficiency is an im-
portant aspect of differentially private histogram methods
that has not been explored.

Efficiency refers to the time complexity of a method,
which depends on the histogram size. In many practical
applications, the published histogram is desirable to have
fine granularity and, hence, large size; examples include
time-series (e.g., where the bins are time intervals in traffic
reporting), demographics (e.g., where the bins represent
annual income), medical data (e.g., where the bins represent
z-scores of various conditions), retail sales (e.g., where bins
represent different product prices), or spatio-temporal data
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(e.g., where bins represent different locations). Sectors deal-
ing with large volumes of data where efficiency is crucial in-
clude IoT, where data are aggregated during very short time
intervals, banking, where customer transactions are gath-
ered and analyzed in real-time, and web analytics, where
user online trends are changing rapidly and need to be
captured. The current state-of-the-art differentially private
histogram scheme, DAWA [4], runs in time O(N3 logN)
for histogram size N when considering arbitrary histogram
queries. For histogram sizes in the orders of tens of thou-
sands (such as in the examples above), DAWA would take
months to complete. Although one may argue that this is
an offline task, it would still consume significant resources.
More importantly, in a streaming setting, histograms need
to be published periodically and, thus, efficiency is crucial
for the application. For example, a traffic monitoring system
may need to publish a new histogram with the number of
cars per road segment every few seconds.

In this paper we provide the first experimental evalu-
ation of differentially private histogram methods that goes
beyond utility to also emphasize efficiency. Toward this end,
we follow a novel approach as compared to [7], [10]. These
works consider each existing method as a black box and
carry out a comparison only in terms of utility. In contrast,
we first observe that there is a small set of common compo-
nents across all methods, and that each method essentially
proposes a different instantiation of each component. Then
we identify the best algorithm for each component, and
propose variants that outperform the existing ones in at least
one aspect (efficiency or utility). We show that the entire
bibliography can be captured with combinations of the out-
lined components. Finally, we develop novel combinations
that do not appear in the literature.

We provide extensive experiments over four real datasets
with different characteristics. The main takeaway is that
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there is no best solution, but rather there are trade-offs on
utility and efficiency. In order to qualitatively assess the
methods, we calculate the skyline of efficiency versus utility;
a method on a skyline is not worse than (or dominated by)
another in terms of both the two examined aspects, which
means that it is interesting in at least one of the aspects. We
further demonstrate that the performance of each method
greatly depends on the setting, i.e., query type, data char-
acteristics, and available privacy budget. More importantly,
we show that for time critical applications, our novel combi-
nations dominate all other techniques. Effectively, our work
shows how a practitioner can engineer a differentially private
histogram method by combining different building blocks
and assessing the quality based on the efficiency/utility
skyline to suit her needs.

The remainder of the paper is organized as follows.
Section 2 provides the necessary preliminaries. Section 3
surveys the related work. Section 4 introduces the basic
components in differentially private histogram methods.
Section 5 describes our proposed component optimizations.
Section 6 introduces mechanisms based on novel component
combinations. Section 7 includes our exhaustive experimen-
tal evaluation. Section 8 concludes our work.

2 PRELIMINARIES

Let D be a collection of datasets. We define a family of
functions F = {Fj : D → H}, such that for all j and
all D ∈ D, Fj(D) = h ∈ H is an (ordered) vector called
histogram. An element of h is termed bin and consists of a
value and a label, where h[i] represents the ith bin value of
h. All histograms have the property that any record in D
increments at most a single h[i] by 1. Finally, we call Fj a
histogram algorithm. For instance, let D ∈ D be a dataset of
medical records. Then, F1 ∈ F may produce histogram h1

such that h1[i] is the number of patients in D having age i,
and F2 ∈ F may produce histogram h2 such that h2[i] is
the number of patients in hospital with id i. Observe that
the presence of a patient in D increments at most one bin by
1 in both histograms.

Our goal is to publish an N -element histogram h pro-
duced by some fixed algorithm F on a D ∈ D, while
satisfying ε-differential privacy and allowing arbitrary point
and interval queries on its bins with high utility. Specifically,
we define an interval query as a range of bins [il, iu],
1 ≤ il ≤ iu ≤ N , which returns the sum

∑iu
i=il

h[i]. In our
example above, an interval query on h1 could be [10, 20],
asking for the number of patients between 10 and 20 years
old. Point queries degenerate from the interval queries when
il = iu. We assume that the queries are not known prior to
the publication of the histogram.

To achieve ε-differential privacy, we apply a mechanism
M on the histogram, which perturbs it in a way that satisfies
the following definition, adapted from [11].

Definition 2.1. A mechanism M : H → Ĥ satisfies ε-
differential privacy for a histogram algorithm F ∈ F , if for
all sets Ĥ ⊆ Ĥ, and every pair D,D′ ∈ D where D′ is obtained
from D by removing a record (D,D′ are called neighboring), it
holds that

Pr[M(F (D)) ∈ Ĥ] ≤ eε · Pr[M(F (D′)) ∈ Ĥ]

Intuitively, ε-differential privacy guarantees that the per-
turbed histogram Ĥ will be the same with high probability
(tunable by ε), regardless of whether a patient agrees to
participate in the publication or not. Equivalently, the sensi-
tive information of any patient cannot be inferred from the
published data.

Definition 2.2. The sensitivity of any histogram algorithm
F ∈ F is ∆(F ) = maxD,D′∈D ‖F (D)− F (D′)‖ = 1 for
all neighboring D,D′ ∈ D.

In other words, the sensitivity of F represents how much
the histogram F (D) changes when a record is deleted from
D. Since any record contributes 1 to at most a single bin, the
sensitivity is 1 for any histogram algorithm F ∈ F .

The most basic technique for achieving ε-differential
privacy adds Laplace noise to the histogram bins using the
Laplace Perturbation Algorithm (LPA [9], [12]). Let Lap(λ)
be a random variable drawn from a Laplace distribution
with mean zero and scale parameter λ. LPA achieves ε-
differential privacy through the mechanism outlined in the
following theorem, adapted from [9].

Theorem 2.3. Let F ∈ F and define h def
= F (D). A mechanism

M that adds independently generated noise from a zero-mean
Laplace distribution with scale parameter λ = ∆(F )/ε = 1/ε
to each of the values of h, i.e., which produces transcript ĥ =
h + 〈Lap(1/ε)〉N , enjoys ε-differential privacy.

With LPA, an interval query [il, iu] is processed on the
noisy ĥ and returns

∑iu
i=il

ĥ[i]. The Laplace noise injected
in each bin introduces error, which is aggregated when the
noisy bin values are added. For large ranges, this error
may completely destroy the utility of the answer. Numerous
works (overviewed in Section 3) introduce alternative mech-
anisms for improving the utility of the output histograms in
the case of interval queries.

Next, we include a useful composition theorem (adapted
from [13]) based on [9], [14]. It concerns executions of
multiple differentially private mechanisms on non-disjoint
and disjoint inputs.

Theorem 2.4. Let M1, . . . ,Mr be mechanisms, such that each
Mi provides εi-differential privacy. Let h1, . . ., hr ∈ H be his-
tograms created on pairwise non-disjoint (resp. disjoint) datasets
D1, . . ., Dr, respectively. Let M be another mechanism that ex-
ecutes M1(h1), . . . , Mr(hr) using independent randomness for
each Mi, and returns their outputs. Then, M satisfies (

∑r
i=1 εi)-

differential privacy (resp. (maxri=1 εi)-differential privacy).

The above theorem allows us to view ε as a privacy budget
that is distributed among the r mechanisms. Moreover, note
that the theorem holds even when Mi receives as input the
private outputs of M1, . . . ,Mi−1 [13].

3 RELATED WORK

Existing literature on differentially private histograms aims
at improving upon LPA in terms of utility. While there are
theoretical lower bounds [15], [16], [17], [18] on the utility
of differentially private mechanisms for point and interval
queries, different methods offer different utility in practice.
The methods can be divided into two categories; data-aware
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(Section 3.1) that utilize smoothing, and data-oblivious (Sec-
tion 3.2) that rely on hierarchical tree structures. In Section 3.3
we discuss the performance of methods in each category
and previous experimental evaluations on the topic.

3.1 Data-aware Methods

These approaches first smooth the histogram, typically ei-
ther by grouping similar bin values and substituting them
with their average, or by performing a smoothing filter
such as the Discrete Fourier Transform (DFT). Then, they
apply Laplace noise similar to LPA to the averages or the
DFT coefficients. Interval queries are processed by sum-
ming the histogram bin values in the range. As such, the
output error increases linearly with the interval length.
Smoothing reduces the sensitivity and, hence, the injected
Laplace noise, but adds approximation error. As a result,
smoothing methods are effective if the Laplace noise error
reduction exceeds the smoothing approximation error. The
bin grouping algorithm assigns scores to a set of potential
grouping strategies, and selects the one with the minimum
score, in a manner that does not compromise differential
privacy. Existing approaches differ in the set of examined
strategies, the scoring function, and the selection process.

The SF algorithm [2] follows the grouping and averaging
paradigm. Specifically, given as input a fixed parameter
k and privacy budgets ε, ε′, SF initially finds a set of k
groups of contiguous bins through an ε′-differentially private
process. Subsequently, it smooths the bin values based on
the grouping, and adds Laplace noise generating (ε − ε′)-
differentially private histogram. Due to linear composition
(Theorem 2.4), the SF mechanism achieves ε-differential
privacy. The grouping sub mechanism of SF operates on
the original histogram and determines the k groups such
that the estimated squared error is minimized. This error is
expressed as the sum of (i) the squared approximation error
due to smoothing, and (ii) the squared error from injecting
Laplace noise with scale 1/(ε − ε′) prior to publication. It
then applies the exponential mechanism [19] in order to
alter the group borders and achieve ε′-differential privacy.
Note that, due to this step, the total error of SF deviates
from the actual minimum. The grouping component of SF
runs in O(N2), where N is the number of histogram bins.

Acs et al. [1] present two mechanisms, EFPA and P-
HP. EFPA is an improvement of [20], which smooths the
histogram using a subset of its DFT coefficients perturbed
with Laplace noise, while guaranteeing that the output
histogram satisfies ε-differential privacy. P-HP is a grouping
and averaging method that improves SF [2]. In particular,
instead of receiving the number of groups k as input, it
discovers the optimal value of k on-the-fly. Contrary to SF,
it utilizes an absolute error metric. The grouping algorithm
of P-HP runs also in O(N2), but similarly to SF does not
examine all possible groups. P-HP is shown to outperform
both EFPA and SF in terms of utility [1].

AHP [3] first applies LPA to the histogram with noise
scale 1/ε′, and sorts the resulting bins in descending or-
der. Subsequently, it executes a grouping and averaging
technique that is different from SF and P-HP. Specifically,
it operates on already ε′-differentially private data and,
hence, does not need to apply the exponential mechanism.

Moreover, it finds the grouping that minimizes the squared
error metric expressed as a function of the noisy data, rather
than the original histogram (and, thus, similar to [1], [2], it
does not guarantee the actual minimum error). Note that
the ordering attempts to minimize the approximation error,
since it results in groups with more uniform bin values.
The authors present two algorithms; one that evaluates all
possible groups and runs in O(N3) time, and a greedy one
that considers only a subset of the possible options and runs
in O(N2). They conducted experiments using the latter, and
demonstrated that AHP offers better utility than P-HP.

DAWA [4] comprises of two stages. The first stage ex-
ecutes a smoothing technique, while the second an opti-
mized version of the matrix mechanism [21]. Its grouping
and averaging component invests ε′ budget to reduce the
absolute error metric similar to [1]. However, instead of
executing the exponential mechanism, it adds noise to the
costs of the groups used in the selection process on-the-fly.
The authors present two instantiations; the first evaluates all
possible groupings and runs in O(N2 logN) time, whereas
the second considers only a subset and runs inO(N log2N).
The output of the smoothing procedure is fed to the matrix
mechanism. The latter belongs to a category of schemes [21],
[22], [23] that take as input a set W of pre-defined interval
queries, and assign more privacy budget to the bins affect-
ing numerous queries. The total time complexity of DAWA
is O(|W|N logN). Finally, DAWA can be adapted to our
setting of arbitrary queries in two ways; either by completely
ignoring the second stage, resulting in time complexity
O(N2 logN) (or O(N log2N) in the approximate version),
or by feeding all the possible queries to the input of the
matrix mechanism, yielding time complexity O(N3 logN).

3.2 Data-oblivious Methods

These are hierarchical schemes that build an aggregate tree
on the original histogram; each bin value is a leaf, and each
internal node represents the sum of the leaves in its subtree.
In order to achieve ε-differential privacy, they add Laplace
noise to each node, which is proportional to the tree level
(since each bin value is incorporated in all the sums along
its path to the root). An interval query is processed by iden-
tifying the maximal subtrees that exactly cover the interval,
and summing the values stored in their roots. Compared to
LPA, these methods essentially increase the sensitivity from
1 to logN , but sum fewer noisy values when processing
the interval query, reducing the aggregate error. Essentially,
they render the output error polylogarithmic to the number
of bins N and independent of the range query length.
Moreover, their time complexity is O(N).

Hay et al. [6] build a binary aggregate tree and inject
Laplace noise uniformly across all nodes. In addition to
constructing the final interval from the roots of the maximal
subtrees that cover the interval, they also explore other node
combinations. Independently from [6], Privelet [8] builds a
Haar wavelet tree and adds Laplace noise, achieving prac-
tically the same effect as [6]. Based on the observation that
the privacy budget should not be divided equally among
all levels, Cormode et al. [5] enhance [6] with a geometric
budget allocation technique. Qardaji et al. [7] survey the
above approaches, concluding that the theoretical optimal
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fan-out of the tree is 16. They experimentally show that [6],
when combined with the budget allocation of [5] and their
optimal fan-out, outperforms Privelet and SF.

3.3 Discussion

Smoothing techniques (with or without ordering) aim at
point and short interval queries because their error increases
linearly with the number of histogram bins within the
range query. Moreover, they can adapt to limited privacy
budgets by generating a small number of large groups. The
additional matrix mechanism in DAWA improves the utility
for pre-defined ranges of any length. Data oblivious (i.e.,
hierarchical) methods are designed mostly for long interval
queries, and their utility is independent of the underlying
data distribution. However, they split the privacy budget
among the tree levels or input queries, and as such, they
perform better with higher ε values.

There are two experimental evaluations on differentially
private histograms. Qardaji et al. [7] compare all data-
oblivious methods, and determine which optimizations
(e.g., splitting the budget unevenly among the tree levels
or using multiple tree node combinations to compute an
interval query) offer the best experimental results in terms
of utility. Hay et al. [10] assess existing methods in terms
of output error, for different input data sizes, distributions,
and query workloads. They mainly focus on how well the
data-aware methods adapt to ε and the number of input
records n.

In our work, we go beyond utility and also include
computational efficiency. More importantly, we do not use
the existing methods as black boxes. Instead, we decompose
each method into algorithmic components. For example, SF
[2] determines the consecutive histogram bins that minimize
the average squared error when they are smoothed. P-HP [1]
implements the same component, but focuses on the average
absolute error. Similarly, both [6] and [5] build an aggregate
tree over the histogram bins, but they allocate the privacy
budget differently among the tree levels. Furthermore, we
observe that each component can be instantiated differently.
For instance, smoothing using the average squared error
can have two different implementations [2], [3]. In our
evaluation, we determine the best instantiation for each
component (i.e., the one that is superior in terms of both
utility and time complexity). In addition, we propose new
component implementations and devise novel component
combinations.

4 BASIC COMPONENTS

In this section, we explain how all the existing techniques
can be expressed as different combinations of four basic
components: Smoothing, Ordering, Fixed Queries, and Hier-
archical. For each component, we identify the best algorithm
in terms of utility and time complexity.

Smoothing: All data-aware mechanisms [1], [2], [3], [4]
of Section 3 utilize smoothing. Initially, smoothing spends
budget ε1 to discover the groups (denoted as gi) for the
input histogram h that minimize the output error. The
tasks performed in order to effectively determine the groups
are elaborated further below. Then, it groups the bins of

h according to the computed groups, and averages their
values. Next, it adds noise to the respective average with
scale 1/(ε2 · |gi|). Finally, it sets the noisy average of every
group gi as the value of the bins in gi, and outputs the noisy
smoothed histogram ĥ.

The grouping procedure of smoothing determines the
way the bins are privately grouped. In all methods, this is
modeled as an optimization problem where the resulting
grouping must minimize a certain error metric. Specifically,
grouping takes as input a histogram h, privacy budgets ε1
and ε2, and an error metric µ. Its goal is to find the groups
that minimize µ, while satisfying ε1-differential privacy. Let
G be a grouping strategy, i.e., a set of |G| groups of contiguous
bins that cover all histogram bins and are mutually disjoint.
Let bj be a bin value, and ḡi the average of the bins in group
gi ∈ G, i.e., ḡi =

∑
bj∈gi bj/|gi|.

The total error has two components. The first is due
to the smoothing process and depends on the difference
between the value bj of a bin and the average ḡi of the
group in which it belongs. The second component is due
to the noise injected after the grouping and averaging by
utilizing budget ε2. The absolute and squared error metrics
combine the two components in different ways. Both metrics
represent the collective error per bin, rather than the final
error in an interval query. Thus, smoothing mainly aims at
maximizing the accuracy of point queries.

Absolute error. This metric is defined in [1], [4] as:

err1 =

|G|∑
i=1

∑
bj∈gi

|bj − ḡi|+
1

ε2

 (1)

The state-of-the-art algorithm that uses the absolute error
is the smoothing component of DAWA [4], which works as
follows. Initially, it calculates the cost ci =

∑
bj∈gi |bj − ḡi|+

1
ε2

of each group gi in Equation 1 by utilizing a binary
search tree in O(logN) time. Then, it adds noise with scale
1/(ε1|gi|) to ci producing ĉi =

∑
bj∈gi |bj − ḡi| + 1

ε2
+

Lap(1/(ε1|gi|)). Finally, it finds the groups that minimize
ˆerr1 =

∑|G|
i=1 ĉi using dynamic programming in O(N2)

time. The total time of grouping is dominated by that of
computing the costs of all the O(N2) groups, which is
O(N2 logN).

Squared error. This metric is defined in [2], [3] as:

err2 =

|G|∑
i=1

∑
bj∈gi

(bj − ḡi)2 +
1

ε22

 (2)

The state-of-the-art grouping algorithm that utilizes the
squared error is AHP [3], which works as follows. It adds
noise with scale 1/ε1 to each bin of the initial histogram,
and computes cost ĉi =

∑
b̂j∈gi (b̂j − ḡi)2 + 1

ε22
, where b̂j is a

noisy bin value, and ḡi the average of a group of noisy bins.
Finally, it finds the groups that minimize ˆerr2 =

∑|G|
i=1 ĉi. Its

time complexity is O(N3).

The smoothing component returns a noisy histogram,
and the queries are answered by summing noisy bin values.
As such, its error depends on the interval length linearly.
The running time of the component is N2 logN using the
algorithm of [4] for the absolute error metric, and N3 using
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the algorithm of [3] for the squared error metric. We reduce
the running time to the optimal value for the squared
error metric in Section 5.1. Moreover, [4] has presented
an approximate version of smoothing that only considers
groups whose size is a power of 2. The approximation has
running time of O(N logN). Depending on whether we use
this approximation or not, we can have three variations of
smoothing: approximate smoothing, smoothing with abso-
lute error metric, and smoothing with squared error metric.

Ordering: Ordering [24] can be applied before
smoothing, in order to group bins with similar values and
allow for more effective smoothing. It receives the histogram
h and budget ε, it adds (Laplace) noise with scale λ = 1/ε
to each bin value, and sorts them in descending order. The
running time of ordering is O(N logN), using any optimal
sorting algorithm.

Fixed Queries: The Fixed Queries component is the
building block of methods that target interval queries
known a priori (DAWA [4]). It receives as input a histogram
h, a privacy budget ε, and a query workload W. It executes
an off-the-shelf mechanism such as MWEM [23] or the
matrix mechanism [21], and outputs the noisy histogram
ĥ. In this work, we use the optimized matrix mechanism
algorithm of [4] for this component, which has the lowest
time complexity (i.e., O(|W|N logN)) and comparable util-
ity to the competitors. Note that in our settings, the queries
are not known a priori. Thus, the fixed queries component
works with workload all O(N2) possible queries. In this
case, it degenerates to the aggregate tree method [4], and
its running time becomes O(N3 logN)). In order to benefit
from it, we should combine it with smoothing.

Hierarchical: The hierarchical component builds an
aggregate tree and characterizes the data-oblivious meth-
ods. The best implementation is described in [7]. It receives
as input a histogram h, privacy budget ε, and builds an
aggregate tree of fan-out f 1 and height t. It splits the
budget ε into t budgets such that

∑t
i=1 εi = ε, and adds

Laplace noise with scale 1/εi to tree level i, for each i.
In order to maximize utility, the hierarchical component
answers queries by combining nodes from the noisy tree
using the method of [6] (see Section 3). For an interval
covering m bins, this component induces O(logm logN)
error, as opposed to LPA that inflicts O(m) error. Therefore,
the hierarchical methods exhibit benefits for large intervals.

“Decomposing” the Literature. Some works build upon
a single standalone component; [1], [2], [3] are essentially
different instantiations of smoothing, whereas [5], [6], [8]
implement the hierarchical component. On the other hand,
others schemes constitute combinations of two components.
Specifically, [4] initially applies smoothing with the absolute
error metric or approximate smoothing, and then uses the
fixed queries component. Finally, [3] utilizes the ordering
component and then applies smoothing with the squared
error metric. Identifying these basic components allows us
to (i) carefully study and optimize them (Section 5), and
(ii) construct new efficient and effective schemes via the
seamless combination of these components (Section 6).

1. We set f = 16 because it is optimal in terms of utility for interval queries
[7].

5 COMPONENT OPTIMIZATIONS

We optimize two basic components; (i) the smoothing with
the squared error metric, resulting in better utility and
running time of O(N2), which we also show that is optimal,
(ii) the fixed queries by reducing its time complexity by a
factor of N , while maintaining its utility.

5.1 Smoothing
We introduce an optimal way to compute the squared error,
which (i) reduces the time complexity of the current best
method by a factor of N , and (ii) improves the accuracy of
smoothing.

The following theorem provides a lower bound on the
time complexity of smoothing. The lower bound applies to
both squared and absolute error metrics.

Theorem 5.1. A grouping algorithm on a histogram with N bins
runs in Ω(N2).

Proof: The number of all the possible groups is
Θ(N2). This is because we have N groups of size 1, N − 1
groups of size 2, and so on (recall that a permissible group
can only consist of contiguous bins). Thus, the total number
of groups is N + (N − 1) + (N − 2) + . . . + 1 = N(N+1)

2 .
It suffices to prove that there is an input for which any
algorithm must check all the possible groups at least once.

We build a histogram such that every group gi con-
tributes cost ĉi = |gi| (i.e., equal to its cardinality) to
the error metric. In this scenario, any grouping strategy G
minimizes the error metric, since every G leads to error∑
gi∈G ĉi = N . Now suppose that we reduce the cost of

a random group gj to |gj | − δ for some δ > 0. This is
possible due to the fact that the costs of the groups are
values with noise and hence, a single group cost may be
reduced without affecting the others. Any grouping strategy
that includes gj will result in error N−δ, whereas any other
will result in N . Therefore, the grouping strategy G∗ that
minimizes the error metric must include gj . Since gj is a
random group, the algorithm that finds G∗ must check the
ĉi of every group gi in order to find gj .

We next present an algorithm that minimizes the squared
error ˆerr2 inO(N2) time. Therefore, due to the lower bound
in Theorem 5.1, our algorithm is optimal. Given that ĝi =∑
b̂j∈gi

b̂j

|gi| , we observe that the cost of each group can be
rewritten as follows.

ĉi =
∑
b̂j∈gi

(
b̂j − ḡi

)2
+

1

ε22
=
∑
b̂j∈gi

b̂j
2
−

(∑
b̂j∈gi b̂j

)2
|gi|

+
1

ε22

Based on the above equation, we can efficiently compute
the cost of each group using the following procedure. Ini-
tially, we add noise with scale 1/ε1 to every histogram bin.
In a pre-processing stage, we build vector v1 that stores the
noisy bin values b̂j , and vector v2 that stores their squares
b̂2j . Subsequently, we construct the prefix sums for each
vector. Specifically, the prefix sums for v1 (v2) is a vector
v′1 (v′2), such that v′1[j] =

∑j
i=1 v1[i] (v′2[j] =

∑j
i=1 v2[i]).

The pre-processing takes O(N) time. For each group gi over
contiguous bins l, l + 1, . . . , u, we can compute

∑
b̂j∈gi b̂j

as v′1[u] − v′1[l − 1] and
∑
b̂j∈gi b̂

2
j as v′2[u] − v′2[l − 1] in
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O(1) time. Thus, calculating the cost of any group requires
O(1) time. Since there are O(N2) possible groups, we can
compute all their costs in O(N2). Finally, in order to find
the grouping strategy that minimizes ˆerr2, we employ the
dynamic programming procedure of [4]. This procedure is
similar to computing v-optimal histograms [25], and runs
in time linear to the input costs, i.e., O(N2). Therefore, our
algorithm has total running time O(N2).

We conclude this section with an improvement on the
accuracy yielded by the use of the squared error. Recall that
our algorithm computes the group costs on the noisy his-
togram in order to ensure ε2-differential privacy. Thus, the
grouping strategy that minimizes ˆerr2, may not minimize
err2 (defined on the original bins). In order to alleviate the
effects of the extra noise in ˆerr2 we exploit the following
observation. Using a similar approach as in the proof of
Lemma 1 in [2], we can show that each group is expected to
have its cost increased due to noise by 2 |gi|−1

ε21
, i.e., propor-

tionally to the group size. The extra error leads to smaller
groups for ˆerr2 minimization, compared to err2. To mitigate
this, we reduce the calculated cost ĉi of each group gi by
2 |gi|−1

ε21
, before applying dynamic programming. Compared

to its direct competitor [3], our algorithm improves the
utility by up to 70% and the complexity by N .

5.2 Fixed Queries
The main idea is to use the prefix sums [26] as query
workload for the fixed queries component. A prefix sum
query over h is simply described by an index j, and re-
turns the sum of bins b1, . . . , bj , i.e.,

∑j
i=1 h[i]. There are

N prefix sums, hereafter represented by a vector s such
that s[j] =

∑j
i=1 h[i] for j = 1, . . . , N . Moreover, observe

that any arbitrary query can be always computed by the
subtraction of exactly two prefix sums; for instance, interval
[il, iu] is answered as s[iu]− s[il − 1].

The proposed method takes advantage of the fact that
there are N prefix sums, as opposed to O(N2) possible
queries, to improve the complexity of the optimized matrix
mechanism of DAWA by a factor of N . It considers the
prefix sums as the fixed workload W, and produces a noisy
histogram ĥ. The latter enables the computation of a vector
of noisy prefix sums ŝ, such that ŝ[i] =

∑j
i=1 ĥ[i]. Then, each

interval query [il, iu] is computed in O(1) as ŝ[iu]− ŝ[il−1].
Since the fixed queries component leads to highly accurate
ŝ[i], the query result is expected to have very low error.

The time complexity of the method is O(|W|N logN) =
O(N2 logN), since now |W| = N . The expected error
is at most two times larger than that of DAWA’s matrix
mechanism because our method subtracts two noisy values
from the prefix sums array to answer an interval query,
while DAWA’s matrix mechanism essentially returns a value
for the same interval. However, in our experiments we
demonstrate that the utility of our approach is practically
the same when combined with the smoothing component.

6 NOVEL COMBINATIONS: HIERARCHICAL
SMOOTHING

We seamlessly combine smoothing with the hierarchical
component in order to benefit from the merits of both. Note

that this combination can be used with either the average
squared or absolute error, effectively yielding two different
schemes. The running time is O(N) when using the squared
error, and O(N logN) with the absolute error metric.

Recall that the hierarchical component builds an aggre-
gate tree in order to compose the query answer from a small
number of noisy values, thus reducing the error resulting
from noise aggregation as opposed to LPA. However, due
to the increased sensitivity of the aggregate tree, it must
add more noise per tree level than LPA. On the other
hand, smoothing reduces the sensitivity of a set of bins via
grouping and averaging, thus lowering the required noise.
Our hierarchical smoothing method builds an aggregate tree
similar to the hierarchical component (thus reducing the
error from noise aggregation), but smooths entire subtrees via
grouping and averaging similar to the smoothing compo-
nent (thus reducing the per-level, per-bin noise).

Figure 1 illustrates the main idea. Since each non-leaf
node already holds an aggregate value of the bin values
it covers, the scheme runs the smoothing once for the
leaf level (i.e., for h) with budget ε1, exploring group-
ings which consist of groups that only correspond to the
leaves of full subtrees. For example, let the correspond-
ing histogram bins of the four leaves be b1, b2, b3, b4. The
smoothing algorithm will consider the grouping strate-
gies G1 = {b1}, {b2}, {b3}, {b4}, G2 = {b1, b2}, {b3}, {b4},
G3 = {b1}, {b2}, {b3, b4}, G4 = {b1, b2}, {b3, b4}, and
G5 = {b1, b2, b3, b4}. Suppose that the black nodes in the
figure comprise a group in the returned grouping strategy,
in this case for strategy G3. We refer to the root of the
subtree corresponding to a group as the group root. Next,
the scheme creates the aggregate tree, pruning the nodes
under the group roots (black nodes b3 and b4), and adds
noise to the remaining nodes using budget ε2. Finally, the
scheme computes the values of the pruned nodes from
their corresponding group root. Specifically, the value in
the group root is distributed evenly across the nodes of the
same level in the subtree. This is equivalent to smoothing
the nodes at each level of the subtree via averaging.

h
h

Smoothing

group root

Fig. 1. Hierarchical Smoothing example

Hierarchical smoothing increases the accuracy per-level
per-node as smoothing does per-bin on a histogram, be-
cause each pruned node receives a portion of the noise
of its parent. In our example, the pruned nodes b3 and

b4 have squared error equal to
(
b3 − b3+b4

2

)2
+ 32

2ε22
or(

b3 − b3+b4
2

)2
+ 32

2ε22
. Without the pruning their error was 32

ε22
,

since the height of the tree is 3. The smoothing algorithm

prunes these nodes only if
(
b3 − b3+b4

2

)2
+
(
b4 − b3+b4

2

)2
is small. As such, the scheme reduces the error for short
query intervals, while it keeps the low error offered by the
hierarchical component for large intervals. The next theorem
analyzes the privacy of the scheme.
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Theorem 6.1. Hierarchical smoothing satisfies ε-differential pri-
vacy for ε = ε1 + ε2, where ε1 is the privacy budget for the
smoothing and ε2 for the hierarchical component.

Proof. The smoothing component spends budget ε1 and
satisfies ε1-differential privacy. The hierarchical compo-
nent spends budget ε2 and satisfies ε2-differential privacy-
differential privacy. The removal of the pruned nodes does
not violate privacy because it is performed according to the
output of the differentially private smoothing component.
The computed values of the pruned nodes derive from the
noisy estimate of the group root and, as such, it is considered
post-processing on the output of the differentially private
hierarchical component. Moreover, both components work
on non-disjoint inputs. Due to Theorem 2.4, the method
satisfies (ε = ε1 + ε2)-differential privacy.

The running time of the scheme depends on the error
metric. Observe that the number of groups examined by
smoothing is equal to the number of nodes in the aggregate
tree, i.e., O(N). For the case of absolute error, the running
time of smoothing is O(N logN), using the algorithm of [4]
which needs O(logN) time to compute the absolute error
of each group given N groups. For the squared error metric,
the complexity is O(N) using our optimal algorithm from
Section 5.1, which offers linear complexity on the number
of input groups. The hierarchical component runs in time
linear in the number of input nodes, thus, in O(N). As such,
our Hierarchical Smoothing runs in O(logN) when mini-
mizing the absolute error and in O(N) when minimizing
the squared error.

We can apply an additional utility optimization; instead
of completely disregarding the nodes of a pruned subtree,
we can actually utilize them to reduce the noise of its
root. Specifically, for each level of the pruned subtree, we
sum the node values and add noise, producing a noisy
estimation of the root. Subsequently, we use the average of
these estimations as the root noisy value. The mechanism
then proceeds as described above, i.e., the root value is
distributed evenly among the subtree nodes. This reduces
the squared error of the root value by t′, where t′ is the height
of the subtree, and hence the error of the approximations of
the pruned nodes.

For example, in Figure 1 the group root of the pruned
nodes receives noise of magnitude 3/ε2. However, after the
pruning, the corresponding bin values b3 and b4 are incor-
porated only in 2 nodes: the group root and the tree root.
As such, we can still compute a noisy value of a function on
the pruned nodes by spending the unused privacy budget
of ε2/3 without violating privacy. We choose to compute the
sum of the pruned nodes with noise of scale 3/ε2 because
this gives us another estimation of the group root value and
it allows us to retrieve a more accurate value for it through
averaging. Specifically, the squared error on the group root
before was 32

ε22
, while after the optimization it becomes 32

2ε22
.

Transitively, the error of b3 becomes
(
b3 − b3+b4

2

)2
+ 32

4ε22

from
(
b3 − b3+b4

2

)2
+ 32

2ε22
. The same holds for b4. In this

example, the errors due to the noise addition were reduced
by a factor of 2 because the pruned subtree has height of
t′ = 2 and hence we derive 2 noisy estimations of the group

root value. In general, this reduction is proportional to t′, as
mentioned in the previous paragraph, since we average t′

noisy estimates.
Finally, note that ordering cannot be used before the

smoothing because the final aggregate tree is built consid-
ering the order of the bins in h. If ordering were used,
grouping could select a group gi, whose bins are not the
leaves of a full subtree on h (since ordering may permute
the bins of h). Therefore, gi could not determine a group
root to smooth a subtree, thus violating the scheme.

7 EXPERIMENTAL EVALUATION

Section 7.1 describes the datasets and the methodology.
Sections 7.2 and 7.3 present our experimental results, and
Section 7.4 summarizes them.

7.1 Methodology
We perform experiments with four real datasets, henceforth
referred to as Rome2, Log [2], [4], [6], [22], Citations [27],
and PUMS3. Rome consists of 1, 442 bins, where each bin
bi represents the number of cars on a specific road at time
instance i. Log contains 32, 768 bins with keyword statistics
collected from Google Trends and American Online between
2004 and 2010. Each bin value corresponds to the frequency
of a certain keyword. Citations contains information about
scientific paper references. We create a histogram of 2, 414
bins as in [7], where each bin bi is the number of papers
cited i times. Finally, PUMS is created from the Public Use
Microdata Sample for California. It consists of 500, 000 indi-
viduals, each having 10 attributes. We order the individuals
according to the income attribute, resulting in a domain size
of 7, 578. Rome, Log, Citations, and PUMS have considerably
different distributions, depicted in Figures 2(a), 2(b), 2(c),
and 2(d), respectively. Rome exhibits high fluctuations at
specific contiguous bins (reflecting the peak hours), and
includes numerous small values (reflecting non-peak hours).
Log consists of a large number of zero-valued bins along
with a few fluctuations. Citations and PUMS are very sparse,
and their consecutive bin values are similar, especially for
bins that correspond to numerous citations (most such bins
have zero values), or high incomes, respectively.

In our evaluation, we employ the state-of-the-art method
for each component, and compare all possible combinations
of the basic components, as summarized in Table 1. Tech-
niques with an asterisk (“*”) correspond to previous work,
and are used as are. Methods with two asterisks (“**”) have
been proposed before, but utilize our improved smoothing
with squared error metric presented in Section 5.1 or the
fixed queries with the prefix sums as workload presented in
Section 5.2. The rest correspond to novel combinations that
have not been explored in the literature.

Specifically, S1 incorporates the smoothing algorithm of
[4], based on the absolute error metric. S̃ is the approximate
smoothing of [4]. S2 applies smoothing using the squared
error metric, and it utilizes the quadratic algorithm and
utility optimization described in Section 5.1. O represents
the ordering component, MM the matrix mechanism (fixed

2. http://apprendistato.informaservizi.it/
3. https://www.census.gov/census2000/PUMS5.html
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Fig. 2. Data distributions

TABLE 1
Summary of methods

Scheme Abbrv Time

Smoothing with absolute error metric* S1 O(N2 logN)

Approximate smoothing* S̃ O(N log2N)
Smoothing with squared error metric** S2 O(N2)

Ordering and smoothing with absolute error metric O + S1 O(N2 logN)

Ordering and approximate smoothing O + S̃ O(N log2N)
Ordering and smoothing with squared error metric** O + S2 O(N2)

Smoothing with absolute error metric and matrix mechanism* S1 + MM O(N3 logN)

Approximate smoothing and matrix mechanism* S̃ + MM O(N3 logN)
Smoothing with squared error metric and matrix mechanism S2 + MM O(N3 logN)
Smoothing with absolute error metric and prefix matrix mechanism** S1 + PMM O(N2 logN)

Approximate smoothing and prefix matrix mechanism** S̃ + PMM O(N2 logN)
Smoothing with squared error metric and prefix matrix mechanism S2 + PMM O(N2 logN)
Hierarchical* H O(N)
Hierarchical smoothing with absolute error metric S1 + H O(N logN)
Hierarchical smoothing with squared error metric S2 + H O(N)

queries component) of [4] implemented with input all the
possible interval queries, and PMM corresponds to the
matrix mechanism with the prefix sums as workload (see
Section 5.2). O + S2 is the method of [3] with our S2 al-
gorithm, while S1 + MM and S̃ + MM are essentially the
methods presented in [4]. H implements the aggregate tree,
using all optimizations of [7]. Finally, ordering cannot be
used with methods that utilize the hierarchical or the fixed
queries component, because these methods take advantage
of the fact that interval queries are computed on consecutive
bins. Ordering may permute the bins of the histogram,
diminishing this advantage.

We distinguish five method groups (separated by hori-
zontal lines in Table 1) based on component combinations;
smoothing (S1, S̃, S2), ordering and smoothing (O + S1,
O + S̃, O + S2), smoothing and fixed queries (S1 + MM,
S̃ + MM, S2 + MM, S1 + PMM, S̃ + PMM, S2 + PMM), hi-
erarchical (H), and hierarchical smoothing (S1 + H, S2 + H).
In the following diagrams, methods that utilize smoothing
with the absolute error metric are represented with a cross,
approximate smoothing with a circle, and smoothing with
the squared error metric with a triangle. Combinations of
smoothing and fixed queries with prefix sums are in red
color, smoothing and fixed queries with all possible queries
as workload are in orange, ordering and smoothing are in
blue, and hierarchical smoothing are in green color.

Concerning the allocation of budget ε to the various
components, we follow the empirical allocation policies
of the existing schemes, while for hierarchical smoothing
we follow the allocation of [4]. Specifically, ordering and
smoothing allocates ε1 = 0.65ε for ordering and grouping,

and ε2 = 0.35ε for publishing, while smoothing, smoothing
and fixed queries, and hierarchical smoothing set ε1 = 0.25ε
and ε2 = 0.75ε. Determining the optimal allocation is out of
our scope, but we refer the interesting reader to [10].

All methods were implemented in Java and executed on
an Intel Core i7 2.5GHz with 16GB of RAM, running MacOS
10.12. For each method, we generated 100 histograms, ran
the queries, and reported the average error. Methods utiliz-
ing the matrix mechanism (MM) terminated only in Rome
and Citations due to their small domain sizes; therefore,
MM is not included in the evaluation of the other datasets
(it would take about a month to terminate on Log). In
Section 7.2, we assess the running time versus the error, and
identify the best method for each group. Then, in Section 7.3
we evaluate the error of the selected group representatives
for different ε values and interval length r.

7.2 Running Time vs. Error
We initially assess two evaluation metrics: (i) the execution
time for building the differentially private histogram, and
(ii) the mean squared error (MSE). We apply two ε values,
namely 0.01 (small ε) and 1 (large ε), and two query types
(point and interval queries). Specifically, we generate all N
possible point queries, and measure the average MSE per
bin. For the interval queries we generate all

(N
2

)
+ N of

them, and report the average MSE per query. Each plot
depicts in bold the methods that are on the skyline for each
experiment; the rest are dominated by some skyline method,
i.e., they are inferior in terms of both efficiency and utility.

Figure 3 focuses on the Rome dataset for ε = 0.01. As
shown in Figure 3(a) for point queries, the skyline consists
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Fig. 3. Time vs. Error for small ε for Rome

of S̃, S1 + H, and S2 + H, with S̃ achieving the highest
utility and S1 + H being the most efficient for time critical
applications. In general, smoothing methods offer low error
because they mostly target point queries. On the other hand,
since the fixed query component aims at range queries,
it does not offer utility benefits with respect to the corre-
sponding S̃, S1 and S2 (in some cases the utility degrades).
Hierarchical methods (H, S1 + H, S2 + H) are very fast, but
with the exception of S1 + H, they yield rather high error.
All ordering based methods (O + S1, O + S̃, O + S2) are
dominated because the returned order of the bins is far from
optimal due to the limited privacy budget.

For interval queries (Figure 3(b)) the skyline contains
S1, S2, and S2 + H. In general, due to the small number
of bins (1, 442), smoothing offers good utility without the
need to combine it with other components because most
interval queries are rather short, involving a few bins. Ob-
serve that methods based on prefix sums (e.g., S1 + PMM)
have similar error to those with workload all possible
queries (e.g., S1 + MM), while being orders of magnitude
faster. Combinations involving the hierarchical component
(S1 + H, S2 + H) are the most efficient, while offering high
utility. Techniques based on ordering fail in this setting as
well.

Figure 4 repeats the experiment of Figure 3 for ε = 1.
For point queries (Figure 4(a)) the skyline consists of S̃,
O + S̃, and H. Compared to Figure 3(a), hierarchical meth-
ods do not take advantage of the increased privacy budget,
and their relative utility with respect to the rest is worse.
On the other hand, the relative performance of techniques
that combine ordering and smoothing improves; finding
the correct ordering before smoothing is important for the
output error. For interval queries and large ε (Figure 4(b)),
methods that integrate smoothing with hierarchical or fixed
queries components perform better than those based solely
on smoothing. In this setting, S1 + PMM and S2 + H are the
dominant techniques. Observe that for large ε, no method is
on the skylines of both point and interval queries.

Figure 5 plots the skyline between the execution time
and the MSE of each method for ε = 0.01 and the Log
dataset. The matrix mechanism with workload all possible
queries failed to terminate in a reasonable time due to the
numerous bins (32, 768). According to Figures 5(a) and 5(b),
S1 + H and S2 + H are the best methods for both point and
interval queries, with S1 + H offering better utility at the
expense of higher running time. Due to the large histogram
size, the average range is long; thus, the fixed queries and
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Fig. 4. Time vs. Error for large ε for Rome
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Fig. 5. Time vs. Error for small ε for Log
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Fig. 6. Time vs. Error for large ε for Log

hierarchical components yield utility benefits for interval
queries. Smoothing methods are also competitive because
when ε is small, they smooth more bins in order to maintain
low error (due to noise addition).

Similarly, Figure 6 plots the results for ε = 1 and the Log
dataset. For point queries (Figure 6(a)), the skyline contains
S̃, O + S̃ and S2 + H, with S̃ offering the best utility and
S2 + H the highest efficiency. The latter is also the absolute
winner for interval queries in terms of both accuracy and
running time (Figure 6(b)). Comparing with the case of
ε = 0.01 (Figure 5), methods that utilize smoothing with
the absolute error metric offer better results than those with
the squared error, when ε is small. This is due to the fact
that, for the same ε value, S1 needs less noise than S2 to
compute the grouping strategy. For large ε values, methods
based on the squared error are in general better because they
have enough privacy budget to discover the correct groups,
and they target explicitly the metric used in the evaluation.

Figure 7 depicts the execution time and the MSE for
ε = 0.01 and the Citations dataset. The Citations histogram
is small (2, 414 bins), implying that the average range is
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Fig. 7. Time vs. Error for small ε for Citations
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Fig. 8. Time vs. Error for large ε for Citations

short. Moreover, as shown in Figure 2(c), consecutive bins
have similar values (especially for bins corresponding to
high citations, most of which are empty). Consequently,
smoothing methods can easily generate large groups with
low error, even if the privacy budget is small. S̃ achieves
the best utility in case of both point and interval queries.
For point (resp. interval) queries, the skyline also contains
S1 + H and S2 + H (S2 + H), due to their efficiency, with
however much larger error compared to S̃.

Figure 8 repeats the experiment of Figure 7 for ε = 1.
Again, S̃, S1 + H, S2 + H are on the skyline for point queries
(Figure 8(a)), with S1 + H and S2 + H offering utility closer
to that of S̃ due to the large privacy budget available in
this setting. For interval queries (Figure 8(b)), the skyline
consists of S1, S̃ + PMM, S1 + H and S2 + H. S̃ is dominated
in this setting because the privacy budget allows S1 to
find a better grouping strategy. Moreover, the high ε value
enhances the utility of methods that combine smoothing
with either the fixed queries or hierarchical component
when answering interval queries.

The last set of experiments focuses on the PUMS dataset,
which is similar to Citations. As such, for point queries
(Figure 9(a)), the skyline contains S̃ and S2 + H. However,
PUMS incorporates bins with more abrupt value fluctu-
ations than Citations. Thus, O + S̃ is also on the skyline
because ordering successfully eliminates the value fluctu-
ations of neighboring bins. In the case of interval queries
(Figure 9(b)), the existence of zero-valued bins and the large
histogram size (7, 578) allows the effective combination of
smoothing with the fixed queries or hierarchical component.
Consequently, S1 + PMM and S̃ + PMM are on the skyline
along with S2 + H. The diagram for ε = 1 and point queries
(Figure 10(a)) is similar to the case of small ε (Figure 9(a)).
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Fig. 9. Time vs. Error for small ε for PUMS
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Fig. 10. Time vs. Error for large ε for PUMS

However, as shown in Figure 10(b), for interval queries,
S2 + H benefits more from the larger budget, and dominates
all other methods in terms of both utility and efficiency.

Table 2 summarizes the number of appearances of each
method in some skyline for the Running Time vs. Error
experiments. S2 + H offers the best trade-off since it is on
the skyline in almost every setting, followed by S̃ and
S1 + H. The worst methods are the combinations of smooth-
ing and matrix mechanism with workload every possible
query, failing to offer better utility than their prefix sums
workload counterparts, while having worse time efficiency.
For the combination of ordering and smoothing, only O + S̃
manages to be on skylines.

7.3 Utility Evaluation

In the sequel, we first identify the top method per compo-
nent combination group. Recall that we have five groups:
smoothing, ordering and smoothing, smoothing and fixed
queries, hierarchical, and hierarchical smoothing. As top
method per group, we select the one that lies on the most
skylines per category, denoted with bold text in Table 2: S̃ for
smoothing, O + S̃ for ordering and smoothing, S1 + PMM
for smoothing and fixed queries (although it is on the same
number of skylines as S̃ + PMM, it offers better utility than
the latter in most settings), H for hierarchical, and S2 + H
for hierarchical smoothing. Then, we further evaluate the
top methods in terms of output error for different ε values
and interval query sizes. In the first set of experiments, we
assess the MSE for privacy budget ε ranging from 0.01 to 1.

Figure 11 compares the best methods using Rome. For
point queries (Figure 11(a)), S̃ retains its low error even for
small ε values because it merges more bins together in order
to reduce the error due to the noise addition. S1 + PMM also
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TABLE 2
Methods on the skyline of Time vs. Error

Small ε Large ε
Point queries Interval queries Point queries Interval queries

Method Rome Log Citations PUMS Rome Log Citations PUMS Rome Log Citations PUMS Rome Log Citations PUMS Total
S1 X X 2
S̃ X X X X X X X X 8
S2 X 1

O + S1 0
O + S̃ X X X X 4
O + S2 0

S1 + MM 0
S̃ + MM 0
S2 + MM 0

S1 + PMM X X 2
S̃ + PMM X X 2
S2 + PMM 0

H X 1
S1 + H X X X X X X 6
S2 + H X X X X X X X X X X X X X X X 15
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Fig. 11. Error vs. ε for Rome
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Fig. 12. Error vs. ε for Log

benefits from the smoothing component and its utility is
comparable to that of S̃. O + S̃ yields low error only for ε ≥
0.05 because, for smaller values, the ordering is far from the
optimal, resulting in almost arbitrary bin grouping. H and
S2 + H deteriorate significantly as ε decreases, with S2 + H
offering much better results than H due to the smoothing
component. As shown in Figure 11(b) for interval queries,
S1 + PMM, followed by S2 + H, achieves the lowest error
because the fixed queries/hierarchical components aim at
interval queries. H outperforms S̃ for ε ≥ 0.05. Finally, O + S̃
achieves acceptable utility only for ε ≥ 0.5, since it is mainly
designed for point queries, and requires large ε values to
find an ordering which is close to optimal.

Figure 12 repeats the experiment using Log. For points
queries (Figure 12(a)), the top-3 methods are S̃, S1 + PMM
and S2 + H, in this order. O + S̃ is consistently outper-
formed by S2 + H in this setting. H is by far the worst choice.
For interval queries (Figure 12(b)), S1 + PMM and S2 + H
are the best methods benefiting from the merits of both their
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Fig. 13. Error vs. ε for Citations
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Fig. 14. Error vs. ε for PUMS

components. H performs well only for ε ≥ 0.05. S̃ and O + S̃
are the worst methods due to the long interval queries (recall
that Log has the largest number of bins); O + S̃ does not
appear in the diagram because its error is larger than the
bounds of the plot.

Figure 13 assesses the utility versus ε for the Citations
dataset. Again, standalone smoothing can better adapt to
limited privacy budget, while the methods that combine it
with the fixed queries or hierarchical component deteriorate
faster as ε decreases. Even for interval queries (Figure 13(b)),
S̃ is still better than S1 + PMM and S2 + H, although the
Citations histogram is larger than that of Rome. This is due
to the zero-valued bins in Citations, which help S̃ to create
large groups with low error. O + S̃ is competitive only for
point queries, and it performs even worse than H in the case
of interval queries.

Figure 14 repeats the experiment for PUMS. In case
of point queries (Figure 14(a)), S̃, S1 + PMM, and O + S̃
behave similarly for different ε values and outperform both
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Fig. 15. Error vs. interval length r for Rome

S2 + H and H. This is due to the fact that the PUMS
histogram is large with numerous zero-valued bins; conse-
quently it is easy even for O + S̃ to correctly smooth these
bins. The hierarchical component of S2 + H splits the pri-
vacy budget among tree levels that are not utilized for point
queries. Thus it yields higher error, but it still outperforms
H. In case of interval queries (Figure 14(b)), S1 + PMM is the
best method followed by S2 + H because the large size of the
PUMS takes advantage of the fixed queries and hierarchical
component to lower the error for long intervals.

Next, we evaluate the MSE for interval query sizes
varying the query interval length r from 1% to 64% of the
histogram size. Figure 15 plots the MSE versus r for Rome.
In case of ε = 0.01 (Figure 15(a)), S̃ is very accurate for
interval lengths up to 16%. For longer intervals, utilizing
the fixed queries or hierarchical component in addition
to smoothing, offers better results. S1 + PMM and S2 + H
achieve higher utility than H, even for very long intervals,
demonstrating the benefits of combining components. An
interesting observation is that the error of S2 + H fluctuates
with the interval size. This is because the Rome dataset
contains uneven values in bins, i.e., there are some bins
that have larger values than their neighbors. If such bins
are estimated assuming uniform distribution within each
group, e.g., in order to answer a short interval query, then
the error would be large. On the other hand, if the whole
group is covered by the query, the uniform assumption does
not affect the accuracy. This effect is more pronounced when
ε is small because grouping makes more mistakes due to the
higher noise. For large ε values (Figure 15(b)), the results are
similar, but in this case, the fixed queries and hierarchical
components benefit more than simple smoothing from the
large budget. For long intervals, even H eventually has
lower error than S̃. In general, O + S̃ is the worst method,
except for short intervals.

Figure 16 illustrates the MSE versus the interval length r
for the Log dataset. For ε = 0.01 (Figure 16(a)), we observe
analogous results to the corresponding Rome plot (Figure
15(a)). However, the absolute intervals are much longer in
this case due to the large histogram size (32, 768 bins in
Log versus 1, 442 bins in Rome). Consequently, S1 + PMM
and S2 + H have similar utility to S̃ for short intervals, and
outperform it when r > 4%. For ε = 1, S1 + PMM and
S2 + H are better than S̃ for all lengths. H performs well only
for large privacy budget, while O + S̃ is not competitive.

Next we evaluate the utility of the methods on the
Citations dataset. As shown in Figure 17(a), S̃ is the winner
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Fig. 16. Error vs. interval length r for Log
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for all interval lengths when ε = 0.01, due to the small size
and the high number of zero-valued bins of the histogram.
Methods that add components distribute the privacy budget
without any benefits, compared to standalone smoothing.
For large ε (Figure 17(b)), the performance gap closes and
eventually S1 + PMM, S2 + H achieve higher utility than S̃
when r = 64%. H and O + S̃ fail for both privacy budgets.

Finally, Figure 18 focuses on PUMS. Although, similarly
to Citations, PUMS has numerous zero-valued bins, it also
exhibits larger value fluctuations, which are harder to group
together, and it is much larger. As such, S̃ has better utility
than H for ε = 0.1 and all interval sizes (Figure 18(a)), while
for ε = 1 (Figure 18(b)), S̃ performs worse than H for r >
4%. Accordingly, the benefits of the hierarchical and fixed
query components are substantial and the plots resemble
those of Log (Figure 16). For small ε, S2 + H outperforms
both S1 + PMM and S̃ for intervals larger than 16%, while
for large ε, it reaches the utility of S1 + PMM and S̃ when
r = 4%, and outperforms them for longer intervals.
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7.4 Takeaways

According to our evaluation, there is no overall winner, but
the method of choice depends on the (i) query length, (ii)
data characteristics, (iii) budget availability, (iv) efficiency
requirements. Specifically for (i), point or short interval
queries favor standalone smoothing. Methods integrating
the fixed query component are more appropriate for queries
of medium length, while the hierarchical component is the
best choice for long queries, as it is the least sensitive to
the interval length. Regarding (ii), small histograms where
neighboring bins have similar values are ideal for stan-
dalone smoothing; otherwise, the fixed query or hierarchical
components yield important benefits, especially for long
queries. About (iii), simple smoothing is preferable in the
presence of a limited privacy budget because this can be
devoted entirely to grouping. Large budgets can improve
utility through budget distribution to different components.
Finally regarding (iv), hierarchical methods are the most
efficient for time critical applications.

In terms of concrete methods as evaluated in Section 7.3:

1) S̃ is the method of choice for point and short interval
queries, especially for histograms where consecu-
tive bins have similar values. Compared to the other
standalone smoothing techniques (S1 and S2), it is
faster (O(N log2N)), and usually achieves lower
error.

2) S1 + PMM has the most balanced behavior for all
interval lengths (i.e., for both short and long ranges).
However, it requires more privacy budget than S̃ in
order to be effective, and it is slower. Compared
to the other techniques that combine smoothing
with the fixed queries component, it has the lowest
complexity (O(N2 logN)), and usually exhibits the
highest utility.

3) S2 + H is the winner for long interval queries and
the method of choice for time critical applications.
Similar to S1 + PMM, it requires sufficient privacy
budget to achieve the best results. With linear com-
plexity, it is faster than S1 + H and is the technique
with most skyline appearances in the experiments
of Section 7.2.

4) H and O + S̃ were outperformed by the above
methods in all our settings. Specifically, although
H implements all optimizations of [7], it is always
worse than S1 + H, suggesting that the hierarchical
component is most effective when combined with
smoothing. With few exceptions, O + S̃ yields the
highest error, independently of the privacy budget,
data and query characteristics.

8 CONCLUSION

This is the first evaluation of techniques for differen-
tially private histograms that decomposes existing methods
into basic components, namely smoothing, ordering, fixed
queries, and hierarchical. This modular approach leads to
novel optimization opportunities, including a smoothing al-
gorithm based on the squared error, which improves utility
and reduces the running time of the current state-of-the-art,
and a prefix-sums approach that optimizes the fixed queries

component. Moreover, it facilitates the development of orig-
inal techniques, such as hierarchical smoothing, through
innovative combinations of components. Our experimental
evaluation assesses the utility and efficiency of all possi-
ble component combinations on four datasets with diverse
characteristics. Although there is no clear winner under all
settings, some of the proposed optimizations/combinations
are usually the methods of choice, demonstrating the bene-
fits of our approach. In the future, we plan on exploring how
parallelization can increase the efficiency of the expensive
components, while maintaining their accuracy.
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