
1

Uncertain Graph Processing through Representative Instances

PANOS PARCHAS, Hong Kong University of Science and Technology, Hong Kong

FRANCESCO GULLO, Yahoo Labs, Barcelona, Spain

DIMITRIS PAPADIAS, Hong Kong University of Science and Technology, Hong Kong

FRANCESCO BONCHI, Yahoo Labs, Barcelona, Spain

Data in several applications can be represented as an uncertain graph, whose edges are labeled with a
probability of existence. Exact query processing on uncertain graphs is prohibitive for most applications,
as it involves evaluation over an exponential number of instantiations. Thus, typical approaches employ
Monte-Carlo sampling, which i) draws a number of possible graphs (samples), ii) evaluates the query on

each of them, and iii) aggregates the individual answers to generate the final result. However, this approach
can also be extremely time consuming for large uncertain graphs commonly found in practice. To facilitate
efficiency, we study the problem of extracting a single representative instance from an uncertain graph.
Conventional processing techniques can then be applied on this representative to closely approximate the

result on the original graph.
In order to maintain data utility, the representative instance should preserve structural characteristics

of the uncertain graph. We start with representatives that capture the expected vertex degrees, as this is a
fundamental property of the graph topology. We then generalize the notion of vertex degree to the concept

of n-clique cardinality, i.e., the number of cliques of size n that contain a vertex. For the first problem,
we propose two methods: Average Degree Rewiring (ADR), which is based on random edge rewiring, and
Approximate B-matching (ABM), which applies graph matching techniques. For the second problem, we

develop a greedy approach and a game theoretic framework. We experimentally demonstrate, with real
uncertain graphs, that indeed the representative instances can be used to answer, efficiently and accurately,
queries based on several metrics such as shortest path distance, clustering coefficient and betweenness
centrality.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs and Networks; H.2.4 [Systems]: Query
processing

General Terms: uncertain graph; possible world; representative; n-clique cardinality

1. INTRODUCTION

Graphs constitute an expressive data representation paradigm used to describe entities
(vertices) and their relationships (edges) in a wide range of applications. Sometimes the
existence of the relationship between two entities is uncertain due to noisy measurements,
inference and prediction models, or explicit manipulation. For instance, in biological net-
works, vertices represent genes and proteins, while edges correspond to interactions among
them. Since these interactions are observed through noisy and error-prone experiments, each
edge is associated with an uncertainty value [Asthana et al. 2004]. In large social networks,
uncertainty arises for various reasons [Adar and Re 2007]; the edge probability may denote
the accuracy of a link prediction [Liben-Nowell and Kleinberg 2003], or the influence of one

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ 2015 ACM 0362-5915/2015/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:2 P. Parchas et al.

u1

u2

u3u4

u5
0.8

0.8

0.49

0.9

0.4

0.3

0.95

0.9

0.4

Fig. 1: Uncertain graph G

person on another [Kempe et al. 2003]. Uncertainty can also be injected intentionally for
obfuscating the identity of users for privacy reasons [Boldi et al. 2012].
In all these applications the data can be modeled as an uncertain graph (also called

probabilistic graph), whose edges are labeled with a probability of existence. This proba-
bility represents the confidence that the relation corresponding to the edge holds in reality.
Given the wide spectrum of application domains, querying and mining uncertain graphs
has received considerable attention recently.

1.1. Query processing in uncertain graphs

Let G = (V,E, p) be an uncertain graph, where function p : E → (0, 1] assigns a proba-
bility of existence to each edge. Following the literature, we consider the edge probabili-
ties independent [Potamias et al. 2010; Jin et al. 2011a; Jin et al. 2011b], and we assume
possible-worlds semantics [Abiteboul et al. 1987; Dalvi and Suciu 2007]. Specifically, the
possible-world semantics interprets G as a set {G = (V,EG)}EG⊆E of 2|E| possible deter-
ministic graphs (worlds), each defined by a subset of E. The probability of observing any
possible world G = (V,EG) ⊑ G is:

Pr(G) =
∏

e∈EG

p(e)
∏

e∈E\EG

(1− p(e)). (1)

Figure 1 illustrates an example of an uncertain graph G, and the associated edge proba-
bilities. Since G has |E|=9 edges, there are 29=512 possible worlds. The exponential number
of possible worlds usually renders exact query evaluation prohibitive. Indeed, even simple
queries on deterministic graphs may be expensive on uncertain graphs. As an example,
consider a reachability query, which returns true if two input vertices are reachable from
each other. The corresponding reliability query in uncertain graphs, which outputs the
probability that the vertices are connected, is a #P-complete problem [Valiant 1979].
In general, for any real-valued query q : G→ R the most natural choice in the uncertain

setting is to consider its expected value, i.e., the average value in all possible worlds, weighted
by the probability of the possible worlds.

q(G) =
∑
G⊑G

q(G) Pr(G).

As one cannot afford to materialize 2|E| possible worlds, a common solution is to apply
Monte-Carlo sampling, i.e., to assess the query on a subset of random possible worlds. How-
ever, sampling is not always a viable option for large graphs [Jin et al. 2011b; Rubino 1998].
Although smart sampling techniques, e.g., [Li et al. 2014], have provably smaller variance
and thus require fewer samples for good approximation, still producing a single possible
world incurs a non-negligible cost, as it requires generating a random number for each edge

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:3

e ∈ E. Moreover, the query may be computationally intensive. For instance, betweenness
centrality, a measure of vertex importance in the graph, involves all-pairs shortest path
computations, which simply cannot be performed many times (i.e., for each sample) in any
graph of even moderate size.
Finally, when the output of the query is a complex structure (e.g., a data mining task

producing a set of patterns) the application of sampling is not straightforward as it is
not clear how to aggregate query results of different samples. In these cases the semantics
of the analysis must be redefined for uncertain graphs, and new ad-hoc algorithms must
be developed. However, designing new methods for data analysis problems is not always
feasible. Organizations may have already invested in infrastructure (e.g., graph databases,
graph processing software, etc.) for deterministic graphs, which they would wish to utilize,
regardless of the uncertainty inherent in the data.
Motivated by the above, in this work we study the problem of producing a single rep-

resentative instance (i.e., a deterministic graph G∗) of a given uncertain graph G. Queries
can then be processed efficiently on the deterministic instance using conventional graph
algorithms. Clearly, any possible world could be used as a representative of the uncertain
graph: the question is which instance, among the 2|E| possible ones, we should select.

1.2. Properties of a good representative instance

In order to maintain data utility, the representative instanceG∗ should preserve the expected
(underlying) structure of the uncertain graph G. In some sense, we would like G∗ to be the
average or the expected graph given the distribution over possible worlds induced by G. As
it is not clear how to define such a concept, we focus on extracting a good representative
instance that preserves fundamental properties of the graph structure.
Modeling, understanding, and synthetically generating graphs with real-world character-

istics is crucial for a variety of simulation-based studies. One key insight in this area, is
that one of the most pervasive and persistent characteristics of complex networks is their
heavy-tailed degree sequence distribution, as observed on the Web, biological and social
networks [Mihail and Vishnoi 2002; Faloutsos et al. 1999]. Following this observation, many
approaches generate synthetic graphs with a target degree sequence: these studies have
shown that such graphs exhibit several characteristics that resemble those of real networks
[Aiello et al. 2000; Tangmunarunkit et al. 2002; Chung and Lu 2002; Chung et al. 2003].
In the theory of structural network controllability [Liu et al. 2011], one key property is the

number of driver nodes, i.e., the set of nodes that can guarantee full control over the network.
Here control means the ability to guide a dynamical system from any initial state to any
desired final state in finite time, with a suitable choice of the driver nodes. [Liu et al. 2011]
show that by fully randomizing real-world networks (i.e., generating an Erdős-Rényi random
graph with the same number of nodes and edges as the original network), changes the
number of driver nodes dramatically, failing to preserve the topological characteristics of the
original network. Instead, when degree-preserving randomization is used (i.e., maintaining
the degree of each node while randomly rewiring the edges), the number of driver nodes
remains almost unchanged, indicating that network controllability is captured by the degree
distribution.
Motivated by the above, we study the problem of extracting, from an uncertain graph,

the representative instance that better preserves the expected degree of each vertex. Going a
step further, we generalize the notion of vertex degree to the concept of n-clique cardinality
of a vertex u, i.e., the number of cliques of size n that contain u. In particular, the degree of a
vertex is equivalent to its 2-clique cardinality, whereas its triangle connectivity corresponds
to its 3-clique cardinality. The notion of n-clique is extended naturally to n > 3. Intuitively,
this generalization aims at capturing the expected structure in the neighborhood of vertices.
The importance of neighborhood connectivity in the overall structure of a deterministic

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:4 P. Parchas et al.

graph has been highlighted in graph triangulation [Hu et al. 2013] and complex network
modeling [Mahadevan et al. 2006].

1.3. Contributions and roadmap

For the first problem, extracting representative instances that capture the expected vertex
degree sequence, we propose two methods: Average Degree Rewiring (ADR) and Approxi-
mate B-matching (ABM). ADR involves two phases: first, it generates an instance with the
same average vertex degree as the uncertain graph; then, it randomly rewires edges if they
lead to better approximation of the vertex degrees. ABM applies b-matching [Hougardy
2009] to obtain an initial instance, which then improves using weighted maximum bipartite
matching.
For the problem of extracting the representative instance that best preserves the expected

n-clique cardinality (for n ≥ 2), we develop GREEDY and GAME. GREEDY arranges the
edges in a dynamic heap and greedily inserts the one that leads to the best approximation
of the expected n-clique cardinality. GAME applies a game theoretic framework that models
the edges of the uncertain graph as players of an exact potential game, and uses best response
dynamics [Monderer and Shapley 1996] to generate the representative.
Our extensive experimental evaluation on real datasets confirms that an instance whose

vertices have n-clique cardinality close to their expected value (even for small values of n,
e.g. n = {2, 3}), captures several structural properties of the uncertain graph, including
shortest path distance, betweenness centrality and clustering coefficient.
Summarizing, the contributions of the paper are:

(1) We propose a novel framework for querying uncertain graphs, based on the extraction
of representatives, which has vast potential due to the prevalence of uncertain graphs
in several modern applications, the large data volume involved, and the high cost of
uncertain graph processing.

(2) We propose ADR, ABM, GREEDY and GAME, which efficiently generate representatives
with desirable properties. Hence, they are applicable to large uncertain graphs of millions
of vertices and edges.

(3) We experimentally demonstrate that the extracted representatives are accurate in an-
swering a variety of common graph statistics. Moreover, query processing through rep-
resentative instances requires only a fraction of the time spent by conventional Monte
Carlo techniques.

The rest of the paper is organized as follows. Section 2 provides an overview of the related
work and the necessary background. Section 3 formally defines the problems we tackle in this
work. Section 4 introduces ADR and ABM that aim at approximating the expected vertex
degrees. Section 5 discuses GREEDY and GAME that generate representatives preserving
the expected n-clique cardinality for n ≥ 2. Section 6 contains an extensive experimental
evaluation on real datasets, and Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK

[Parchas et al. 2014] contains a short version of this article, where we focus on representatives
based on the expected vertex degrees, using ADR and ABM. This work extends [Parchas
et al. 2014] by generalizing to the concept of n-clique cardinality, and proposing GREEDY
and GAME. Moreover, all the sections and the experimental evaluation have been revised
and enhanced.
Section 2.1 overviews uncertain graphs. Section 2.2 presents research on vertex degree

distribution due to its relevance to our problem. Section 2.3 provides background on best-
response algorithms and exact potential games, as they are used by our GAME method.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:5

2.1. Uncertain graphs

Uncertain relational databases have been well studied from different perspectives, such as
SQL query evaluation, mining, ranking and top-k queries [Aggarwal and Yu 2009]. However,
in many application domains, such as social, biological, and mobile networks, graphs serve
as better models than relational tables. Processing on uncertain graphs can be classified
into three main approaches: i) queries based on shortest path distances and reliability, ii)
pattern mining and graph decomposition, and iii) subgraph (similarity) search.
Towards the first direction, [Jin et al. 2011b] introduce the distance-constrained reacha-

bility query, which, given two vertices s and t, and a threshold d, returns the probability
that the distance from s to t is less than d. The authors propose two estimators for the
distance-constrained reachability query that have provably less variance than näıve Monte
Carlo methods. [Potamias et al. 2010] redefine traditional nearest neighbor queries by using
statistical distance metrics (e.g. majority, median). These metrics are computed by apply-
ing Dijkstra’s algorithm on a subset of the possible worlds. Similarly, based on the possible
world semantics, [Yuan et al. 2010] return shortest paths, whose probability exceeds an
input threshold. Finally, [Khan et al. 2014] study the problem of reliability search, i.e., the
discovery of all vertices reachable from a set of query vertices with probability higher than
a given threshold. Their solution builds a novel index based on hierarchical clustering of the
vertices. At query time, the index is traversed in a bottom up fashion and returns a set of
candidate result vertices, which are then validated through Monte Carlo sampling.
In the second line of research, Zou et al. investigate mining frequent subgraphs [Zou

et al. 2010b] and top-k maximal cliques [Zou et al. 2010a] in uncertain graphs. [Moustafa
et al. 2014] propose efficient algorithms for subgraph pattern matching for graphs, where in
addition to edges, vertices are also uncertain. [Jin et al. 2011a] aim at finding subgraphs that
are connected with high probability, whereas [Bonchi et al. 2014] decompose the uncertain
graph in probabilistic k -cores, i.e., maximal subgraphs, whose vertices have degree greater
than k with high probability. [Kollios et al. 2013] define clustering using a modified graph
edit distance, whereas [Liu et al. 2012] find reliable clusters, i.e., clusters that have a good
chance of staying connected among the different instantiations (possible worlds).
In the third direction of research, [Yuan et al. 2011] propose a feature-based framework

for subgraph search, while [Yuan et al. 2012] study subgraph similarity. In a rather different
type of research, [Boldi et al. 2012] intentionally inject uncertainty in a social graph in order
to obfuscate the identity of its users. Finally, in a recent work [Li et al. 2014], improve the
näıve Monte Carlo by performing a smarter sampling that has provably smaller variance
and requires fewer samples for good approximation.

2.2. Degree sequences and distributions

A sequence of non-negative integers d = {d1, d2, · · · , dn}, with d1 ≥ d2 ≥ · · · ≥ dn is called
graphic, if it is the degree sequence of some simple graph G. In such case, we say that
G realizes the sequence d. [Erdös and Gallai 1960] describe the necessary and sufficient
conditions for a sequence to be graphic. Graphical realization is fundamental for simulation
of network properties [Del Genio et al. 2010]. For instance, in epidemiology of sexually
transmitted diseases [Liljeros et al. 2001], anonymous surveys collect only the number of
sexual partners of individuals, rather than their identity. The construction of the implied
contact graph is crucial for the simulation of spread scenarios. In order to capture the
observed data, a common approach is to generate graphs that realize a predicted degree
sequence of the complex network [Hakimi 1962; Lovász 1970]. However, some structural
characteristics (e.g. density, connectivity, etc.) depend heavily on the vertex processing
order in [Hakimi 1962]. Thus, several techniques use the output of [Hakimi 1962] as a
seed, and take additional steps to randomize the graph [Blitzstein and Diaconis 2011], or
induce specific characteristics, such as connectivity. These techniques perform local search

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:6 P. Parchas et al.

by swapping edges in order to reach desired properties. We follow a similar approach in the
proposed ADR algorithm.
Another related line of research aims at the more general degree distributions. According

to [Mihail and Vishnoi 2002] the degree distribution of a graph is the most frequently used
topology characteristic. For instance, observations on the Internet’s degree distribution had
a huge impact on network topology research [Faloutsos et al. 1999]. [Mahadevan et al. 2006]
model complex networks by reproducing degree distributions, extracted from observed data.
They generalize their approach to joint degree distributions called dK-series, i.e., probability
distributions of vertex pairs, triplets etc. For instance, the 2K-series refers to the probability
distribution of pairs of vertices, i.e., the probability that a vertex with degree k is connected
to a vertex with degree k′. In their experimental evaluation, they perform several queries on
both the original and the simulated graph, concluding that their method with d = 3 (i.e.,
triplets of vertices) generates models that approximate very well the original graphs in all
metrics. Inspired by their work, we focus on similar distributions in uncertain graphs and
we evaluate our methods on similar metrics.
The popular Chung-Lu model [Chung and Lu 2002] predicts the average distance of

random graphs constructed with a given expected degree sequence, in order to justify facts
such as the small world phenomenon [Kleinberg 2006]. Specifically, assuming a weight wu for
each vertex u, any edge (u, v) exists with probability ρ = wuwv∑

i wi
. On the other hand, in our

uncertain graph model, edge probabilities are given explicitly as an input to the problem,
instead of being related to vertex weights. The Chung-Lu model has been generalized beyond
degree sequence, to output graphs conforming with spectral properties, or connectivity
[Leskovec et al. 2010].
Similar in spirit to graph generation models is the literature on subgraph sampling, whose

goal is to generate a subgraph of an input deterministic graph that preserves well the
structural properties, while containing considerably fewer nodes [Leskovec and Faloutsos
2006; Hübler et al. 2008]. This line of research differs from our work as i) we focus on
uncertain graphs, thus we aim at preserving the structural properties in expectation, and
ii) our goal is to extract a representative deterministic graph having the same number of
nodes. In our experiments, we use forest fire [Leskovec and Faloutsos 2006], a subgraph
sampling approach, in order to reduce the size of real graphs, for computationally intensive
queries.

2.3. Background in game theory

Players of a strategic game compete on common resources. The objective of each player
is to minimize its own cost, defined by a cost function. After an initialization step, which
assigns a strategy to each player, the game proceeds in rounds. At every round each player
chooses a strategy that minimizes its cost, given the other players’ strategies. However, as
a player’s strategy affects the cost of others, each change may cause other players to alter
their strategy as well. This process is called best-response dynamics [Monderer and Shapley
1996]. Players do not consider the effect their strategy has on the future of the game, which
results in the dynamical rule often called myopic best response.
Formally, a strategic game is a triplet < E, {Se}(e∈E), {Ce : S}(e∈E) → R >, where E is

the set of players, Se is the set of possible strategies of player e ∈ E, and Ce(S) is the cost
function that e wishes to minimize, considering the strategies S = ×(e∈E)Se of all other
players. Due to the interdependence of the players’ decisions, many games never terminate;
the decision of a player e may trigger a change in strategy of e′, which in turn might force
e to reconsider, and so on. If a strategic game terminates, we say that it has a pure Nash
equilibrium, i.e., there exists a specific choice of strategies se ∈ Se, ∀e ∈ E such that no
player has incentive to change strategy.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:7

Table I: List of frequent symbols

Symbol Definition
G uncertain graph
G instance (possible graph) of G
n target clique size
G∗ a representative instance of G
E∗ set of edges in G∗

γn(u,G) n-clique cardinality of vertex u in G
disn(u,G) n-discrepancy of u in G, i.e., γn(u,G)− [γn(u,G)]
deg(u,G) degree of vertex u in G, i.e., γ2(u,G)
∆n(G) overall discrepancy of an instance G of G

Qm(e, E∗) set of m-cliques that contain both endpoints u and v of edge e = (u, v) in E∗

P sum of probabilities
∑

e∈E pe

Potential games constitute a special class of strategic games, in which the incentive of
all players to change their strategy can be expressed using a single global function Φ :
×(e∈E)Se → R called the potential function. Let S̄e denote the strategies of all players other

than e, i.e., S̄e = {s1, · · · , se−1, se+1, · · · , s|E|}. A potential game is called exact, when the
change of a player’s cost due to his strategy update is reflected exactly in the potential
function, i.e.,

Ce(s
′
e, S̄e)− Ce(se, S̄e) = Φ(s′e, S̄e)− Φ(se, S̄e)

The theory of best response dynamics on exact potential games ensures that they always
converge to a Nash Equilibrium, independently of the initialization step [Monderer and
Shapley 1996]. The proposed GAME algorithm constitutes an exact potential game.

3. PROBLEM DEFINITION

Let G = (V,E, p) be an undirected uncertain graph, where V is a set of vertices, E ⊆ V ×V
is a set of edges, and p : E → (0, 1] is a function that assigns a probability of existence
to each edge. For the sake of brevity, we denote the probability p(e) of any edge e ∈ E
with pe. We assume independent edge probabilities and possible world semantics, i.e., G is
interpreted as a set {G = (V,EG)}EG⊆E of 2|E| possible deterministic graphs (worlds), each
defined by a subset of E.
Since most query processing tasks are very expensive for large uncertain graphs, we

propose the extraction of a deterministic representative instance G∗ ⊑ G that captures the
underlying properties of G. Then, queries on the uncertain G can be efficiently processed
using deterministic algorithms on G∗. Consider for example a nearest-neighbor query. State-
of-the-art approaches to this query type perform Dijkstra expansions on multiple samples
[Potamias et al. 2010]. Depending on the definition of the distance measure, expansion for
some samples can be avoided or terminated early, when it cannot improve the current result.
Nevertheless, the method has usually very high cost due to the large number of samples it
requires. On the other hand, the same query in our framework can be processed efficiently by
applying any deterministic nearest neighbor algorithm on the representativeG∗. As shown in
our experimental evaluation, the representatives extracted by our algorithms indeed capture
well the relevant properties of G, in this case shortest path distances. Thus, the query on
G∗ is expected to return a good approximation of the nearest neighbor set.
Section 3.1 discusses desired properties of a representative instance. Section 3.2 introduces

the problem of generating representatives based on the expected degree of vertices. Section
3.3 generalizes to instances that preserve the neighborhood connectivity of vertices. Table
I contains the most common symbols throughout the paper.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:8 P. Parchas et al.

3.1. Representative Instance

The representative instance G∗ should conform well with the structural properties of G in
expectation. A direct extraction of the “expected graph” from all possible worlds yielded
by G is not easily achievable, as the definition of expected graph is intrinsically ill-posed.
Indeed, the notion of expected value of any probability distribution needs i) an ordering
among the points/objects of the domain of the distribution, and ii) a way of averaging
(aggregating) among such objects. In our context the domain objects are graphs, hence it
is not clear how to carry over either i) or ii). Instead, we propose a criterion that aims at
preserving the expected structure of individual vertices. Specifically, we use the notion of
n-clique cardinality, defined as follows:

Definition 3.1. The n-clique cardinality γn(u,G) of a vertex u in a deterministic graph
G is the number of cliques of size n that contain u in G.

Definition 3.2. The expected n-clique cardinality [γn(u,G)] of a vertex u in an uncertain
graph G is the expected number of cliques of size n that contain u in G.

When the graph is implied, we write for convenience γn(u) and [γn(u)], respectively. The
following lemma derives the expected n-clique cardinality of a vertex u in G.

Lemma 3.3. Given an uncertain graph G = (V,E, p), an integer n ≥ 2 and a vertex
u ∈ V , the expected n-clique cardinality of u is

[γn(u)] =
∑

c∈Qn(u)

∏
e=(ui,uj),

i<j

pe (2)

where Qn(u) is the set containing all cliques of size n that involve vertex u in G.

Proof. Let an uncertain graph G = (V,E, p) and a vertex u ∈ V . Due to the inde-
pendence of edge probabilities, a set of n vertices {v1, v2, · · · , vn} forms a clique c with

probability pc =
∏

i<j p(vi, vj) . In the entire vertex set V , there are q =
(|V |−1

n−1

)
different

possible n-cliques that include u. Let Qn(u) = {c1, c2, · · · , cq} be the ordered set of all
possible n-cliques. Using an indicator variable Xi:

Xi =

{
1, if ci forms an n-clique

0, otherwise

The total number of n-cliques that contain u is X =
∑q

i=1 Xi. The expected value of X
is thus,

E[X] = E[

q∑
i=1

Xi] =

q∑
i=1

E[Xi] =
∑

c∈Qn(u)

(1 · pc − 0 · (1− pc)) =
∑

c∈Qn(u)

∏
e=(ui,uj),

i<j

pe

The 2-clique cardinality of a vertex corresponds to its expected degree. For n = 3,
the expected 3-clique cardinality of a vertex u is the sum of probabilities of the trian-
gles containing u. The rectangles (resp. ellipses) of Figure 2(a) contain the expected 2-
clique (resp. 3-clique) cardinality of each vertex, computed by Lemma 3.3. For instance,
[γ2(u2)] = p(u1,u2)+p(u2,u4)+p(u2,u5) = 0.8+0.4+0.8 = 2. Accordingly, [γ3(u2)] equals the
sum of the probabilities of the triangles {u1, u2, u4}, {u1, u2, u5}, {u2, u4, u5} that contain
u2, i.e., [γ3(u2)] = 0.8 · 0.8 · 0.49 + 0.8 · 0.4 · 0.9 + 0.8 · 0.9 · 0.4 = 0.89.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:9

3.15

u1

u2

u3u4

u5
0.8

0.8

0.49

0.9

0.4

0.3

0.95

0.9

2.59

2

2.49

1.57

1.40

0.89

0.66

1.31 1.65

0.4

(a) G and expected n-clique cardinal-
ities, n = {2, 3}

-0.49

-0.15

u1

u2

u3u4

u5

-0.59

0

-0.65

-1.57

-1.40

-0.89

-0.66

-1.31

(b) representative of MP and disn(u),
n = {2, 3}

Fig. 2: Uncertain graph and its most probable instance

Definition 3.4. The n-discrepancy disn(u,G) of a vertex u in an instance G ⊑ G is
the difference of u’s n-clique cardinality in G to its expected n-clique cardinality, i.e.,
disn(u,G) = γn(u,G) − [γn(u,G)]. If the graph instance is implied, we equivalently write
disn(u).

Definition 3.5. Given an uncertain graph G = (V,E, p) and an integer n ≥ 2, the
discrepancy ∆n(G) of a possible graph G ⊑ G is defined as

∆n(G) =
∑
u∈V

|disn(u)| (3)

A straightforward way to generate a representative of an uncertain graph is to consider
the instance with the highest probability [Potamias et al. 2010]. According to Equation 1,
this most probable (MP) instance corresponds to the graph containing all the edges e that
have probability pe ≥ 0.5. Since MP does not conform with any structural property of G,
it is expected to be a poor representative. For instance, if the probability of all edges is
below 0.5, then MP contains no edges. Figure 2(b) illustrates the MP representative of the
uncertain graph of Figure 2(a), where the rectangles and ellipses next to each vertex u
correspond to dis2(u) and dis3(u) respectively. Given the high importance of the individual
vertex degrees, in the following we distinguish the special case where n = 2 in Definition
3.5.

3.2. Vertex degree

From Lemma 3.3, the expected degree of a vertex u is [deg(u)] =
∑

e=(u,v) pe, and its

2-discrepancy is dis2(u,G) = γ2(u,G) − [γ2(u,G)] = deg(u,G) − [deg(u,G)]. Similarly, the
overall discrepancy ∆2 is simplified to ∆2(G) =

∑
u∈V |dis2(u)|. The first problem we tackle

in this work is:

Problem 1 (2-Representative Instance). Given an uncertain graph G = (V,E, p),
find a possible graph G∗

2 ⊑ G such that:

G∗
2 = arg min

G⊑G
∆2(G)

Intuitively, Problem 1 aims at finding an instance, such that the degree of each vertex is
as close as possible to its expected value. Characterizing the complexity class of Problem 1 is
non-trivial and represents an interesting open question. Our conjecture is that the problem
is hard, or at least not solvable exactly in reasonable time for large graphs. To this purpose,
note that Problem 1 can alternatively be formulated as an integer linear programming
problem. Each edge e ∈ E is assigned a binary variable xe = {0, 1}, where xe = 1 if and
only if e is included in the result set. Then, the discrepancy of a vertex u in G can be

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:10 P. Parchas et al.

expressed as dis2(u) =
∑

e=(u,v)∈E(xe − pe). Thus, Problem 1 becomes:

min |A(x− p)|
x = {0, 1}|E| (4)

where p = (0, 1]|E| is the vector containing the edge probabilities of the input uncertain
graph G and A = {0, 1}|V |×|E| is the incidence matrix of G. The formulation in Equation
4 corresponds to a special case of the closest vector problem, which is known to be NP-
hard [Micciancio 2001]. Moreover, as discussed in Section 4.3, when all expected degrees
are integers, Problem 1 can be solved by b-matching algorithms, among which the fastest
runs in O(|E|3/2) time [Micali and Vazirani 1980]. For the general case of real degrees, a
brute-force approach would generate all 2|E| possible worlds, and select the one minimizing
the objective function of Problem 1. Given that our main goal is to provide solutions that
are scalable enough to deal with the large size of real-world graphs, we directly aim at
approximate, but efficient algorithms.

3.3. Neighborhood connectivity

For certain graph metrics (e.g. clustering coefficient), the connectivity among the neighbors
of a vertex u is important. To capture such scenarios, we further explore larger values of
n-clique cardinality, in which case the targeted problem is:

Problem 2 (n-Representative Instance). Given an uncertain graph G = (V,E, p)
and two integers 2 ≤ l ≤ n , find a possible graph G∗

l,n ⊑ G such that:

G∗
l,n = arg min

G⊑G

n∑
m=l

∆m(G)

Problem 2 aims at extracting an instance that preserves the m-clique connectivity of the
vertices, for values of m within a given range [l, n]. If l = n, to simplify notation, we denote
G∗

n,n as G∗
n. Problem 1 is a special case of Problem 2, where l = n = 2. Since Problem 2

constitutes a generalization of Problem 1, it is also expected to beNP-Hard. Our framework
is generic and can be directly applied to extracting representatives G∗

l,n with arbitrary values

of n. However, we focus on values of n up to 3, for the following reasons. i) The complexity
of finding n-cliques of a vertex with degree d is O(dn−1) [Nešetřil and Poljak 1985]. Thus,
although Lemma 3.3 still applies, for n > 3 its computation is prohibitive for realistic
graphs. ii) Recall from Section 2.2, in the context of deterministic graphs, [Mahadevan et al.
2006] model complex networks by reproducing joint degree distributions called dK -series,
i.e., probability distributions of vertex pairs, triplets etc. Their experimental evaluation
concludes that d = 3 (i.e., triplets of vertices, corresponding to n = 3 in our framework)
generates models that approximate very well the original graphs in all evaluated metrics.
Figure 3 shows the optimal representatives for different values of m in the range [2, 3].

Specifically, Figure 3(a) illustrates the representative G∗
2 that minimizes ∆2, Figure 3(b) the

representative G∗
3 that minimizes ∆3, and Figure 3(c) the representativeG∗

2,3 that minimizes
∆2 +∆3, i.e., the objective of Problem 2 for l = 2 and n = 3. The rectangles and ellipses
next to each vertex u correspond to dis2(u) and dis3(u) respectively. Observe that G∗

3 and
G∗

2,3 preserve the triangle connectivity of the vertices, as shown by the shaded regions. For
instance, vertex u5 participates in two triangles of both representatives since its expected
3-clique cardinality is 1.57. On the other hand, the representatives MP (Figure 2(b)) and
G∗

2 (Figure 3(a)) do not contain any triangle.
Table II summarizes the overall discrepancies (i.e., ∆2, ∆3 and ∆2 +∆3) of the various

representatives (i.e., MP, G∗
2, G

∗
3 and G∗

2,3). The values in bold correspond to the minima
of each column. Although G∗

2,3 is slightly worse than G∗
2 and G∗

3 in terms of ∆2 and ∆3

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:11

-0.49

-0.15

u1

u2

u3u4

u5

0.41

0

0.35

-1.57

-1.40

-0.89

-0.66

-1.31

(a) G∗
2

-0.49

0.85

u1

u2

u3u4

u5

-0.59

0
0.43

-0.40

0.11

0.34

-0.31 0.35

(b) G∗
3

u2

u3u4

u5

0.51

-0.15

0.41

0
0.43

0.60

0.11

-0.66

-0.31
-0.65

(c) G∗
2,3

Fig. 3: Representative instances

respectively, it yields better ∆2 + ∆3. Intuitively, G
∗
2,3 combines the desirable properties

of G∗
2 and G∗

3, i.e., it has similar edges to G∗
2 and similar triangles to G∗

3. Because of this,
as shown in our experiments, G∗

2,3 has balanced performance on all evaluated metrics. On
the other hand, representatives that minimize ∆3, underperform for metrics unrelated to
neighborhood connectivity, e.g., shortest path distance.

Table II: Representatives and the corresponding discrepancies

representative ∆2 ∆3 ∆2 +∆3

MP 1.88 5.83 7.71
G∗

2 1.40 5.83 7.23
G∗

3 2.28 1.59 3.87
G∗

2,3 1.72 2.11 3.83

Representative instances vastly accelerate query processing on uncertain graphs because:
i) they eliminate the overhead of generating a large number of samples and ii) the query
is executed once (on the representative) instead of numerous times (for each sample). Sec-
tions 4 and 5 propose algorithms that generate representative instances, using the objective
functions of Problems 1 and 2 respectively.

4. ALGORITHMS FOR MINIMIZING VERTEX DEGREE DISCREPANCY

The following methods aim explicitly at minimizing the vertex degree discrepancy. Sec-
tion 4.1 discusses a benchmark approach PS. Sections 4.2 and 4.3 present ADR and ABM,
respectively.

4.1. Benchmark solution

Probability Sorting (PS) first sorts the edges of the graph in non-increasing order of their
probabilities. Then, at each iteration, the algorithm considers an edge e = (u, v) of the sorted
list, and includes it to the result set, if |dis2(u) + 1|+ |dis2(v) + 1| < |dis2(u)|+ |dis2(v)|,
i.e., the addition of e decreases the total discrepancy. The complexity of the algorithm
is O(|E| · log |V |) because it is dominated by the sorting step. Algorithm 1 presents the
pseudocode of PS. Intuitively, each edge (u, v) affects only the degrees of vertices u, v.
Thus, if the condition in line 4 is satisfied, the value of Equation 3 decreases, leading to
a better solution. Due to the initial sorting, the most probable edges are considered first.
Such edges have large contribution to the expected degrees of the incident vertices, and at
the same time they lead to a highly probable representative.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:12 P. Parchas et al.

Algorithm 1 PS

Input: uncertain graph G = (V,E, p)
Output: representative G∗ = (V,E∗)
1: E∗ ← ∅
2: sort E in non-increasing order of their probabilities
3: for each e = (u, v) ∈ E do
4: if |dis2(u) + 1|+ |dis2(v) + 1| < |dis2(u)|+ |dis2(v)| then
5: E∗ ← E∗ ∪ {e}

Figure 4 illustrates the execution of PS on the uncertain graph of Figure 2(a). At the first
iteration, PS picks the edge (u3, u5) with the highest probability and adds it to the result
set E∗, containing the edges of the representative G∗. Figure 4(a) shows E∗ after the first
iteration, where the number next to vertex u denotes dis2(u). At the second iteration, PS
considers edge (u4, u5). The inclusion of (u4, u5) in E∗, decreases the total discrepancy of
u4 and u5 from 2.49 + 2.15 = 4.64 to 1.49 + 1.15 = 2.64 (see Figure 4(b); edges of E∗ are
in bold). The procedure continues until all edges have been examined, at which point PS
returns the representative of Figure 4(c) with ∆2(G

∗) = 0.41+0+0.65+0.51+0.15 = 1.72.
Note that for the same example, the representative produced by MP (Figure 2(b)) yields
overall discrepancy ∆2(G) = 1.88.

-2.59

-2.49

-2.15

u1

u2

u3u4

u5 -2

-0.65

0.8

0.8

0.49

0.9

0.4

0.3

0.95

0.9

0.4

(a) first iteration of PS

-1.15

u1

u2

u3u4

u5

-2.59

-2

-1.49 -0.65

0.8

0.8

0.49

0.9

0.4

0.3

0.95

0.9

0.4

(b) second iteration of PS

0.41

-0.15

u1

u2

u3u4

u5 0

0.51 -0.65

(c) representative of PS

Fig. 4: PS example

4.2. Average Degree Rewiring (ADR)

Average Degree Rewiring (ADR) involves two phases: 1) it creates an instance G1 = (V,E1)
of the uncertain graph that preserves the average vertex degree and 2) it iteratively improves
G1 by rewiring, i.e., replacing edges in E1, so that the total discrepancy is reduced. The
following lemma describes the efficient computation of the expected average degree for an
uncertain graph.

Lemma 4.1. The expected average degree [deg(G)] of an uncertain graph G = (V,E, p),
is [deg(G)] = 2

|V |P, where P is the sum of all the edge probabilities in G.

Proof. By definition, the average degree deg(G) of a deterministic graph G is equal to
deg(G) = 1

|V |
∑

u∈V degu. Due to the linearity of expectation, the expected average degree

is:

[deg(G)] =

[
1

|V |
·
∑
u∈V

degu

]
=

1

|V |
·
∑
u∈V

[degu] =
2

|V |
·
∑
e∈E

pe =
2

|V |
·P

Given Lemma 4.1, a representative that preserves [deg(G)] should contain P edges. Ini-
tially, ADR rounds P to the closest integer ⌊P⌉ and sorts the edges in descending order of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:13

their probabilities. Consequently, it iterates through the sorted list, and samples each edge e
with probability pe, until it has included ⌊P⌉ edges. Algorithm 2 illustrates the pseudocode
of ADR, where lines 1-7 correspond to Phase 1.

Algorithm 2 Average Degree Rewiring (ADR)

Input: uncertain graph G = (V,E, p), steps
Output: representative G∗ = (V,E∗)

// Phase 1
1: E1 ← ∅, i← 0
2: P←

∑
e∈E pe

3: sort E in non increasing order of their probabilities
4: while |E1| < ⌊P⌉ do
5: e← E.next(); r ← random number ∈ [0, 1]
6: if r ≤ pe then
7: E1 ← E1 ∪ e

// Phase 2
8: dis2(u) = deg(u)− [deg2(u)], ∀u ∈ V
9: for i = 1..#rounds do
10: for each u ∈ V do
11: pick a random edge e1 = (u, v) from Ei

12: pick a random edge e2 = (x, y) from E \ Ei

13: d1 ← |dis2(u)− 1|+ |dis2(v)− 1| − (|dis2(u)|+ |dis2(v)|)
14: d2 ← |dis2(x) + 1|+ |dis2(y) + 1| − (|dis2(x)|+ |dis2(y)|)
15: if d1 + d2 < 0 then
16: Ei+1 ← (Ei − {e1}) ∪ {e2}
17: update dis2 for {u, v, x, y}
18: E∗ ← Ei

Phase 2 starts with E1. At each iteration / round i, let the current set of edges be Ei. For
each vertex u ∈ V , ADR randomly picks two edges e1 = (u, v) ∈ Ei and e2 = (x, y) ∈ E \Ei

(lines 10-11) and computes d1 ← |dis2(u) − 1| + |dis2(v) − 1| − (|dis2(u)| + |dis2(v)|) and
d2 ← |dis2(x) + 1| + |dis2(y) + 1| − (|dis2(x)| + |dis2(y)|). Specifically, d1 is the difference
of the absolute discrepancies of u and v, caused by the removal of e1. Accordingly, d2 is
the difference of the absolute discrepancies of x and y caused by the addition of edge e2.
ADR replaces e1 with e2 if d1 + d2 < 0, i.e., the swapping of edges decreases the overall
discrepancy. Since the total number of edges remains ⌊P⌉, the expected average degree
of G is preserved throughout the process. The procedure terminates after a user-defined
number of rounds. The value of #rounds depends on the desired trade-off between quality
and efficiency. Sorting the edges has cost O(|E| · log |V |). Each round incurs constant cost
for each vertex u ∈ V . Thus, the complexity of ADR is O(|E| · log |V |+#rounds · |V |).
We illustrate the application of ADR on the uncertain graph of Figure 2(a). Ini-

tially, ADR computes P = 5.94 and approximates it to the closest integer ⌊P⌉ =
6. Then, it picks the 6 most probable edges of the graph and forms the set E1 =
{(u1, u2), (u1, u4), (u1, u5), (u2, u4), (u3, u5), (u4, u5)}. Figure 5(a) depicts the edges of E1

with bold lines, and shows the resulting vertex degree discrepancies next to each vertex.
The value of the total discrepancy at this stage is ∆2 = 1.72. Next, ADR starts the sec-
ond phase. Assume that at round 1 the algorithm randomly considers the replacement of
e1 = (u1, u4) ∈ E1 with e2 = (u1, u3) ∈ E\E1. Since d1 = 0.41+0.49−(0.41+0.51) = −0.02,
d2 = 0.41 + 0.35 − (0.41 + 0.65) = −0.3 and d1 + d2 = −0.32 < 0, the edges are swapped
(Figure 5(b)). Intuitively, the swapping reduces the overall discrepancy by |d1 + d2|. The

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:14 P. Parchas et al.

discrepancy of the new instance E2 = {(u1, u2), (u1, u3), (u1, u5), (u2, u4), (u3, u5), (u4, u5)}
is ∆′

2 = ∆2 − |d1 + d2| = 1.4. Note that according to Table II, the instance of Figure 5(b)
is an optimal solution of Problem 1, i.e., it minimizes ∆2.

-0.15

u1

u2

u3u4

u5

0.41

0

0.51 -0.65

0.8

0.8

0.49

0.9

0.4

0.3

0.95

0.9

0.4

(a) after Phase 1

-0.15

0.41

0

-0.49
0.35

u1

u2

u3u4

u5

(b) after first iteration of Phase 2

Fig. 5: ADR example

4.3. Approximate B-Matching (ABM)

This section presents ABM, which stands for Approximate B -Matching. We first present
the motivation behind ABM, and then provide the algorithmic framework.

Motivation
Let an undirected graph G = (V,E), and a set of capacity constraints b(u): V → N. A

subgraph g = (V,Eg) of G is a b-matching of G, if the degree of each vertex u ∈ V in g
is at most b(u). The term b-matching is used interchangeably to denote the subgraph g, or
its edge set Eg, depending on the context. If b(u) = 1 for all vertices of G, then b-matching
reduces to the well known matching problem in graph theory. A b-matching is maximal, if
the addition of any edge violates at least one capacity constraint. A maximum b-matching
is the maximal b-matching with the largest number of edges.
Figure 6(a) shows an example graph, where the capacity constraint b(ui) is shown next

to ui. Figure 6(b) illustrates a b-matched graph of Figure 6(a), where the matched edge
(u3, u7) is shown in bold. Since there is no violation of any capacity constraint, it is a valid b-
matching. Figure 6(c) depicts a maximal b-matching: adding any other edge (e.g., (u2, u7))
would violate the capacity constraint of at least one vertex (e.g., u7). Finally, Figure 1(d)
illustrates a maximum b-matching.

u2

u1u5

u3

u6
u4

1
u7

3 2

0 0 0

u81

u9

0

0

(a) G and constraints

u2

u1u5

u3

u6
u4

1
u7

3 2

0 0 0 0

u81

u9

0

(b) b-matching of G

u2

u1u5

u3

u6
u4

1
u7

3 2

0 0 0 0

u81

u9

0

(c) maximal b-matching

u2

u1u5

u3

u6
u4

1
u7

3 2

0 0 0 0

u81

u9

0

(d) maximum b-matching

Fig. 6: b-matching example

Numerous exact and approximate solutions have been proposed for finding a maximum
b-matching (see [Hougardy 2009] for a survey). If the capacity constraints are bounded by a
constant, the fastest exact algorithm is O(|E|3/2) [Micali and Vazirani 1980]. A greedy 1/2-
approximation technique [Hougardy 2009] solves the problem in O(|E|). Several methods
aim at weighted versions of the problem [Mestre 2006].

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:15

We next investigate the relationship of Problem 1 to b-matching, starting with the special
case where all the expected degrees of G are integers, i.e., [deg(u,G)] ∈ Z, ∀u ∈ V . As we
shall prove shortly, the optimal instance for Problem 1 (i.e., the one that minimizes the
overall discrepancy ∆2), is given by a maximum b-matching computed on the uncertain
graph G with capacity constraints [deg(u,G)] for each vertex u ∈ V .

Lemma 4.2. Assume that [deg(u,G)] ∈ Z, ∀u ∈ V . Then, there is at least one optimal
instance G∗

2 for which deg(u,G∗
2) ≤ [deg(u,G)], for all u ∈ V .

Proof. Assume an optimal solution G∗
2 = (V,E∗) that contains illegal vertices, i.e.,

vertices u ∈ V with deg(u,G∗
2) > [deg(u,G)]. E∗ cannot contain an edge (u, v) between

two illegal vertices u and v, otherwise G∗
2 is not optimal (i.e., the exclusion of edge (u, v)

would decrease the overall discrepancy ∆2). Thus, an illegal vertex u can only be adjacent
to legal vertices, i.e., vertices x ∈ V for which deg(x,G∗

2) ≤ [deg(x,G)]. Assume an edge
e = (u, x) ∈ E∗, where u is illegal and x is legal. We first prove that if we remove edge e
from E∗, then the remaining graph G′ = (V,E∗ − {e}) is also an optimal instance.
Specifically, dis2(u,G

∗
2) > 0 whereas dis2(x,G

∗
2) ≤ 0, and dis2(u,G

′) = dis2(u,G
∗
2)−1 ≥

0 whereas dis2(x,G
′) = dis2(x,G

∗)− 1 < 0. The overall discrepancy of G∗
2 is:

∆2(G
∗
2) = |dis2(u,G∗

2)|+ |dis2(x,G∗
2)|+

∑
v ̸={u,x}∈V

|dis2(v,G∗
2)| =

= dis2(u,G
∗
2)− dis2(x,G

∗
2) +

∑
v ̸={u,x}∈V

|dis2(v,G∗
2)|

Similarly, the discrepancy of G′ is:

∆2(G
′) = |dis2(u,G′)|+ |dis2(x,G′)|+

∑
v ̸={u,x}∈V

|dis2(v,G′)| =

= (dis2(u,G
∗
2)− 1) + (1− dis2(x,G

∗
2)) +

∑
v ̸={u,x}∈V

|dis2(v,G′)|

Since graphs G∗
2 and G′ only differ by the edge (u, x),

∑
v ̸={u,x}∈V

|dis2(v,G∗
2)| =∑

v ̸={u,x}∈V

|dis2(v,G′)|, and thus ∆2(G
∗
2) = ∆2(G

′). By applying the above argument to

all the illegal vertices of G∗
2, we construct an optimal instance that contains only legal

vertices.

Theorem 4.3. Let G = (V,E, p) be an uncertain graph where [degu] ∈ Z, ∀u ∈ V . An
optimal solution of Problem 1 on input G is given by solving a maximum b-matching on
graph G using [deg(u,G)] as capacity constraint of vertex u.

Proof. Using the previous lemma, there is always an optimal solution G∗
2 = (V,E∗)

that ensures that deg(u,G∗
2) ≤ [deg(u,G)], for all u ∈ V . Thus, we can remove the absolute

values from the definition of ∆2:

∆2(G
∗
2) =

∑
u∈V

∣∣deg(u,G∗
2)− [deg(u,G)]

∣∣ =
=

∑
u∈V

(
[deg(u,G)]− deg(u,G∗

2)
)
=

∑
u∈V

[deg(u,G)]−
∑
u∈V

deg(u,G∗
2)

Since the expected degrees [deg(u,G)] are fixed, this is equivalent to maximizing∑
u∈V deg(u,G∗

2), which in turn leads to the maximization of |E∗|. Therefore, G∗
2 is a

maximum b-matching on G with capacity constraints [deg(u,G)].

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:16 P. Parchas et al.

Algorithm
According to Theorem 4.3, a maximum b-matching on graph G leads to the optimal

solution if all expected degrees are integers. However, since actual uncertain graphs have
real valued expected degrees, the b-matching technique of the previous section cannot be
applied directly. Instead, ABM involves two phases. Phase 1 rounds the expected vertex
degrees to the closest integers, and computes a maximal b-matching using the rounded
values as capacity constraints. Phase 2 partitions the vertices according to their discrepancy.
Then, it extracts additional edges that improve the total discrepancy ∆2, by performing a
bipartite matching. We use approximation techniques for the two phases (i.e., b-matching
and bipartite matching) for efficiency reasons.
Algorithm 3 contains the pseudocode of ABM. Phase 1 (lines 3-7) corresponds to a greedy

approximate maximum b-matching [Hougardy 2009] that considers all edges in random
order. For each edge e = (u, v), if the capacity constraints of both vertices u and v are
not violated, then e is inserted into the result set Em, and the degrees of u and v are
incremented. After all edges have been considered, Em contains a maximal b-matching
of G, whose cardinality is at least half of that of the maximum [Hougardy 2009]. Figure
7(b) shows the vertex degrees after rounding on the uncertain graph of Figure 7(a). ABM
considers in turn edges (u2, u3), (u7, u8), which are added to Em. After that, no other edge
can be included in Em because it would cause a capacity violation. Figure 7(c) includes the
vertex discrepancies after the termination of Phase 1, with respect to their original (i.e.,
before rounding) degree.

Algorithm 3 Approximate b-Matching (ABM)

Input: uncertain graph G = (V,E, p)
Output: representative G∗ = (V,E∗).
1: calculate the expected degree [deg(i,G)] for all vertices in V .
2: Em ← 0, deg(u)← 0

// Phase 1
3: let bi = round([degi]) to the closest integer
4: for each e = (u, v) ∈ E do
5: if deg(u) < bu AND deg(v) < bv then
6: Em ← Em ∪ {e}
7: deg(u)← deg(u) + 1; deg(v)← deg(v) + 1

// Phase 2
8: A← ∅,B← ∅,C← ∅
9: for each u ∈ V do
10: let dis2(u) = deg2(u)− [deg2(u,G)]
11: if dis2(u) ≤ −0.5 then A← A ∪ {u}
12: else if −0.5 < dis2(u) < 0 then B← B ∪ {u}
13: else C← C ∪ {u}
14: E′ ← E \ Em

15: for each edge e = (u, v) ∈ E′ do
16: weight= |dis2(u)|+ 2|dis2(v)| − |1 + dis2(u)| − 1
17: if (u ∈ A) AND (v ∈ B) AND (weight> 0) then w(e)← weight
18: else discard e
19: Let G′ = ((A ∪ B), E′,W) where W : w(e)→ R
20: EBP = bipartite(G′)
21: E∗ = Em ∪ EBP

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:17

u2

u1u5

u3

u6
u4

1.4

0.3

1

0.4 0.3 0.30.45

u7

0.2

2.6 1.9

0.45 0.4 0.3 0.3

u8

0.9

1

0.1

0.45

u9

0.45

(a) initial graph G

u2

u1u5

u3

u6u4

0.3

1

0.4 0.3 0.30.45

u7

0.2

u8

0.9

0.1

1

3 2

0 0 0 0

1

0.45

u9

0

(b) rounded graph

u2

u1u5

u3

u6u4

u7

u8

u9

-0.4

-1.6
-0.9

-0.45 -0.4 -0.3 -0.3

0

-0.45

(c) result of b-matching

Fig. 7: ABM Phase 1

Based on their discrepancies, Phase 2 partitions the vertices into three groups A, B
and C. A contains vertices with discrepancy dis2(u) ≤ −0.5, B the vertices for which
−0.5 < dis2(u) < 0, and C vertices with dis2(u) ≥ 0. The partitioning is complete (i.e.,
A ∪ B ∪ C = V) and there is no overlap (i.e., A ∩ B ∩ C = ∅). In our running example the
groups are A = {u2, u3}, B = {u1, u4, u5, u6, u7, u9} and C = {u8}.
Intuitively, A contains vertices, whose absolute discrepancy will decrease by the addition

of an edge. B contains vertices whose absolute discrepancy will increase (after the addition
of an edge) by less than 1. C contains vertices that have already reached or exceeded their
expected degree1; thus, a new adjacent edge will increase their discrepancy by 1. Edges
between vertices of A (e.g., (u2, u3)) have been added to the result set Em during Phase
1. The following lemmas discuss the potential for including additional edges, depending on
the group of their incident vertices.

Lemma 4.4. Let an edge (u, v) where u, v ∈ B. Including edge (u, v) in the result set
cannot improve the overall discrepancy ∆2.

Proof. Since both vertices belong to the set B, it holds that −0.5 < dis2(i) < 0 for
i = {u, v}. Thus, their total discrepancy is d1 = |dis2(u)| + |dis2(v)| < 1. The addition of
edge (u, v) will change the discrepancies to dis′2(u) = dis2(u) + 1 > 0.5, and dis′2(v) > 0.5.
Thus, the total discrepancy becomes d2 = |dis′2(u)| + |dis′2(v)| > 1. Since d1 < d2, edge
(u, v) increases ∆2.

Lemma 4.5. Let an edge (u, v) where u ∈ C. Including edge (u, v) in the result cannot
improve the overall discrepancy ∆2.

Proof. Since u has exceeded its expected degree, adding edge (u, v) will increase dis2(u)
by exactly 1. On the other hand, the absolute discrepancy of v can increase or decrease by
at most 1. Thus, ∆2 can only increase (if v ∈ B or v ∈ C) or remain the same (if v ∈ A).

The above lemmas state that the inclusion in the result of an edge that connects i) two
vertices in B or ii) a vertex in C with any vertex, cannot improve ∆2. Therefore, after
Phase 1, the only possible additions are edges that connect vertices in A with vertices in
B. Let such an edge e = (a, b) with a ∈ A and b ∈ B: if the addition of e in the result set
decreases the absolute discrepancy of a more than it increases the absolute discrepancy of
b, then it improves ∆2. The following lemma, quantifies this improvement.

Lemma 4.6. Let e = (a, b) where a ∈ A and b ∈ B. Including edge e in the result set
changes the overall discrepancy ∆2 by g(e) = |dis2(a)|+ 2|dis2(b)| − |dis2(a) + 1| − 1.

1Such vertices are possible because b-matching is performed on the rounded degrees.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:18 P. Parchas et al.

Proof. The total discrepancy of vertices a and b before (a, b) is, d1 = |dis2(a)|+|dis2(b)|.
After adding the edge, it becomes d2 = |dis2(a) + 1| + (1 − |dis2(b)|). We define the gain
g(e) of e as the difference between the two discrepancies, i.e., g(e) = d1 − d2 = (|dis2(a)|+
|dis2(b)|) −

(
|dis2(a) + 1| + (1 − |dis2(b)|)

)
= |dis2(a)| + 2|dis2(b)| − |dis2(a) + 1| − 1.

If g(e) is positive, edge e decreases ∆2; otherwise it increases it. If dis2(a) ≤ −1, then
|dis2(a) + 1| = |dis2(a)| − 1, and the gain becomes g(e) = 2|dis2(b)|, i.e., g(e) depends only
on |dis2(b)|.

An edge e can improve the overall discrepancy, only if g(e) > 0. Lines 15-18 of Algorithm
3 consider each edge e in E′ = E − Em connecting vertices in A and B. If g(e) > 0, e is
inserted in a graph G′ = (A ∪B,E′,W) where W : E′ → R, with w(e) = g(e). Figure 8(a)
shows the graph G′, including the vertex discrepancies and edge weights, which correspond
to their gains. The next question is how to efficiently select the subset of edges in E′ that
minimizes ∆2. Towards this, subroutine bipartite(G′) performs an approximate maximum
weight bipartite matching on graph G′ with a twist: a vertex of A may be matched with
multiple vertices of B, if it has high absolute discrepancy.
Algorithm 4 illustrates bipartite, which utilizes a max-heap H to arrange the edges e ∈ E′

based on their weights/gains g(e). Initially, all edges of E′ are inserted in H. At each
iteration, the top of the heap e = (a, b) is added to the result. The inclusion of (a, b) increases
the discrepancies of a and b. Specifically, the new discrepancy of b becomes positive; thus,
according to Lemma 4.5, edges adjacent to b cannot reduce ∆2, and are removed from H.
Then, bipartite updates the discrepancy of a; let dis2(a) be the new value. If dis2(a) ≤ −1,
from Lemma 4.6, the gain g(e′) of every edge e′ = (a, x) ∈ H does not change since it
depends only on |dis2(x)|. If −1 < dis2(a) < −0.5, then g(e′) decreases since |dis2(a)|
has been decreased. bipartite computes the new gain g(e′) using Lemma 4.6 (line 10), and
triggers a decrease-key(e′) operation to relocate e′ in H (line 12). If g(e′) becomes negative,
the edge is removed. Finally, if dis2(a) > −0.5, vertex a cannot further improve ∆2 as it
does not belong to group A anymore; thus, it is discarded and all adjacent edges (a, x) are
expunged from H. The function terminates when H becomes empty.

Algorithm 4 bipartite

Input: bipartite graph G′ = (A ∪B,E′,W)
Output: set of edges EBP ⊆ E′ with high gain for ∆2

1: EBP ← ∅
2: Insert all edges e ∈ E′ in a max-heap H, based on their gains g(e)
3: while H is not empty do
4: e = (a, b)← H.extract-max()
5: EBP ← EBP ∪ {e}
6: discard all edges in H incident to b
7: dis2(a)← dis2(a) + 1 // The discrepancy of a increases by one
8: if −1 < dis2(a) < −0.5 then
9: for each edge e′ = (a, x) ∈ H do
10: g(e′)← |dis2(a)|+ 2|dis2(x)| − |dis2(a) + 1| − 1
11: if g(e′) > 0 then H.decrease-key(e′)
12: else H.remove(e′)

13: else if dis2(a) > −0.5 then
14: for each edge e′ = (a, x) ∈ H do H.remove(e′)

Continuing the example of Figure 8(a), bipartite first picks the heaviest edge (u2, u5) and
adds it to the result. Then, it updates the discrepancy of u2 to dis2(u2) = −1.6+1 = −0.6;

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:19

since −1 < dis2(u2) < −0.5, the gains of edges adjacent to u2,
(
i.e., (u2, u1), (u2, u7) and

(u2, u9)
)
must be updated as well. Edges (u2, u1) and (u2, u7) yield a negative gain, and

are discarded. Figure 8(b) shows the bipartite graph after the first iteration. The next edge
(u3, u7) extracted from H is included in the result, updating the discrepancy of vertex u3

to dis2(u3) = −0.9 + 1 = 0.1. Since dis2(u3) > 0, all edges adjacent to u3 are expunged
from H. Finally, bipartite extracts the last edge (u2, u9) of H, adds it to the result and
terminates. Figure 8(c) shows the final output of ABM, which combines the edges added
during the two phases. The discrepancy of the extracted graph is 3.2. The total cost of ABM
includes the linear-time processing of edges in Phase 1, and the heap operations of Phase
2 on E′. Each edge of E′ can be processed at most |B| times. Therefore, the complexity of
ABM is O(|E|+ |B| · |E′| · log |E′|), where |E′| ≤ |E|.

A B

u2

u3

u1

u5

u4

u6

u7

0.8

0.9

0.8

0.6

0.4

0.4

u9
0.9

-1.6

-0.9

-0.4

-0.45

-0.45

-0.3

-0.3

-0.4

(a) input of bipartite

A B

u2

u3

u1

u5

u4

u6

u70.6

0.4

0.4

u9
0.1

-0.6

-0.9

(b) after first iteration

u2

u1u5

u3

u6
u4

u7

u8

u9

0.6

0.4
0.1

0.55 -0.4 -0.3 -0.3

0

0.55

(c) G∗ of ABM

Fig. 8: ABM Phase 2

5. ALGORITHMS FOR MINIMIZING NEIGHBORHOOD CONNECTIVITY DISCREPANCY

Recall that ADR and ABM aim explicitly at capturing the expected degree of the vertices.
Specifically, ADR requires an instance that preserves the average n-clique cardinality as
a seed. This is an easy task for n = 2 as each edge affects exactly two vertices i.e., its
endpoints. For n > 2, each edge potentially affects all other vertices of the graph, hence
ADR cannot be applied. Accordingly, ABM exploits some properties of b-matching, which are
specific to vertex degrees. On the other hand, GREEDY and GAME generate representative
instances minimizing the objective function

∑n
m=l ∆m of Problem 2, for larger values of

n and/or l. Section 5.1 introduces basic procedures that are used by both GREEDY and
GAME frameworks, which are presented in sections 5.2 and 5.3, respectively.

5.1. Basic procedures

Let E∗ be the set of edges in the current representative G∗, stored in the form of adjacency
lists. Given an edge e = (u, v) and an integer m ≥ 2, Qm(e,E∗) denotes the set of m-cliques
that contain both endpoints u and v in E∗. Lm(e) is the set of vertices that belong to at least

one clique of Qm(e, E∗), i.e. Lm(e) =
∪

c∈Qm(e,E∗)

c. The union of all these sets L(e) =
n∪

m=l

Lm contains

the affected vertices of edge e. The following lemma derives the cardinality of Qm(e, E∗).

Lemma 5.1. Given an edge e = (u, v), the number of m-cliques that contain both end-

points u and v is |Qm(e,E∗)| = O(|V |m−2

(m−2)!).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:20 P. Parchas et al.

Proof. In the worst case G∗ is a complete graph of |V | vertices. In order to generate all
m-cliques that contain u and v we have to choose m− 2 vertices out of the |V | − 2 vertices
in V \ {u, v}. Thus,

|Qm(e, E∗)| =
(
|V | − 2

m− 2

)
=

(|V | − 2) · (|V | − 3) · · · (|V | −m)

(m− 2) · (m− 3) · · · 1
= O

(|V |m−2

(m− 2)!

)

Algorithm 5 presents a recursive subroutine, which outputs Qm(e,E∗). The base of the
recursion ism = 2, where the resultQ2(e,E

∗) contains a single clique {u, v}. Form > 2, each
clique c of size m− 1 is extended by the addition of a vertex w that is a common neighbor
of all vertices in c, i.e., w ∈

∩
i∈c adj(i). The computation is performed by intersecting

the adjacency lists of all elements in c. For instance, if m = 3, for each element w in
adj(v) ∩ adj(u), a clique {u, v, w} is added to the set Q3(e,E).

Algorithm 5 Qm

Input: edge e = (u, v), set of edges E∗

Output: set Qm(e,E∗) of cliques of size m in E∗ that contain both endpoints of e
1: if m = 2 then
2: Q2(e,E

∗)← {{u, v}}
3: else
4: Qm(e,E∗)← ∅
5: for each clique c ∈ Qm−1(e,E

∗) do
6: W ←

∩
i∈c adj(i)

7: for each vertex w ∈W do
8: Qm(e,E∗)← Qm(e,E∗) ∪ {c ∪ {w}}

To analyze Algorithm 5, we focus on the last step; assuming that we have computed the

set Qn−1, we wish to generate Qn. According to Lemma 5.1, |Qn−1(e,E
∗)| = O

(
|V |n−3

(n−3)!

)
.

For each clique c ∈ Qn−1, line 6 finds the set W of vertices that appear in the adjacency
lists of all n− 1 nodes of c. This intersection can be performed in linear time to the size of
the lists, using an array of size |V | that counts the number of occurrences of each vertex in
the lists (the intersection consists of vertices, whose counter equals n− 1). Since, there are
n−1 lists, each with size less than |V |, the cost per clique is upper bounded by (n−1) · |V |.
Repeating the process for all cliques in Qn−1 yields cost:

O
(
(n− 1) · |V | · |V |

n−3

(n− 3)!

)
= O

(
(

1

(n− 4)!
+

2

(n− 3)!
) · |V |n−2

)
= O(|V |n−2)

By applying the same reasoning, we derive the complexity of each step; e.g., generating
cliques of size n− 1 from Qn−2 costs O(|V |n−3). Thus, the total complexity of Algorithm 5
is described by a geometric series, which is dominated by the largest term, i.e., O(|V |n−2).
The inclusion or removal of an edge e, alters the n-clique cardinalities of affected vertices

and the gains of their incident edges, i.e., the benefit of adding those edges in E∗. Algorithm
6 illustrates the function update-vertices(e, E∗) that outputs the set L(e) of vertices affected
by e. In addition, for each vertex w ∈ L(e) and each m ∈ [l, n], it updates the m-clique
cardinality γm(w) and counts the occurrences km(w) of w in Qm(e,E∗). Line 3 checks
whether e belongs to E∗ and sets the value of flag accordingly. Specifically, flag is set to
1(−1), if e is inserted to (removed from) E∗. Then, for each clique cardinality m, lines 4-10
compute the set of cliques Qm(e,E∗) that contain both u and v in E∗, by calling Algorithm
5. The m-clique cardinality γm of each node of every clique in Qm(e, E∗) is incremented

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:21

(decremented) depending on the value of flag. When the algorithm terminates, the value
of km(w) equals the absolute difference between the new and previous value of γm(w).

Algorithm 6 update-vertices

Input: edge e = (u, v), set of edges E∗

Output: set L(e) of affected vertices
1: L(e)← ∅
2: km(w)← 0, ∀w ∈ V and m ∈ [l, n]
3: if e ∈ E∗ then flag = −1 else flag = 1

4: for m← l..n do
5: Qm(e,E∗) // Algorithm 5
6: for each clique c ∈ Qm(e,E∗) do
7: for each node w ∈ c do
8: γm(w)← γm(w) + flag
9: L(e)← L(e) ∪ {w}
10: km(w)← km(w) + 1

The complexity of update-vertices is analyzed as follows. For each value of m, the set of
cliques Qm(e,E∗) is computed in O(|V |m−2) time. According to Lemma 5.1, the loop of

line 6 needs to be executed O(|V |m−2

(m−2)!) times, while the inner loop of line 7 needs to be

executed m times, as each clique has m vertices. Thus, the time complexity of lines 6-10 is
O(|V |m−2). The overall complexity of Algorithm 6 is O(|V |n−2), dominated by the greatest
value of m = n.
As an example of update-vertices, consider the addition of edge e = (u1, u5) in the rep-

resentative graph of Figure 9(a). If m = 3, the 3-clique cardinality γ3 of vertices u2, u3

and u4 that appear in both adj(u1) and adj(u5) increases by one, while γ3(u1) and γ3(u5)
increase by three due to the creation of triangles {u1, u5, u2}, {u1, u5, u3}, {u1, u5, u4}.
In general, γm(u) and γm(v) are updated |Qm(e,E∗)| times since u and v belong to all
cliques in Qm(e,E∗). Observe that, while for m = 3 a vertex w ∈ Q3(e, E

∗) \ {u, v} is
updated exactly once i.e., k3(w) = 1 , for m > 3, its m-clique cardinality may increase
by km(w) > 1. For instance, if m = 4, the addition of edge e = (u1, u5) yields two 4-
cliques Q4(e,E

∗) = {{u1, u2, u4, u5}, {u1, u3, u4, u5}} as shown in Figure 9(b). Figure 9(c)
illustrates γ4(u) of all vertices before and after the insertion, as well as their difference k4(u).

u2

u3u4

u5

u1

(a) addition of (u1, u5)

u2

u3u4

u5

u1

xxx
xxx
xxx
xxx

(b) 4-cliques

before adding after adding

0 2 2

0 1 1

0 1 1

0 2 2

0 2 2

½Ý:�; ½"Ý:�;

:Q5áQ9; :Q5áQ9;

Q5

�

Q6

Q7

Q8

Q9

�����Ý � L

½
Ý

ñ � F ½Ý �

(c) γ4(u) before and after

Fig. 9: Example for m = 4

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:22 P. Parchas et al.

Given an edge e = (u, v) and the current set E∗, compute-gain returns the gain g(e) of
adding (removing) e to (from) E∗. The gain is given by the following formula:

g(e) =
n∑

m=l

∑
w∈Lm(e)

(
|dism(w)| − |dism(w) + flag · km(w)|

)
(5)

where, Lm(e) is the set of vertices in the same m-clique as {u, v}, km(w) is the difference in
the m-clique cardinality γm(w) incurred by e and flag is +1 or −1 for insertion or deletion,
respectively. Intuitively, the gain corresponds to the sum of discrepancy differences of the
affected vertices caused by the addition / removal of e. The pseudocode for compute-gain
is similar to Algorithm 6 and omitted. The time complexity is also identical (O(|V |n−2))
since gain computation involves the generation of Qn.

5.2. Greedy Framework

GREEDY extends the concept of PS to Problem 2 using a max heap to dynamically rearrange
the edges according to their gain for the current representativeG∗ (instead of the fixed order,
based on probabilities, used by PS). Specifically, the key in the heap H is the gain computed
by Equation 5; if two edges have the same gain, then the one with the higher probability
precedes the other. At the beginning, all edges are added to H. Note that if m > 2, the
initial gains of all edges are 0 because the inclusion of any edge in E∗ = ∅ cannot create any
m-clique. In this case, the edges are inserted in H based on their probabilities. If m = 2, all
gains are positive and most of them equal 2, except for edges that are incident to at least
a vertex with expected degree less than 1.
At each iteration the top of the heap e (i.e., the edge with the maximum gain) is extracted

and, if it has non-negative gain2, it is added to E∗. Then, the gains of the affected edges
are updated and the heap entries are rearranged. The process terminates when the next
extracted edge has negative gain, or the heap is empty. The challenge lies in i) efficiently
updating the edges whose gain is affected by the inclusion of e and ii) maintaining the heap
property of the max-heap.
Figure 10(a) contains the data structures that facilitate the execution of GREEDY. The

max-heap H is implemented as an array of initially |E| elements, such that the children
of an element i are located at positions 2 · i and 2 · i + 1. Each element contains an edge
e = (u, v) and its corresponding gain g(e). An array of pointers M keeps track of the
location of edges in H. Every time an update occurs to an edge e in H, increase-key(e) or
decrease-key(e) relocate e to ensure that H maintains the heap property. Accordingly, M
changes the relevant pointer to the new location of e. For example, assume that in Figure
10(b) an update reduces the gain of e1 to a value smaller than that of its child e2. Then,
decrease-key(e1) is triggered and e1 swaps places with e2.M records the update by swapping
the pointers of e1 and e2.

i

e3=(v,w)

g(e3)

e1=(u,v)

g(e1)

2i

e2=(u,w)

g(e2)
H:

M: i

e1 e2

...

e3

... ...

1

2i ...1 ...

(a) Before update

i 2i

H:

M:

e1 e2 e3

1

2i i ...1 ...

e3=(v,w)

g(e3)

e2=(u,v)

g(e2)

e1=(u,w)

P[(e1)
...... ...

(b) After decrease-key(e1)

Fig. 10: Structures utilized by GREEDY

2Edges with gain 0 are also accepted because, if l > 2, initially every edge has gain 0.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:23

Algorithm 7 illustrates the pseudocode of GREEDY. Lines 1-3 initialize the data structures
and set γm(u) = 0 for all u ∈ V and m ∈ [l, n]. For every edge e, lines 4-6 first compute
e’s gain g(e) by invoking compute-gain, and then insert e in H according to g(e). At each
iteration in lines 7-14, the edge e at the top of the heap, and its gain g(e), are retrieved.
If g(e) ≥ 0, the addition of e to the result improves the overall discrepancy. Consequently,
Algorithm 6 returns the affected vertices L(e) and computes their m-clique cardinality.
Given L(e), update-heap is invoked in order to update structures H and M . Algorithm 7
terminates when either all edges have been included, or the extracted edge has negative
gain, i.e., its inclusion to the result worsens

∑n
m=l ∆m.

Algorithm 7 GREEDY

Input: the set of vertices V , set of edges E, clique cardinality range [l, n]
Output: representative G∗ = (V,E∗)
1: E∗ ← ∅
2: H ← empty max-heap of size |E|
3: γm(v)← 0 ∀v ∈ V and m ∈ [l, n]
4: for each edge e = (u, v) ∈ E do
5: g(e)←compute-gain (e, E∗)
6: H.insert(e) using g(e) as the key. Break ties using edge probability pe.

7: repeat
8: e← H.extract-max()
9: g(e)← H.get-key(e)
10: if g(e) ≥ 0 then
11: E∗ ← E∗ ∪ {e}
12: L(e)← update-vertices(e,E∗) // Algorithm 6
13: update-heap(e,L(e), E∗)

14: until g(e) < 0 OR H.isEmpty()

Algorithm 8 shows the pseudocode of update-heap that rearranges the elements of H
after the insertion of e to E∗. For each affected vertex w ∈ L(e), update-heap retrieves all
incident edges e′ = (w, x) that have not been added to the result yet, i.e., e′ ∈ E \ E∗.
For each such edge, the new gain g′(e′) is computed and then compared to its previous
value g(e′). The index M facilitates the efficient retrieval of g(e′). Depending on g′(e′), the
corresponding heap operation relocates ei within H: a decrease triggers decrease-key(e′),
while a gain increase triggers increase-key(e′).

Algorithm 8 update-heap

Input: edge e = (u, v), affected vertices L(e), set of edges E∗

Output: updates H after insertion of e
1: for each edge e′ = (w, x) ∈ E \ E∗ incident to at least one vertex w ∈ L(e) do
2: g(e′)← H.get-key(e′)
3: g′(e′)← compute-gain (e′, E∗)
4: if g′(e′) < g(e′) then H.decrease-key(e′)
5: else H.increase-key(e′)

The complexity of update-heap is dominated by compute-gain, which is O(|V |n−2), as
opposed to O(log |E|) for the heap operations. In the worst case, the number of affected
edges is |E|, incurring cost O(|E| · |V |n−2) per call of Algorithm 8. Since all edges may
be extracted from the heap, invoking update-heap, the overall complexity of GREEDY is
O(|E|2 · |V |n−2).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:24 P. Parchas et al.

Figure 11 demonstrates an example of GREEDY for l = 2 and n = 3, based on the
uncertain graph of Figure 2(a), where the expected m-clique cardinalities of the vertices
have been replaced by the corresponding 2-(rectangles) and 3-(ellipses) discrepancies. Each
subfigure contains the current representative G∗ (with bold lines) and the contents of H.
Initially, all edges have gain 2 as the gain is non zero only for clique cardinality m = 2,
and ties are resolved by edge probabilities. Figure 11(a) illustrates G∗ and H after the
three first iterations. At the fourth iteration, the head of H, edge e = (u4, u5) with gain
g(e) = 2 is extracted. Since the gain is non negative, e is added to the result set. Then,
update-vertices sets γ2(u4) = 1 and γ2(u5) = 3 and returns the set of affected vertices
L(e) = {u4, u5}. Next, update-heap computes the gains of edges in H incident to vertices
in L(e), i.e., (u1, u4), (u2, u4), (u3, u4) and (u2, u5). For example, compute-gain calculates
g′(u1, u4) as follows. Initially, g

′(u1, u4) = 0. Then, for m = 2, the only 2-clique containing
u1 and u4 is {u1, u4}, thus g′(u1, u4) = 1 + 0.18 = 1.18. For m = 3 the only 3-clique that
contains u1 and u4 is {u1, u4, u5}. Thus g′(u1, u4) = 1.18− 0.2 + 1 + 0.14 = 2.12.

-1.15
u2

u3u4

u5

-0.59

-2
-0.57

-0.40

-0.89

0.33

-1.31 0.35

-2.49

(u4,u5)

g=2
H:

u1

(u2,u4)

g=2

(u2,u5)

g=2

(u1,u2)

g=1.2

(u3,u4)

g=0

(u1,u4)

g=1.2

0.8

0.8

0.9

0.4

0.3

0.95

0.9

0.4

0.49

(a) after three iterations

H:

-0.15
u2

u3u4

u5

-0.59

-2
-0.57

-0.40

-0.89

0.33

-1.31 0.35

-1.49

u1

(u1,u4)

g=2.1

(u2,u4)

g=2

(u2,u5)

g=0.3

(u1,u2)

g=1.2

(u3,u4)

g=0.1

0.8

0.8

0.9

0.4

0.3

0.95

0.9

0.4

0.49

(b) after fourth iteration

H:

-0.15
u2

u3u4

u5

0.41

-1
0.43

0.60

-0.89

0.33

-0.31 0.35

-0.49

u1

(u1,u2)

g=-0.6

(u3,u4)

g=-6.3

(c) result of GREEDY

Fig. 11: GREEDY example (representative G∗ and heap H) for l = 2 and n = 3

Figure 11(b) shows the snapshot after the fourth iteration. Note that the elements of
the heap have been rearranged to maintain the heap property after the gain updates. For
instance, edge (u1, u4), which was at the bottom of the heap before the inclusion of (u4, u5),
is now at the top with gain g(u1, u4) = 2.1. The iterative process continues for two more
rounds to include edges (u1, u4) and (u2, u4). Then, the algorithm terminates as the edge
(u2, u5) extracted from the top of H has negative gain g = −0.3. Figure 11(c) contains
the result of GREEDY and the contents of H. The resulting representative has sub-optimal
discrepancy ∆2 + ∆3 = 5.0 (recall from Figure 3 that the optimal instance has overall
discrepancy ∆2 +∆3 = 3.83).

5.3. Game Theoretic Framework (GAME)

In GREEDY once an edge is added to the representative, it will not be subsequently removed.
GAME allows for corrections during run-time by enabling the removal of edges from E∗.
In our game, the players are the edges of the uncertain graph, which decide whether to
participate in the representative. The decision / strategy se of each edge e is binary (1
corresponds to participation), and minimizes its own cost function Ce(S), given the strategy
vector of all players S = (se : e ∈ E). For Problem 2, this cost function is:

Ce(S) =
n∑

m=l

(∑
w∈Lm(e)

|dism(w)|
)

(6)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:25

Intuitively, e participates in the representative, if it improves the sum of the discrepancies
of its affected vertices; or equivalently, using the terminology of the previous section, if e
has a non-negative gain given the other edges in E∗. Conversely, e is removed from the
representative, if its elimination also yields a non-negative gain.
Algorithm 9 describes the application of best response dynamics [Monderer and Shapley

1996] in our context. Initially, a seed representative G∗ is created by assigning a random
strategy se = {0, 1} to every edge e. L denotes the set of affected vertices, and is initialized
to the entire vertex set V . Then, the algorithm proceeds in rounds. In every round (lines
5-13), for each edge e incident to a vertex in L, compute-gain returns the gain of e (as
derived by Equation 5) and the set L(e) of vertices affected by e. If e /∈ E∗ and e has a non
negative gain, then e switches strategy from 0 to 1, and is included to E∗. On the other
hand, if e ∈ E∗ and its removal yields non negative gain, then it switches strategy from 1
to 0. In both cases, the vertices of L(e) are added to the set Lnew. Only edges incident to
vertices in Lnew will be considered during the next round, as the gain of the rest remains
unchanged.

Algorithm 9 game theoretic framework (GAME)

Input: uncertain graph G = (V,E, p), clique cardinality range [l, n]
Output: representative G∗ = (V,E∗)
1: create an initial representative G∗ = (V,E∗) by assigning a seed strategy to each edge
2: Lnew ← V
3: repeat
4: L ← Lnew; Lnew ← ∅
5: for each edge e incident to a vertex in L do
6: g(e)← compute-gain (e,E∗)
7: if e /∈ E∗ and g(e) ≥ 0 then
8: E∗ ← E∗ ∪ {e} // add edge to G∗

9: Lnew ← Lnew ∪ L(e)
10: if e ∈ E∗ and g(e) ≥ 0 then
11: E∗ ← E∗ \ {e} // remove e from G∗

12: Lnew ← Lnew ∪ L(e)
13: until Termination

Figure 12 contains an example of GAME for l = 2, n = 3, based on the uncertain graph of
Figure 2(a). Next to each vertex, we denote its 2- and 3- discrepancy with a rectangle and
ellipse, respectively. Figure 12(a) illustrates the initial representative of the GAME frame-
work. Bold (resp. thin) lines indicate that edges participate (resp. do not to participate) in
the seed graph; accordingly, the initial strategy vector is S = (0, 1, 1, 1, 1, 0, 1, 0, 0) for the
corresponding edges e1, e2, · · · , e9. Assume that at round 1, edge e1 = {u1, u2}, which is
not currently in E∗, is considered first. The set L(e1) consists of u1, u2 and u5. Specifically,
the vertices whose 2- and 3- discrepancies are affected by e1 are L2(e1) = {u1, u2} and
L3(e1) = {u1, u2, u5} (observe that the inclusion of e1 in E∗ would create a new triangle
with u5).
If e1 retains its strategy, then its cost according to Equation 6 is Ce1(S) =∑
w∈L2(e1)

|dis2(w)| +
∑

w∈L3(e1)
|dis3(w)| = (0.59 + 1) + (0.40 + 0.89 + 0.57) = 3.45.

On the other hand, if e1 decides to participate, i.e., the strategy vector changes to S′ =
(1, 1, 1, 1, 1, 0, 1, 0, 0), then its cost becomes Ce1(S

′) = (0.41+0)+(0.60+0.11+0.43) = 1.55.
Since Ce1(S

′) < Ce1(S) (i.e., g(e1) > 0), e1 switches strategy, yielding the representa-
tive and discrepancies of Figure 12(b). The vertices u1, u2, u5 of L(e1) are added to
Lnew because their discrepancies have been updated, influencing the gains of their inci-
dent edges. The procedure continues for the remaining edges, possibly for several rounds.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:26 P. Parchas et al.

As we will discuss shortly, it always reaches a Nash equilibrium, where no edge can further
improve its cost function. Figure 12(c) illustrates such an equilibrium, with strategy vector
SNE = (1, 1, 1, 1, 1, 0, 0, 0, 1) and overall discrepancy ∆2 +∆3 = 3.83. Although in this case
the solution is the optimal representative, in general an equilibrium only corresponds to a
local minimum.

u1

u2

u3u4

u5
e2

e6

e5

e3 e1

e9

e7

e4
e8

-0.57

-0.40

-0.89

-0.66

-0.31

-0.49

0.85

-0.59

-1

-0.65

(a) initial seed

u1

u2

u3u4

u5

-0.49

0.41

0

-0.65

0.85

0.43

0.60

0.11

-0.66

-0.31

(b) after first decision (e1)

u1

u2

u3u4

u5

0.51

-0.15

0.41

0
0.43

0.60

0.11

-0.66

-0.31 -0.65

(c) Nash equilibrium

Fig. 12: GAME example for l = 2 and n = 3

Let #rounds be the number of rounds performed by GAME. In the worst case, at every
round, |E| edges change their strategy, invoking compute-gain, which has cost O(|V |n−2).
Thus, the overall complexity of GAME is O(#rounds·|E|·|V |n−2). Similar to ADR, #rounds
can be used to adjust the trade-off between solution quality and efficiency. However, unlike
ADR, where this parameter is necessary as the algorithm may never terminate, as shown in
the following lemma, GAME always converges to a pure Nash equilibrium, eliminating the
need for explicitly providing #rounds.

Lemma 5.2. GAME constitutes an exact potential game with potential function
Φl,n(G) =

∑n
m=l ∆m(G).

Proof. Let Se be the strategy vector of all edges excluding e, i.e., Se =
(s1, · · · , se−1, se+1, · · · , s|E|). Without loss of generality, assume that edge e changes its
strategy from se = 0 to s′e = 1, i.e., e decides to participate in the representative. Accord-
ingly, let G∗ and G′ be the two representative instances, before and after the inclusion of
e. The overall gain in the objective function Φl,n(G

∗) =
∑n

m=l ∆m(G∗) due to the addition
of edge e is given by Equation 5. Specifically:

Φl,n(G
∗)− Φl,n(G

′) = g(e) =

n∑
m=l

∑
w∈Lm(e)

(
|dism(w)| − |dism(w) + km(w)|

)
The corresponding change in the individual cost function of e is,

Ce(se, Se)− Ce(s
′
e, Se) =

n∑
m=l

(∑
w∈Lm(e)

|dism(w)|
)
−

n∑
m=l

(∑
w∈Lm(e)

|dism(w) + km(i)|
)
=

= Φl,n(G
∗)− Φl,n(G

′)

Intuitively, Lemma 5.2 proves that the gain in cost induced by the individual decision of
any edge, equals the gain in the overall discrepancy. The equality Φl,n(G

∗) − Φl,n(G
′) =

Ce(se, Se)−Ce(s
′
e, Se) holds independently of the choice of parameters l and n. Due to this

property, GAME constitutes an exact potential game, guaranteeing that Algorithm 9 always
terminates, reaching a Nash equilibrium [Monderer and Shapley 1996].

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:27

6. EXPERIMENTS

In this section, we assess the quality and efficiency of the proposed techniques. The evaluated
methods are PS (Probability Sorting), ADR (Average Degree Rewiring), ABM (Approximate
B-Matching), GRl,n (the greedy approach) and GMl,n (the game theoretic framework), where
2 ≤ l ≤ n ≤ 3. When l = n we use the notation GRn and GMn respectively. For the
heuristic methods, ADR and GAME, we allow a sufficient number of rounds so that they
both converge. MP (the Most Probable instance) is excluded from our evaluation because,
as shown in [Parchas et al. 2014], it has consistently poor performance in all evaluation
metrics.
Section 6.1 describes the datasets used in the experiments. Section 6.2 presents the results

on structural measures i.e., metrics for which the expected value (i.e., the ground truth) can
be computed analytically. Section 6.3 focuses on query metrics, for which the ground truth
is obtained through Monte Carlo simulations. Finally, Section 6.4 compares the running
times of the algorithms.

6.1. Datasets

We use four uncertain, undirected graphs that capture different real-world scenarios and
data characteristics e.g., size, density, edge probability. The details of the datasets are
summarized in Table III.

Table III: Characteristics of real datasets

dataset
vertices edges |E|/|V | edge probabilities exp. degrees exp. triangles
(|V |) (|E|) (mean): (mean): (mean):

Flickr 78 322 10 171 509 129.89 0.09 22.93 164.50
Twitter 26 362 663 766 25.17 0.15 7.71 4.98
DBLP 9 442 144 887 15.34 0.29 9.04 18.77
BioMine 1 008 201 6 742 939 6.68 0.27 3.59 2.44

Flickr [Potamias et al. 2010](www.flickr.com): a social network, where the probability of
an edge between two users is computed assuming homophily, i.e., the principle that similar
interests indicate social ties [McPherson et al. 2001]. Homophily is measured by the Jaccard
coefficient [Tan et al. 2005] of the interest groups of the two users. This is the densest dataset
in our evaluation, as a vertex has on average the largest number of neighbors (i.e., about
130). The expected average degree (triangles) per node is 22.93 (164.50).

Twitter [Bonchi et al. 2014] (twitter.com): a network extracted from the popular online
micro-blogging service and used in [Bonchi et al. 2014] in the context of influence maximiza-
tion. Edge probabilities are learned from the log of past URL propagations and correspond
to the influence that any two users exert on each other. Compared to the other datasets,
Twitter has medium density, with expected average degree 7.71 and 4.98 triangles per node.

DBLP [Potamias et al. 2010; Jin et al. 2011b] (www.informatik.uni-trier.de/∼ley/db/): a
database of scientific publications and their authors. Two authors are connected, if they
have coauthored a publication. The probability of an edge is derived from an exponential
function to the number of collaborations and indicates the likelihood that the authors will
collaborate again in the future. Similar to Twitter, DBLP has medium density; the difference
is that each node has a smaller number of adjacent edges with, however, higher probabilities.

BioMine [Sevon et al. 2006] (biomine.org): a snapshot of the database of the BioMine project
containing biological interactions. The probability of any edge corresponds to the confi-
dence that the interaction actually exists. Particularly, this confidence is quantified by the
genomic-context method, which measures interaction based on how much proteins are en-
coded by genes that share similar selection pressures [von Mering et al. 2003]. BioMine is
the sparsest dataset with expected average degree 3.39, and 2.44 triangles per node.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:28 P. Parchas et al.

Figure 13 illustrates the number of edges in the representatives PS, ABM, ADR, GR2, GR3,
GR2,3, GM2, GM3, and GM2,3. The highest edge cardinality occurs in BioMine; although
the uncertain graph of Flickr has more edges (10M as opposed to 6.7M), the mean edge
probability is larger in BioMine (0.09 versus 0.29). Observe that for the same dataset,
representatives focusing explicitly on ∆3 are much denser than the rest. For instance, in
Twitter, GR3 and GM3 have about 300K edges, whereas all the other representatives have
about 100K. The implication is that by trying to minimize ∆3, GR3 and GM3 may fail to
capture ∆2.

10
-1

10
0

10
1

10
2

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

ed
g

es
 (

x
1
0

5
)

Flickr Twitter DBLP BioMine

Fig. 13: Number of edges per representative

6.2. Structural measures

We assess the accuracy of the methods on the following measures:

• dis2(u) discrepancy corresponds to the absolute error between the degree γ2(u) of
node u in the representative and its expected degree [γ2(u)] in the uncertain graph
(i.e., dis2(u) = γ2(u)− [γ2(u)]). The minimization of the sum ∆2 of discrepancies over
all nodes is the objective of Problem 1.

• dis3(u) discrepancy corresponds to the triangle discrepancy, i.e., the absolute error
between the triangles γ3(u) of u and its expected triangles [γ3(u)] (i.e., dis3(u) =
γ3(u) − [γ3(u)]). The minimization of the sum ∆3 over all nodes is the objective of
Problem 2 for l = 3 and n = 3.

• dis2(u) + dis3(u) discrepancy is the sum of degree and triangle discrepancies. The
minimization of the sum ∆2 +∆3 over all nodes is the objective of Problem 2 for l = 2
and n = 3.

• 2-stars discrepancy [Akers et al. 1994] is the difference of the number of 2-star pat-
terns S2(u) of u to its expected value [S2(u)]. For each vertex u, the 2-star measure
corresponds to the number of open triplets {u, v, w}, where (u, v) and (u,w) are edges
of the representative, but (v, w) is not.

The expected degrees and triangles (i.e., [γ2(u)] and [γ3(u)]) are calculated by applying
Lemma 3.3 for each vertex u ∈ V . The number S2(u) of 2-stars is closely related to the
above two metrics. In particular, S2(u) of a vertex u is the difference of all possible pairs of
edges incident to u, minus the number of closed triangles containing u, i.e.,

S2(u) =
γ2(u) · (γ2(u)− 1)

2
− γ3(u)

Thus, the expected value [S2(u)] is:

[S2(u)] =
[γ2(u) · (γ2(u)− 1)

2

]
− [γ3(u)] =

1

2
· ([γ2

2(u)]− [γ2(u)])− [γ3(u)] =

=
1

2
· (VAR(γ2(u)) + [γ2(u)]

2 − [γ2(u)])− [γ3(u)]

(7)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:29

where VAR(γ2(u)) is the variance of the random variable γ2(u), derived from the probability
distribution of degree values ⟨Pr(γ2(u)) = 0, . . . ,Pr(γ2(u) = ku)⟩ (where ku = |{(u, v) ∈
E}|). Each Pr(γ2(u)) = k is computed by the dynamic-programming method of [Bonchi
et al. 2014].
We plot our experimental results using boxplots (left y-axis), and the Mean Absolute

Error (MAE), (disks projected on the right y-axis). Specifically, for each vertex u ∈ V and
a metric q, we first compute u’s expected value over q, i.e., [q(u)] and the corresponding
value in the representative G∗, i.e., qG∗(u). MAE is defined as

∑
u∈V |qG∗(u)− [q(u)]|/|V |.

Each boxplot represents the error distribution of the vertex set V ; the vertical line includes
95% of the vertices, the rectangle contains 50% of the vertices, and the horizontal line
corresponds to the median error. The methods are grouped in three categories depicted
by different patterns. The first category consists of methods PS, ABM and ADR that aim
explicitly at Problem 1. The second (third) contains variants of the greedy (game theoretic)
approach.
Figure 14 illustrates the boxplots and MAE of |dis2(u)| distribution. For instance, in

Flickr for the representative produced by PS, 95% of the vertices have absolute vertex
degree discrepancy less than 1, 50% of the vertices in the range [0.23, 0.76], and the median
discrepancy is 0.49. The Mean Absolute Error is 0.56. PS is clearly outperformed by ADR
and ABM, whose median discrepancy is below 0.4, in all datasets. The other two methods
that focus on 2-discrepancy, GR2 and GM2, are slightly better than ADR and ABM. On the
other hand, GR3 and GM3, which aim at minimizing the triangle discrepancy, fail (their
MAE and parts of their boxplots are so high that they are excluded, for readability of the
plots). This is due to their large number of edges, as discussed in the context of Figure
13. Although GM2,3 does not explicitly target vertex discrepancy, it captures it rather well.
This can also be explained by its edge cardinality, which is similar to that of representatives
focusing on ∆2.

 0

 0.4

 0.8

 1.2

 1.6

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 0.2

 0.4

 0.6

 0.8

 |
d
is

2
(u

)|

MAE

(a) Flickr

 0

 0.4

 0.8

 1.2

 1.6

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 0.2

 0.4

 0.6

 0.8

 |
d
is

2
(u

)|

MAE

(b) Twitter

 0

 0.4

 0.8

 1.2

 1.6

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 0.2

 0.4

 0.6

 0.8

 |
d
is

2
(u

)|

MAE

(c) DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3GM2,3

 0

 0.2

 0.4

 0.6

 0.8

 |
d
is

2
(u

)|

MAE

(d) BioMine

Fig. 14: Vertex degree discrepancy (∆2) (real graphs)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:30 P. Parchas et al.

MAE is the ratio of ∆2 over |V | and corresponds to average degree discrepancy per
vertex. In Flickr, where the expected average vertex degree is 22.93, most methods are very
accurate. For instance, ADR, ABM, GR2 and GM2 yield an average degree discrepancy per
node below 0.3. On the other hand, in BioMine, where the expected average degree is only
3.59, the relative error (the ratio of MAE over the expected average degree) of all methods
is higher but still acceptable (observe that the values of MAE are similar in all datasets). In
general, the proposed methods are most beneficial in dense graphs; if the uncertain graph
is very sparse (i.e., small |E|/|V | ratio, low edge probabilities), a single representative may
fail to capture its properties.
Figure 15 illustrates the boxplots and MAE of |dis3| distribution. GM3 and GM2,3 exhibit

the best performance. Specifically, in the densest dataset (Flickr), their average ∆3 is more
than two orders of magnitude lower than PS and GR2, and more than one order of magnitude
lower than ADR, ABM, GR3 and GR2,3. Although GR3 focuses on triangle discrepancy, it
only yields very good results for BioMine; in the rest of the datasets it is outperformed by
ADR and ABM. Observe that in those datasets the vertical line representing 95% of the
vertices extends above those of ADR and ABM. This suggests that although GR3 is able
to capture most of the vertices well, its overall error is negatively affected by outliers. It is
noteworthy that unlike GR2 that fails in this metric, GM2 manages to preserve relatively
well ∆3.

 0

 2

 4

 6

 8

 10

 12

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

2
-2

2
0

2
2

2
4

2
6

2
8

2
10

|d
is

3
(u

)|

MAE

(a) Flickr

 0

 2

 4

 6

 8

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

|d
is

3
(u

)|

MAE

(b) Twitter

 0

 4

 8

 12

 16

 20

 24

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 2

 4

 6

 8

 10

 12

|d
is

3
(u

)|

MAE

(c) DBLP

 0

 1

 2

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 1

 2

 3

 4

|d
is

3
(u

)|

MAE

(d) BioMine

Fig. 15: Triangle discrepancy (∆3) (real graphs)

Figure 16 contains the boxplots and MAE of the discrepancy |dis2|+|dis3|. Overall, Figure
16 aggregates the results of Figures 14 and 15, i.e., a method that yields high error in |dis2|
or |dis3|, is also likely to under-perform in |dis2|+ |dis3|. GM2,3 is the best representative,
followed by GM2, ADR, ABM and GR2,3 whose relative performance depends on the dataset.
On the other hand, PS, GR2 and GR3, GM3 fail in some datasets due to their inability to
preserve |dis3| or |dis2|, respectively.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:31

 0

 2

 4

 6

 8

 10

 12

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

2
-2

2
0

2
2

2
4

2
6

2
8

2
10

|d
is

2
(u

)|
+

|d
is

3
(u

)|

MAE

(a) Flickr

 0

 5

 10

 15

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

|d
is

2
(u

)|
+

|d
is

3
(u

)|

MAE

(b) Twitter

 0

 3

 6

 9

 12

 15

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 3

 6

 9

 12

 15

|d
is

2
(u

)|
+

|d
is

3
(u

)|

MAE

(c) DBLP

 0

 1

 2

 3

 4

 5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 1

 2

 3

 4

 5

|d
is

2
(u

)|
+

|d
is

3
(u

)|

MAE

(d) BioMine

Fig. 16: Combined discrepancy (∆2 +∆3) (real graphs)

Figure 17 illustrates the performance of the methods in 2-star discrepancy. According
to Equation 7, the expected S2(u) depends more on its vertex than triangle cardinality
because of the [γ2(u)]

2 factor. Thus, the relative performance of the algorithms is similar to
that in Figure 14, with GM2, GM2,3, ABM and ADR having the highest accuracy. GR2 yields
large error due to its failure on ∆3. Summarizing the results on structural measures, GM2,3,
and to a lesser degree GM2 achieve the best quality overall. ABM and ADR have balanced
performance under all settings, whereas the rest of the algorithms may fail in some datasets
for a measure beyond their intended objective function.

 0

 8

 16

 24

 32

 40

 48

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

2
0

2
3

2
6

2
9

2
12

|2
-s

ta
r(

u)
|

MAE

(a) Flickr

 0

 4

 8

 12

 16

 20

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

2
0

2
2

2
4

2
6

2
8

2
10

|2
-s

ta
r(

u)
|

MAE

(b) Twitter

 0

 3

 6

 9

 12

 15

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 3

 6

 9

 12

 15

|2
-s

ta
r(

u)
|

MAE

(c) DBLP

 0

 1

 2

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 10

 20

 30

 40

|2
-s

ta
r(

u)
|

MAE

(d) BioMine
Fig. 17: 2stars discrepancy (real graphs)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:32 P. Parchas et al.

6.3. Query metrics

We evaluate the accuracy of our methods in the following graph related queries:

• Clustering coefficient is a measure of how close neighbors of a vertex are to forming
a clique. Specifically, it is the ratio of the number of edges between the neighbors of
a vertex to the maximum number of such links. It is an important metric for search
strategies [Fraigniaud 2007] and social networks [Kossinets and Watts 2006].

• Betweenness centrality is a measure of the node’s importance in the graph: it corre-
sponds to the ratio of shortest paths that pass through the node over all pairs of shortest
paths. It has been used widely to assess link value of ecological graphs [Gonzalez et al.
2010], and router utilization of communication networks [Tizghadam and Leon-Garcia
2010].

• Shortest path distance is the percentage of pairs at a certain distance, over all pairs
of reachable vertices. This metric is crucial for spatial queries [Potamias et al. 2010],
routing protocols, and in general, any task involving shortest path computations.

Since there do not exist closed formulae for the query metrics, the ground truth is ap-
proximated by Monte Carlo sampling. Specifically, we create a number of random instances
of the input uncertain graph, and we compute the expected value of each metric using the
average of the sampled graphs. We use 1000 samples since it has been shown [Potamias
et al. 2010; Jin et al. 2011b] that they usually suffice to achieve accuracy convergence. Sim-
ilarly to the previous section, we plot our experimental results using boxplots (left y-axis),
and the Mean Absolute Error (MAE), (disks projected on the right y-axis), starting with
the clustering coefficient in Figure 18. In general, the ranking of the algorithms in terms
of accuracy, is analogous to that for ∆3 (see Figure 15) because the clustering coefficient
of a vertex u is highly correlated to the number of triangles containing u. GM2,3 has the
lowest MAE in all datasets except BioMine. GM2, GM3, GR3, GR2,3, ABM and ADR yield
acceptable results, but GR2 and PS lead to large error.

 0

 1

 2

 3

 4

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 0.4

 0.8

 1.2

 1.6

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-1
)

MAE(x10
-1

)

(a) Flickr

 0

 0.5

 1

 1.5

 2

 2.5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3GM2,3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-1
)

MAE(x10
-1

)

(b) Twitter

 0

 0.5

 1

 1.5

 2

 2.5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3GM2,3

 0

 0.4

 0.8

 1.2

 1.6

 2

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-1
)

MAE(x10
-1

)

(c) DBLP

 0

 1

 2

 3

 4

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 0.2

 0.4

 0.6

 0.8

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-1
)

MAE(x10
-1

)

(d) BioMine

Fig. 18: Clustering coefficient distribution (real graphs)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:33

Betweenness centrality and shortest-path distance are very expensive because they involve
all-pairs shortest path computations. Their evaluation over 1000 samples of large graphs is
prohibitive. To overcome this problem, given an uncertain graph, we use forest fire [Leskovec
and Faloutsos 2006] to create a subgraph that has similar properties, and perform the
evaluation on the reduced graph. The number of vertices and edges in the reduced graphs
are: i) Flickr, 5000 and 655275, ii) Twitter 10000 and 353399, iii) DBLP, 5000 and 76884
and iv) BioMine, 5000 and 69367. Note that the method used to create reduced graphs is
orthogonal to our work; we expect the proposed techniques to have similar performance
with other size reduction methods.
Figure 19 shows the betweenness centrality boxplots and MAE. The representatives of

ADR, ABM, GM2 and GM2,3 capture very well this metric in all datasets; GM2,3 is best in
DBLP, whereas there are not considerable differences in the other datasets. PS performs
well for DBLP, acceptably for BioMine and poorly for Flickr and Twiter. Similar to pre-
vious diagrams, GREEDY methods are usually outperformed by the corresponding GAME
approaches with the same objective function.

 0

 1

 2

 3

 4

 5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 2

 4

 6

 8

 10

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-4
)

MAE(x10
-3

)

(a) Flickr

 0

 0.5

 1

 1.5

 2

 2.5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 1

 2

 3

 4

 5

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-4
)

MAE(x10
-3

)

(b) Twitter

 0

 0.5

 1

 1.5

 2

 2.5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3GM2,3

 0

 3

 6

 9

 12

 15

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-4
)

MAE(x10
-3

)

(c) DBLP

 0

 1

 2

 3

 4

 5

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

 0

 4

 8

 12

 16

 20

E
rr

o
r

D
is

tr
ib

u
ti

o
n

 (
x

1
0

-4
)

MAE(x10
-3

)

(d) BioMine

Fig. 19: Betweenness centrality (reduced graphs)

Figure 20 plots the mean absolute error for the average shortest path distance between
every pair of vertices. Clearly, in all datasets, approaches that aim at minimizing only ∆3,
i.e., GR3 and GM3, provide the worst results. Due to the high density of their representatives
(see Figure 13), they seriously underestimate the distance. PS and GR2 also exhibit poor
performance. The rest of the methods yield similar accuracy.
Figure 21 illustrates the shortest path distance error distribution, i.e., the MAE versus

the distance of the two end-nodes. To keep the diagrams readable, we only include the
benchmark PS, and a single method of each category, namely ABM, GR3 and GM2,3. The
relative performance of the methods is consistent with Figure 20. Note that MAE decreases
as the distance increases. This occurs because there are numerous alternative paths between
pairs of vertices that have long distances. Even if the actual shortest path is not maintained
in the representative, another one, with similar distance, is likely to exist.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:34 P. Parchas et al.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3

M
A

E

Flickr
Twitter
DBLP

BioMine

Fig. 20: MAE for average shortest path distance (reduced graphs)

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20

M
A

E

SP distance

PS
ABM
GR3

GM2,3

(a) Flickr

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20

M
A

E

SP distance

PS
ABM
GR3

GM2,3

(b) Twitter

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30

M
A

E

SP distance

PS
ABM
GR3

GM2,3

(c) DBLP

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20

M
A

E

SP distance

PS
ABM
GR3

GM2,3

(d) BioMine

Fig. 21: Shortest path distance average error (reduced graphs)

The summary of the query metrics agrees with that of the structural measures. GM2,3

provides the highest accuracy for most metrics and datasets, followed by GM2. Although
ABM and ADR rarely achieve the best results, they do not fail either. On the other hand, the
GREEDY approaches are unpredictable. Regarding the objective functions, minimization of
∆3 should be applied only for metrics, such as the clustering coefficient, that are highly
correlated to the number of triangles. For most other metrics, minimization of ∆2 +∆3 is
likely to yield the best results.

6.4. Efficiency experiments

All methods were implemented in C++ and executed in a single core of an Intel Xeon
E5-2660 with 2.20GHz cpu and 96GB ram. Figure 22 illustrates the running times in
logarithmic scale. ABM is the fastest algorithm, generating its representative in less than
10 seconds for all datasets. PS, ADR, GM2 are also very efficient and their running time

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:35

never exceeds 100 seconds. At the other extreme, GR3 requires several hours to terminate
for BioMine. In general, GREEDY approaches are the slowest, which is expected by their
high complexity. The objective function also affects the cost, with methods aiming at ∆3,
i.e., GR3 and GM3, being the most expensive, followed by those that minimize ∆2 +∆3.
For ease of comparison, the last three sets of columns in Figure 22 contain the running

times of the three query metrics on a single sample/representative. Specifically, CC corre-
sponds to the clustering coefficient, BC to betweenness centrality and SP to shortest path
distance. Even the most efficient query CC on a single sample requires roughly the same
time as the generation of a representative by PS, ADR and GM2, and is more expensive
than ABM. BC and SP are much slower due to the all-pair shortest path computations. In
Monte Carlo approaches, all queries must be executed on each individual sample (in our
experiments 1000 times). In addition, these samples have a non-negligible generation cost,
which is not considered in the diagram. Thus, the overhead of the proposed techniques is
very small compared to that of query processing.

10
-2

10
0

10
2

10
4

10
6

PS ADR ABM GR2 GR3 GR2,3 GM2 GM3 GM2,3 CC BC SP

ti
m

e
 (

se
c
)

Flickr
Twitter
DBLP

BioMine

Fig. 22: Running times (real graphs)

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0.1 1 10 100 1000 10000

∆ 2
 M

A
E

time (s)

PS

ADR

ABM
GR2
GM2

(a) Flickr

 0.25

 0.5

 1

 2

 4

 8

 0.01 0.1 1 10 100 1000

∆ 2
 M

A
E

time (s)

PS
ADR
ABM
GR2
GM2

(b) Twitter

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.001 0.01 0.1 1

∆ 2
 M

A
E

time (s)

PS
ADR
ABM
GR2
GM2

(c) DBLP

 0.25

 0.5

 1

 2

 4

 0.1 1 10 100 1000 10000

∆ 2
 M

A
E

time (s)

PS
ADR
ABM
GR2
GM2

(d) BioMine
Fig. 23: Convergence time (real graphs)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:36 P. Parchas et al.

Figure 23 illustrates the average ∆2 versus time in log-log scale for the methods that aim
at minimizing ∆2. We can classify the algorithms in three categories based on their speed of
convergence. i) ABM and GM2 converge very fast to good quality solutions in all datasets.
ii) ADR and PS need more time to create a good representative, although their execution
times are comparable to that of GM2. iii) In addition to being the least efficient, GR2 is also
the slowest to converge.
Since as discussed in the previous subsections, GM2 and GM2,3 produce in general the

best representatives, the last experiment focuses on their performance. Specifically, in each
diagram of Figure 24, the x-axis corresponds to the round number, the left y-axis shows
the discrepancy (∆2 or ∆2 + ∆3), and the right y-axis plots the number of edges that
changed strategy during the round. For instance, in Figure 24(a), GM2 in Flickr terminates
after 6 rounds; the last round is omitted because the discrepancy remains the same and no
edge switches strategy. The initial ∆2 discrepancy of the seed graph is 2.453 and drops to
0.294 after the first round. The number of strategy changes decreases exponentially, which
causes the execution time of each round to diminish accordingly. Figure 24(b) shows the
corresponding diagram for ∆2 + ∆3 in Twitter. Although ∆2 + ∆3 is not the objective
function of GM2, the convergence behavior is similar to that of Figure 24(a).

 0.26

 0.27

 0.28

 0.29

 0.3

 1 2 3 4 5

10
1

10
3

10
5

10
7

∆ 2
 M

A
E

#
ed

g
es

 c
h

an
g
ed

round number

∆2 MAE

#edges

(a) Flickr GM2

 1.9

 1.91

 1.92

 1.93

 1.94

 1 2 3 4 5 6

10
1

10
3

10
5

10
7

∆ 2
+

∆ 3
 M

A
E

#
ed

g
es

 c
h

an
g
ed

round number

∆2+∆3 MAE

#edges

(b) Twitter GM2

 0.45

 0.5

 0.55

 0.6

 0.65

 1 2 3 4 5 6 7

10
1

10
3

10
5

10
7

∆ 2
 M

A
E

#
ed

g
es

 c
h

an
g
ed

round number

∆2 MAE

#edges

(c) DBLP GM2,3

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 2 4 6 8 10 12 14 16 18 20

10
1

10
2

10
3

10
4

10
5

10
6

10
7

∆ 2
+

∆ 3
 M

A
E

#
ed

g
es

 c
h

an
g
ed

round number

∆2+∆3 MAE

#edges

(d) BioMine GM2,3

Fig. 24: Performance of GAME (real graphs)

Figures 24(c) and 24(d) repeat the same experiments for GM2,3 in DBLP and BioMine
respectively. The results are analogous to GM2 except that more rounds are required for
termination, especially for BioMine. This is because, as shown in Figure 13, BioMine yields
the representative with the largest number of edges. In all cases the number of rounds is at
most 20, whereas the discrepancy always converges within the first few rounds. Accordingly,
for large graphs and time critical applications, a small number of rounds of GAME can
produce representatives of high quality, without necessarily reaching a Nash equilibrium.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:37

7. CONCLUSION

In this paper we propose extracting representative instances of uncertain graphs. Expensive
tasks can then be processed by applying deterministic algorithms on these instances. We
focus on two problems: the first aims at minimizing the vertex degree discrepancy between
the representative and the uncertain graph, while the second minimizes n-clique discrepan-
cies. For Problem 1, we present ADR a heuristic technique, and ABM that utilizes matching
algorithms. For Problem 2, we develop methods based on the greedy and game theoretic
frameworks. In order to assess the quality of representatives, we perform extensive experi-
ments on real datasets. Our results confirm that indeed the proposed methods approximate
well various structural measures and query metrics. Given the cost savings of our techniques
with respect to Monte Carlo sampling, we expect them to have a significant impact on query
processing for uncertain graphs.
In the future we intend to investigate additional properties that maybe of interest for

specialized tasks, e.g., graph pattern mining, graph clustering, etc. It will also be inter-
esting to generate and combine multiple representatives for better approximation. We also
aim at extending our methods to alternative uncertain settings such as, time dependent
or streaming graphs, attributed graphs etc., where the extraction of representatives is even
more challenging. Finally, an interesting direction is the incorporation of subgraph sampling
in the process of representative extraction. The idea is to generalize the problem definitions,
so that in addition to preserving the structural properties of the uncertain graph, the rep-
resentatives also reduce the number of nodes to further facilitate efficiency.

Acknowledgements

Panos Parchas and Dimitris Papadias were supported by GRF grants HKUST 617713 and
16201615 from Hong Kong RGC.

REFERENCES

Serge Abiteboul, Paris Kanellakis, and Gosta Grahne. 1987. On the Representation and Querying of Sets
of Possible Worlds. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD ’87). 34–48. DOI:http://dx.doi.org/10.1145/38713.38724

Eytan Adar and Christopher Re. 2007. Managing uncertainty in social networks. IEEE Data Engineering
Bulletin 30, 2 (July 2007), 15–22.

Charu C. Aggarwal and Philip S. Yu. 2009. A Survey of Uncertain Data Algorithms and Appli-
cations. IEEE Transactions on Knowledge and Data Engineering 21, 5 (May 2009), 609–623.
DOI:http://dx.doi.org/10.1109/TKDE.2008.190

William Aiello, Fan Chung, and Linyuan Lu. 2000. A Random Graph Model for Massive Graphs.
In Proceedings of the ACM Symposium on Theory of Computing (STOC ’00). 171–180.
DOI:http://dx.doi.org/10.1145/335305.335326

Sheldon B. Akers, Dov Harel, and Balakrishnan Krishnamurthy. 1994. The Star Graph: An Attractive
Alternative to the N-cube. In Interconnection Networks for High-performance Parallel Computers.
IEEE Computer Society Press, Los Alamitos, CA, USA, 145–152.

Saurabh Asthana, Oliver D. King, Francis D. Gibbons, and Frederick P. Roth. 2004. Predicting protein
complex membership using probabilistic network reliability. Genome Research 14, 4 (June 2004), 1170–
1175. DOI:http://dx.doi.org/10.1101/gr.2203804

Joseph Blitzstein and Persi Diaconis. 2011. A sequential importance sampling algorithm for generat-
ing random graphs with prescribed degrees. Internet Mathematics 6, 4 (March 2011), 489–522.
DOI:http://dx.doi.org/10.1080/15427951.2010.557277

Paolo Boldi, Francesco Bonchi, Aristides Gionis, and Tamir Tassa. 2012. Injecting Uncertainty in Graphs
for Identity Obfuscation. Proceedings of the VLDB Endowment 5, 11 (July 2012), 1376–1387.
DOI:http://dx.doi.org/10.14778/2350229.2350254

Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich. 2014. Core Decomposition
of Uncertain Graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’14). 1316–1325. DOI:http://dx.doi.org/10.1145/2623330.2623655

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:38 P. Parchas et al.

Fan Chung and Linyuan Lu. 2002. The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences 99, 25 (Dec. 2002), 15879–15882.
DOI:http://dx.doi.org/10.1073/pnas.252631999

Fan Chung, Linyuan Lu, and Van H. Vu. 2003. Spectra of Random Graphs with Given Expected
Degrees. Proceedings of the National Academy of Sciences 100, 11 (May 2003), 6313–6318.
DOI:http://dx.doi.org/10.1073/pnas.0937490100

Nilesh Dalvi and Dan Suciu. 2007. Efficient Query Evaluation on Probabilistic Databases. The VLDB
Journal 16, 4 (Oct. 2007), 523–544. DOI:http://dx.doi.org/10.1007/s00778-006-0004-3

Charo I. Del Genio, Hyunju Kim, Zoltn Toroczkai, and Kevin E. Bassler. 2010. Efficient and Exact Sam-
pling of Simple Graphs with Given Arbitrary Degree Sequence. PLoS ONE 5, 4 (April 2010), e10012.
DOI:http://dx.doi.org/10.1371/journal.pone.0010012

Paul Erdös and Tibor Gallai. 1960. Graphs with prescribed degrees of vertices (Hungarian). Mat. Lapok 11
(1960), 264–274.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On Power-law Relationships
of the Internet Topology. In Proceedings of the ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM ’99). 251–262.
DOI:http://dx.doi.org/10.1145/316188.316229

Pierre Fraigniaud. 2007. Small Worlds as Navigable Augmented Networks: Model, Analysis, and Validation.
In Algorithms ESA. Vol. 4698. Springer, 2–11. DOI:http://dx.doi.org/10.1007/978-3-540-75520-3 2

Ana M. Gonzalez, Bo Dalsgaard, and Jens M. Olesen. 2010. Centrality measures and the impor-
tance of generalist species in pollination networks. Ecological Complexity 7, 1 (March 2010), 36–43.
DOI:http://dx.doi.org/10.1016/j.ecocom.2009.03.008

Seifollah L. Hakimi. 1962. On realizability of a set of integers as degrees of the vertices of a linear graph.
Journal of the Society for Industrial and Applied Mathematics 10, 3 (Sept. 1962), 496–506. http:
//www.jstor.org/stable/2098746

Stefan Hougardy. 2009. Linear Time Approximation Algorithms for Degree Constrained Sub-
graph Problems. In Research Trends in Combinatorial Optimization. Springer, 185–200.
DOI:http://dx.doi.org/10.1007/978-3-540-76796-1 9

Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2013. Massive Graph Triangulation. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’13). 325–336.
DOI:http://dx.doi.org/10.1145/2463676.2463704

Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. 2008. Metropolis Al-
gorithms for Representative Subgraph Sampling. In Proceedings of the IEEE International Conference
on Data Mining (ICDM ’08). 283–292. DOI:http://dx.doi.org/10.1109/ICDM.2008.124

Ruoming Jin, Lin Liu, and Charu C. Aggarwal. 2011a. Discovering Highly Reliable Subgraphs in Uncertain
Graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’11). 992–1000. DOI:http://dx.doi.org/10.1145/2020408.2020569

Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. 2011b. Distance-constraint Reachability Com-
putation in Uncertain Graphs. Proceedings of the VLDB Endowment 4, 9 (June 2011), 551–562.
DOI:http://dx.doi.org/10.14778/2002938.2002941

David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of Influence Through a Social
Network. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’03). 137–146. DOI:http://dx.doi.org/10.1145/956750.956769

Arijit Khan, Francesco Bonchi, Aristides Gionis, and Francesco Gullo. 2014. Fast Reliability Search in
Uncertain Graphs. In Proceedings of the International Conference on Extending Database Technology
(EDBT ’14). 535–546. DOI:http://dx.doi.org/10.5441/002/edbt.2014.48

Jon Kleinberg. 2006. Complex networks and decentralized search algorithms. In Proceedings of the Inter-
national Congress of Mathematicians (ICM ’06). 1019–1044.

George Kollios, Michalis Potamias, and Evimaria Terzi. 2013. Clustering Large Probabilistic
Graphs. IEEE Transactions on Knowledge and Data Engineering 25, 2 (Feb. 2013), 325–336.
DOI:http://dx.doi.org/10.1109/TKDE.2011.243

Gueorgi Kossinets and Duncan J. Watts. 2006. Empirical Analysis of an Evolving Social Network. Science
311, 5757 (Jan. 2006), 88–90. DOI:http://dx.doi.org/10.1126/science.1116869

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. 2010.
Kronecker Graphs: An Approach to Modeling Networks. Journal of Machine Learning Research 11
(March 2010), 985–1042. http://dl.acm.org/citation.cfm?id=1756006.1756039

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Uncertain Graph Processing through Representative Instances 1:39

Jure Leskovec and Christos Faloutsos. 2006. Sampling from Large Graphs. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’06). 631–636.
DOI:http://dx.doi.org/10.1145/1150402.1150479

Rong-Hua Li, Jeffrey Xu Yu, Rui Mao, and Tan Jin. 2014. Efficient and accurate query evaluation on
uncertain graphs via recursive stratified sampling. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE ’14). 892–903. DOI:http://dx.doi.org/10.1109/ICDE.2014.6816709

David Liben-Nowell and Jon Kleinberg. 2003. The Link Prediction Problem for Social Networks. In Pro-
ceedings of the ACM International Conference on Information and Knowledge Management (CIKM
’03). 556–559. DOI:http://dx.doi.org/10.1145/956863.956972

Fredrik Liljeros, Christofer R. Edling, Luis A. Nunes Amaral, H Eugene Stanley, and Yvonne
Åberg. 2001. The web of human sexual contacts. Nature 411, 6840 (June 2001), 907–908.
DOI:http://dx.doi.org/10.1038/35082140

Lin Liu, Ruoming Jin, Charu C. Aggarwal, and Yelong Shen. 2012. Reliable clustering on uncertain
graphs. In Proceedings of the IEEE International Conference on Data Mining (ICDM ’12). 459–468.
DOI:http://dx.doi.org/10.1109/ICDM.2012.11

Yang-Yu Liu, Jean-Jacques Slotine, and Albert-Laszlo Barabasi. 2011. Controllability of complex networks.
Nature 473, 7346 (May 2011), 167–173. DOI:http://dx.doi.org/10.1038/nature10011

László Lovász. 1970. Subgraphs with prescribed valencies. Journal of Combinatorial Theory 8, 4 (1970),
391–416. DOI:http://dx.doi.org/10.1016/S0021-9800(70)80033-3

Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. 2006. Systematic Topology Analysis
and Generation Using Degree Correlations. In Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM ’06). 135–146.
DOI:http://dx.doi.org/10.1145/1159913.1159930

Miller McPherson, Lynn Smith-Lovin, and James M. Cook. 2001. Birds of a Feather: Ho-
mophily in Social Networks. Annual Review of Sociology 27, 1 (Aug. 2001), 415–444.
DOI:http://dx.doi.org/10.1146/annurev.soc.27.1.415

Julián Mestre. 2006. Greedy in Approximation Algorithms. In Algorithms ESA. Vol. 4168. Springer, 528–
539. DOI:http://dx.doi.org/10.1007/11841036 48

Silvio Micali and Vijay V. Vazirani. 1980. An O(
√

|V | · |E|) algorithm for finding maximum matching in
general graphs. In Proceedings of the IEEE Annual Symposium on Foundations of Computer Science
(FOCS ’80). 17–27. DOI:http://dx.doi.org/10.1109/SFCS.1980.12

Daniele Micciancio. 2001. The Hardness of the Closest Vector Problem with Preprocessing. IEEE Transac-
tions on Information Theory 47, 3 (March 2001), 1212–1215. DOI:http://dx.doi.org/10.1109/18.915688

Milena Mihail and Nisheeth K Vishnoi. 2002. Position Paper, Approximate and Randomized Algorithms
for Communication Networks (ARACNE ’02) 142 (2002), 1–11.

Dov Monderer and Lloyd S. Shapley. 1996. Potential games. Games and Economic Behavior 14, 1 (May
1996), 124–143. DOI:http://dx.doi.org/10.1006/game.1996.0044

Walaa Eldin Moustafa, Angelika Kimmig, Amol Deshpande, and Lise Getoor. 2014. Subgraph
Pattern Matching over Uncertain Graphs with Identity Linkage Uncertainty. In Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE ’14). 904–915.
DOI:http://dx.doi.org/10.1109/ICDE.2014.6816710

Jaroslav Nešetřil and Svatopluk Poljak. 1985. On the complexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae 26, 2 (Jan. 1985), 415–419.

Panos Parchas, Francesco Gullo, Dimitris Papadias, and Franceseco Bonchi. 2014. The Pursuit of a
Good Possible World: Extracting Representative Instances of Uncertain Graphs. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD ’14). 967–978.
DOI:http://dx.doi.org/10.1145/2588555.2593668

Michalis Potamias, Francesco Bonchi, Aristides Gionis, and George Kollios. 2010. K-nearest Neigh-
bors in Uncertain Graphs. Proceedings of the VLDB Endowment 3, 1-2 (Sept. 2010), 997–1008.
DOI:http://dx.doi.org/10.14778/1920841.1920967

Gerardo Rubino. 1998. Network reliability evaluation. State-of-the art in performance modeling and simu-
lation (March 1998), 275–302. DOI:http://dx.doi.org/10.1002/wics.81

Petteri Sevon, Lauri Eronen, Petteri Hintsanen, Kimmo Kulovesi, and Hannu Toivonen. 2006. Link Discovery
in Graphs Derived from Biological Databases. In Proceedings of the Springer International Conference
on Data Integration in the Life Sciences (DILS’06). 35–49. DOI:http://dx.doi.org/10.1007/11799511 5

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data Mining. Addison-Wesley
Longman Publishing Co., Inc.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:40 P. Parchas et al.

Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott Shenker, and Walter Willinger. 2002.
Network Topology Generators: Degree-based vs. Structural. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM
’02). 147–159. DOI:http://dx.doi.org/10.1145/633025.633040

Ali Tizghadam and Alberto Leon-Garcia. 2010. Betweenness centrality and resistance dis-
tance in communication networks. IEEE Network 24, 6 (Nov.-Dec. 2010), 10–16.
DOI:http://dx.doi.org/10.1109/MNET.2010.5634437

Leslie G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems. SIAM Journal of Com-
puting 8, 3 (1979), 410–421. DOI:http://dx.doi.org/10.1137/0208032

Christian von Mering, Martijn A. Huynen, Daniel Jaeggi, Steffen Schmidt, Peer Bork, and Berend Snel. 2003.
STRING: a database of predicted functional associations between proteins. Nucleic Acids Research 31,
1 (Jan. 2003), 258–261. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165481/

Ye Yuan, Lei Chen, and Guoren Wang. 2010. Efficiently Answering Probability Threshold-Based Short-
est Path Queries over Uncertain Graphs. In Database Systems for Advanced Applications. Vol. 5981.
Springer, 155–170. DOI:http://dx.doi.org/10.1007/978-3-642-12026-8 14

Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. 2012. Efficient Subgraph Similarity Search on
Large Probabilistic Graph Databases. Proceedings of the VLDB Endowment 5, 9 (May 2012), 800–
811. DOI:http://dx.doi.org/10.14778/2311906.2311908

Ye Yuan, Guoren Wang, Haixun Wang, and Lei Chen. 2011. Efficient Subgraph Search over Large Uncertain
Graphs. Proceedings of the VLDB Endowment 4, 11 (Jan. 2011), 876–886.

Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010a. Finding top-k Maximal Cliques in an
Uncertain Graph. In Proceedings of the IEEE International Conference on Data Engineering (ICDE
’10). 649–652. DOI:http://dx.doi.org/10.1109/ICDE.2010.5447891

Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010b. Mining Frequent Subgraph Patterns from
Uncertain Graph Data. IEEE Transactions on Knowledge and Data Engineering 22, 9 (May 2010),
1203–1218. DOI:http://dx.doi.org/10.1109/TKDE.2010.80

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

